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Abstract— This paper deals with the efficient solution
of Maxwell’s equation in the static and eddy current case
using enhanced Algebraic MultiGrid methods. The mag-
netic vector potential is used as the field variable and La-
grange (nodal) as well as Nédélec (edge) finite elements
are applied for the spatial discretization. Numerical stud-
ies for the static case (TEAM 20), the eddy current case in
time domain (Magnetic Resonance Imaging scanner) and
in frequency domain (electric transformer) will demon-
strate the applicability of the developed Algebraic Multi-
Grid methods.

I. Introduction

Numerical computations of electromagnetic fields are
performed for more than 20 years. Many different formu-
lations using Lagrange (nodal) as well as Nédélec (edge)
finite elements for the spatial discretization have been
developed (see e.g. [4], [3]). Even many commercial
codes are available for the computation of electromag-
netic fields in 3D. However, the efficient solution with
respect to CPU-time and memory amount for the result-
ing algebraic system of equations is still a challenging
task, and requires ongoing research.

In this paper we will concentrate on the static and eddy
current case (both in time and frequency domain) by ap-
plying enhanced Algebraic MultiGrid (AMG) solvers de-
veloped in the last 4 years. The paper is organized as
follows: In Sec. II we will describe the correct formula-
tion and Finite Element (FE) discretization of Maxwell’s
equations for the eddy current case. Next, in Sec. III we
will review the convergence behavior of iterative solvers,
the properties of MultiGrid (MG) methods, and the mo-
tivation for AMG solvers. The main part of this paper
concentrates on a detailed discussion of AMG methods
and special adaption for algebraic systems of equations
arising from nodal as well as edge FE-discretizations (see
Sec. IV and V). Finally, we will report on the per-
formance of the developed AMG methods for three case
studies: TEAM 20, Magnetic Resonance Imaging scan-
ner and electric transformer.

II. Governing Equations and Finite Element

Discretizations

The electromagnetic field is fully described by
Maxwell’s equations [33]. Restricting the problem class
to the quasi-static (eddy current) case, we arrive at the
following partial differential equation for the magnetic
vector potential A

γ
∂A
∂t

+∇× ν∇×A = Ji (1)

with boundary condition n×A = 0 and n the unit out-
ward normal vector. In (1) Ji denotes the impressed cur-
rent density, ν the magnetic reluctivity and γ the electric
conductivity. Furtheron, the following interface condi-
tions have to be fulfilled

[A× n] = 0 ; [ν n×∇×A] = 0 ;
[
γ
∂A
∂t

]
= 0 (2)

with [Z] = Zright−Zleft. For further discussions let Ω be
a bounded single connected convex domain with bound-
ary ∂Ω = Γ. The function spaces L2(Ω) and H1

0 (Ω) are
defined as usual, see e.g. [1]. Therewith, the variational
formulation for (1) in the function space

H0(curl) = {u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3,

u× n|Γ = 0} (3)

reads as follows: Find A ∈ H0(curl) such that∫
Ω

γA′ · ∂A
∂t

dΩ +
∫
Ω

∇×A′ · ν∇×A dΩ

=
∫
Ω

A′ · Ji dΩ (4)

for any A′ ∈ H0(curl) is fulfilled.
It is well known, that an edge FE-discretization of (4)

is H0(curl)-conform [23]. Nevertheless, the solution of
the algebraic system requires special care in order to ob-
tain an optimal MultiGrid solver (see e.g. [2], [13]). We
suggest to add a fictive electric conductivity γ′ to re-
gions with zero electric conductivity to obtain a varia-
tional form, which is elliptic [32]. Of course, this fictive
conductivity γ′ has to be chosen small as compared to
the reluctivity of the material. The proof of convergence
even in the case of γ′ → 0 is given in [27].

For the application of nodal finite elements, we have
to perform additional steps. As shown in [9], the space
H0(curl) can be decomposed for any convex domain Ω
into

H0(curl) =
(
H1

0 (Ω)
)3 ⊕∇H1

0 (Ω) , (5)

which corresponds to splitting the magnetic vector po-
tential A as follows

A = u +∇φ , ∇ · u = 0 , (6)

with u ∈
(
H1

0 (Ω)
)3 and φ ∈ H1

0 (Ω). The same decompo-
sition is done for the test function A′ = v +∇ψ. Since
we have to guarantee ∇ · u = 0, we do so by adding
the penalty term

∫
Ω
sν (∇ · v∇ · u) dΩ to the varia-

tional formulation (4) (weighted regularization method
with special function s, see [8], [17]). Therewith, the
variational formulation can be stated as follows: Find
(u, φ) ∈ (H1

0 (Ω)3, H1
0 (Ω)) such that∫

Ω

ν∇× v · ∇ × u dΩ +
∫
Ω

s ν ∇ · v∇ · u dΩ

+
∫
Ω

γ(v +∇ψ) · ∂
∂t

(u +∇φ) dΩ =
∫
Ω

Ji · v dΩ . (7)

for any (v, ψ) ∈ (H1
0 (Ω)3, H1

0 (Ω)).
In both cases, nodal as well as edge finite elements,

the spatial and subsequent time discretization lead to an
algebraic system of equations

Kn
h (Anh, φ

n

h
) = fn

h
, Ke

hA
e
h = fe

h
. (8)



For the rest of the paper the superscripts {e, n} are
omitted, whenever this is possible without causing any
confusion.

III. Iterative and MultiGrid Methods

Let us consider the algebraic system of equations of
the form

Khuh = f
h
. (9)

Therein Kh ∈ RNh×Nh denotes the system matrix, f
h
∈

R
Nh the right hand side and uh ∈ RNh the solution vector

of the unknown nodal (edge) quantity (mainly the mag-
netic vector potential). Additionally the entries of Kh are
given by kij = (Kh)ij ∈ Rp×p with p defining the number
of unknowns per node (edge). The number of unknowns
Nh is related to the usual discretization parameter h by
the relation Nh = O(h−d), with d = 2, 3 the spatial di-
mension. The system matrix Kh is supposed to be sparse
and symmetric positive definite (SPD). In general Nh is
quite large and due to limited memory resources, iterative
solvers have to be used instead of direct ones. However,
the convergence of iterative solvers strongly depends on
the condition number κ of the system matrix Kh

κ(Kh) =
λmax(Kh)
λmin(Kh)

(10)

with λmax and λmin the largest and the smallest eigen-
value of Kh, respectively. In general, the convergence
rate decreases when κ gets large. Since Kh stems from
an FE-discretization of a second order partial differential
equation (PDE), the condition number κ(Kh) typically
behaves like O(h−2). In order to cope with large condi-
tion numbers, we apply a symmetric preconditioner Ch
to (9), i.e.

C−1
h Kh = C−1

h f
h
, (11)

with the properties

• C−1
h is an approximate inverse of Kh, and

• C−1
h can be applied very fast.

Consequently the condition number of the preconditioned
system is much smaller than the original one. For in-
stance, the standard preconditioner is the well known
Incomplete Cholesky (IC) method (see e.g.[5]). Further-
more, the preconditioned system (11) is solved via a
Krylov subspace method, i.e. Conjugate Gradient (CG)
or Quasi Minimal Residual (QMR) method, see [30].
The standard preconditioners (IC, Jacobi, etc.) suffer
from the fact, that the condition number still depends
on h. In order to get condition numbers independent
of the discretization parameter h, MultiGrid methods
(MG) have to be used, for which it can be shown that the
number of necessary iterations does not depend on the
mesh parameter h (see e.g. [10]). As shown in [14], the
most robust solution strategy for SPD linear equations
(9) is PCG with geometric MultiGrid preconditioner. Re-
cently, investigations have been carried out to adapt ge-
ometric MultiGrid (MG) methods for the fast solution
of 3D electromagnetic field problems (e.g. [2], [13], [31],
[35]).

However, geometric MG methods suffer from the inher-
ent need of a hierarchical FE-mesh (see [10]), and thus

algebraic MultiGrid (AMG) methods are of special inter-
est, if at least one of the following cases arises:

1. The discretization provides no hierarchy of FE-
meshes, which would be essential for the geometric
MG method. This is the case for many FE-codes,
especially commercial ones.

2. The coarsest grid of a geometric MultiGrid method is
too large to be solved efficiently by a direct or classical
iterative solver.

3. Classical iterative solvers are not efficient enough.

AMG methods try to mimic the geometric counterpart,
but only rely on the information available on a given sin-
gle grid (for the pioneer work on AMG see [29]). While
within a geometric MG solver the construction of a ma-
trix hierarchy is rather simple if a hierarchy of grids is
available (see e.g. [10]), this task is not as easy if ei-
ther the matrix only or the information on the finest grid
are available. The classical AMG approach assumes an
SPD system matrix which is additionally an M-matrix
[29]. For such matrix classes a matrix hierarchy can be
constructed, imitating the geometric counterpart well. It
can be easily shown, that the information of an SPD
system matrix is not enough in order to construct an
efficient and robust AMG method. Therefore, we as-
sume the knowledge of the underlying PDE, the FE-
discretization scheme and additional information on the
given FE-mesh. Therewith, such enhanced AMG meth-
ods are able to reproduce the behavior of geometric MG
methods even for Maxwell’s equation, although the sys-
tem matrices are not M-matrices here.

IV. Algebraic MultiGrid Methods

In order to outline the principles of the MultiGrid
method we explain them by means of a two grid method
(for an overview see [7]). For this purpose h and H de-
scribe the fine and coarse grids of an FE-discretization,
respectively. The linear mappings (with Nh > NH)

Rh : RNh 7→ R
NH and Ph : RNH 7→ R

Nh (12)

are called restriction and prolongation operators. Usually
we choose Rh = PTh for AMG. Therewith, the two grid
algorithm is performed as presented in Alg. 1.

Algorithm 1 TwoGridMethod
Relax ν1 times on the fine grid Khuh = f

h
(e.g. Gauß-Seidel forward)
Compute the defect dh = f

h
−Khuh

Restrict the defect dh onto the coarse grid
dH = Rhdh
Solve the coarse grid problem KHvH = dH
Prolongate the coarse grid correction vH onto the fine
grid
vh = PhvH
Update uh by vh, i.e. uh = uh + vh
Relax ν2 times on the fine grid Khuh = f

h
(e.g. Gauß-Seidel backward)

By replacing the exact solution of the coarse grid prob-
lem in Alg. 1 itself by a two grid approximation, we arrive



at the recursive definition of a MultiGrid cycle. The mo-
tivation for this approach comes from examing the error
of the numerical solution in the frequency domain. High
frequency errors, which include local variations in the
solution, are well eliminated by simple iterative smooth-
ing methods (e.g. Gauss-Seidel smoother). Once this
is achieved, further fine-grid iterations would not im-
prove significantly the convergence rate. Therefore, the
solution is transferred to a coarser grid by using an ap-
propriate restriction operator Rh. On this grid, the low
frequency errors of the fine grid manifest themselves as
relatively high frequency errors, and are thus eliminated
efficiently using again simple iterative smoothing meth-
ods. If the coarsest grid has been reached, the equation
has to be solved exactly (e.g. direct solver), which can
be done with little computational effort due to the small
numbers of unknowns. Consequently, each grid level is
responsible for eliminating a particular frequency band-
width of the error.

The subsequent discussion on AMG follows mainly
[25]. First of all, we have to perform the coarsening
process to extract from the given system matrix (aris-
ing form the FE-discretization) matrices with decreasing
dimension. The key point of the coarsening process is
to construct an auxiliary matrix on which the coarsening
is performed. Therewith, we can always guarantee an
appropriate coarsening and, in addition to be very fast.
Furtheron, we have to define the smoothing operator and
the restriction (prolongation) operator for the transfer of
data between the different hierarchies based on the aux-
iliary matrix.

A. Auxiliary Matrix

Let us assume, that the system matrix Kh stems from
an FE-discretization on the FE-mesh ωh = (ωnh , ω

e
h), with

ωnh , |ωnh | = Mh being the set of nodes and ωeh being the
set of edges (see Fig. 1). An edge is defined as a pair of

i

j

eij

Fig. 1. Clipping of an FE-mesh in 2D.

indices for which the connection of the two points is a
geometric edge. For instance, let i, j ∈ ωnh be the indices
of the nodes xi, xj ∈ Rd then the edge is given by

eij = (i, j) ∈ ωeh

and the corresponding geometric edge vector can be ex-
pressed by

aij = xi − xj ∈ Rd . (13)

The first task we are concerned with is the construction
of an auxiliary matrix Bh ∈ RMh×Mh with the following

properties:

(Bh)ij =
{
bij ≤ 0 if i 6= j,
1−

∑
j 6=i bij ≥ 0 if i = j .

(14)

The entries of Bh should be defined in such a way that the
distance and parameter jumps of the variational forms
are reflected. The matrix pattern of Bh can be con-
structed via different objectives: Bh reflects the geo-
metric FE-mesh, which is of importance for an edge el-
ement discretization, or Bh reflects the matrix pattern
of the system matrix Kh, which is useful for nodal FE-
discretizations.

B. Coarsening Process

The auxiliary matrix Bh is a sparse M-matrix and
therefore the coarsening process for Bh is straight for-
ward and can be done in a robust way. We know that
Bh represents a virtual FE-mesh ωh = (ωnh , ω

e
h). Such

a virtual FE-mesh can be split into two disjoint sets of
nodes, i.e.,

ωnh = ωnC ∪ ωnF , ωnC ∩ ωnF = ∅

with sets of coarse grid nodes ωnC and fine grid nodes ωnF .
The splitting is usually performed such that no coarse
grid nodes are connected directly and that the number
of coarse grid nodes is as large as possible (see Fig. 2).

“fine grid” “coarse grid”

coarse grid nodefine grid node

Fig. 2. Illustration of coarsening

In order to perform a coarsening algorithm, let us in-
troduce the following sets:

N i
h = {j ∈ ωnh : |bij | 6= 0 , i 6= j} ,
Sih = {j ∈ N i

h : |bij | > coarse (Bh, i, j) , i 6= j} ,
Si,Th = {j ∈ N i

h : i ∈ Sjh} ,

where N i
h is the set of neighbors, Sih denotes the set

of ’strong connections’ and Si,Th is related to the set of
nodes, which have a strong connection to node i, respec-
tively. The cut-off (coarsening) function is chosen as, e.g.

coarse (Bh, i, j) =

 θ ·
√
|bii||bjj | , see [34] ,

θ ·maxl 6=i |bil| , see [29] ,
θ , see [20] .

(15)
with an appropriate θ ∈ [0, 1]. In addition, we define the
local sets

ωiC = ωnC ∩N i
h , ωiF = ωnF ∩N i

h (16)



and
Eih = {(i, j) ∈ ωeh : j ∈ N i

h} . (17)

The coarsening algorithm is described in Alg. 2.

Algorithm 2 Coarsening phase
ωnC ← ∅, ωnF ← ∅

while ωnC ∪ ωnF 6= ωnh do
i← Pick(ωnh \ (ωnC ∪ ωnF ))
if |Si,Th |+ |S

i,T
h ∩ ωnF | = 0 then

ωnF ← ωnh \ ωnC
else
ωnC ← ωnC ∪ {i}
ωnF ← ωnF ∪ (Si,Th \ ωnC)

end if
end while

Therein the function

i← Pick(ωnh \ (ωnC ∪ ωnF ))

returns a node i where the number |Si,Th |+ |S
i,T
h ∩ωnF | is

maximal.

Example: Let us consider the FE-mesh of Fig. 3. The
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Fig. 3. Example with anisotropic mesh and parameter jump (ma-
terial 1 in elements with number 1 and 2; material 2 in elements
with numbers 3 and 4)

auxiliary matrix is defined on an FE-element r by the
setting

brij =
νr
‖aij‖2

i 6= j

with νr the material parameter and aij the geometric
edge vector (see (13)). Let us assume the following entries
for row 5 of the assembled auxiliary matrix

b51 = −202 b54 = −400 b57 = −100
b52 = −2 b55 = 1009 b58 = −101
b53 = −200 b56 = −2 b59 = −1

Using the coarsening function of [29] (see (15)) with θ =
0.25, we obtain

N5
h = {1, . . . , 4, 6, . . . , 9}
S5
h = {1, 3, 4, 7, 8}

S5,T
h = {4, 6, 7} .

For the construction of set S5,T
h we assumed

S1
h = {3} S6

h = {1, 2, 5, 8}
S2
h = {1} S7

h = {4, 5, 8}
S3
h = {1} S8

h = {7, 9}
S4
h = {1, 3, 5, 7, 8} S9

h = {7, 8} .

A special coarsening algorithm is the agglomeration
technique, where θ is set to 0. Consequently N i

h =
Sih = Si,Th for all i = 1, . . . ,Mh. Further we call (Iih)MH

i=1

(|ωnC | = MH < Mh) a ’disjoint’ splitting for the agglom-
eration method if

Iih ∩ I
j
h = ∅,

MH⋃
i=1

Iih = ωnh ,

is valid, see Fig. 4.

Ih
i

Ih
j

coarse grid nodefine grid node

Fig. 4. ’Virtual’ FE-mesh with a feasible agglomeration.

If an appropriate prolongation Qh for Bh is defined
then a coarse auxiliary matrix is computed by

BH = (Qh)TBhQh

and BH represents again a virtual FE-mesh ωH =
(ωnH , ω

e
H), with ωnH = ωnC . It can be shown, that BH

is again an M-matrix if the prolongation operator Qh
fulfills certain criteria [29]. Thus the coarsening process
can be applied recursively. Finally it is assumed that the
degrees of freedom on the coarse grid are numbered first.
For instance the nodes are reordered like

ωnh = (ωnC , ω
n
F )

(similarly for edges) and as a consequence the system
matrix can be written as

Kh =
(
KCC KCF

KT
CF KFF

)
.

C. Prolongation Operators

For a given splitting ωnh = ωnC ∪ ωnF the optimal pro-
longation operator is given by the Schur complement ap-
proach, i.e.,

KH = KCC −KFCK
−1
FFKCF = P̃Th KhP̃h

with
P̃h = (IH ,−KCFK

−1
FF )T .

The prolongation operator P̃h can hardly be realized in
practice since −KCFK

−1
FF involves the inverse of KFF ,

which in turn implies a global transport of information.
In addition, the coarse grid operator KH becomes dense.
The goal of an AMG method is to approximate P̃h by
some prolongation operator Ph which acts only locally
and therewith produces a sparse coarse grid matrix.



D. Smoother and Coarse Grid Operator

An essential point in MG methods is the smoothing op-
erator Sh ∈ RNh×Nh which reduces the high frequency er-
ror components. Typically, a particular smoother works
for certain classes of matrices. It is shown in [6] that
a point Gauss-Seidel or point Jacobi smoother is appro-
priate for FE-discretizations with Lagrange FE-functions
for scalar elliptic PDEs of second order. Analogously, the
block Gauss-Seidel and block Jacobi smoother work well
for the block counterpart, e.g. discretization of Maxwell’s
equation with nodal finite elements. For the edge FE-
descritization we use a patch smoother.

The coarse grid operator KH is usually constructed by
Galerkin’s method, i.e.,

KH = PTh KhPh . (18)

After a successful setup an AMG-cycle can be per-
formed as usual (e.g. see [10]). For instance in Alg. 3
a V (νF , νB)-cycle with variable pre- and post-smoothing
steps is described. The variable CoarseLevel stores
the number of levels generated by the coarsening process
until the size of the system is smaller than CoarseGrid.

Algorithm 3 V(νF , νB)-cycle AMGStep(K,u, f, `)

K` ← K, f
`
← f , u` ← u

if ` = CoarseLevel then
u` ← CoarseGridSolver (L`LT` , f `)
Return

else
d` ← 0, w`+1 ← 0
u` ← SνF` (u`, f `)
d` ← f

`
−K`u`

d`+1 ← (P`)T d`
AMGStep(K`+1, w`+1, d`+1, `+ 1)
w` ← P`w`+1

u` ← u` + w`
u` ← SνB` (u`, f `)

end if

V. Realizations of AMG

In the following subsections we specialize the abstract
algorithms, define the components for nodal and edge
FE-discretization and additionally propose a method for
complex symmetric systems. Prior to that we mention
that static, transient and nonlinear analysis of a given
problem results in the solution of linear systems (9).
Therefore we restrict ourself to the linear analysis. Other
applications can be found in [15], [16], [18], [19], [26].

A. AMG for nodal elements

First we consider equation (7) and use nodal elements
for discretization. Note that for the following approach
the scalar case (p = 1) is included (e.g. scalar potential
equation).

Construction of ’virtual’ FE-meshes: The defini-
tion of the auxiliary matrix Bh plays an important role
for this problem class. The classical approach uses

(Bh)ij = −‖kij‖∞ for i 6= j .

with ‖ ‖∞ the maximum norm. The diagonal entries of
Bh are computed according to (14). Now the degrees of
freedom per node of the system matrix have to be related
to an entry in the auxiliary matrix, which in turn implies
that the matrix pattern of Kh and of Bh has to be equal,
i.e.,

‖kij‖∞ 6= 0⇔ |bij | 6= 0 .

Construction of coarse FE-spaces: The simplest
prolongation operator is given by

(Ph)ij =


Ip if i = j ∈ ωnC ,

1

|Si,Th ∩ω
n
C |
· Ip if i ∈ ωnF , j ∈ S

i,T
h ∩ ωnC ,

0 else ,
(19)

with Ip ∈ Rp×p the p-dimensional identity matrix. The
AMG method shows a better convergence behavior as
compared to (19) with the subsequent discrete harmonic
extension, i.e.,

(Ph)ij =


Ip if i = j ∈ ωnC ,
−k−1

ii

(
kij + cij

)
if i ∈ ωnF , j ∈ ωiC ,

0 else ,
(20)

with
cij =

∑
p∈ωiF

( ∑
q∈ωiC

kpq
)−1

kipkpj .

However, the increasing memory requirement and the
slower application compared to the prolongation (19) is
the major drawback of the discrete harmonic extension.
Note, that the entries of the prolongation operators are
matrix valued, e.g. (Ph)ij ∈ Rp×p, like the entries of the
system matrix Kh.

Smoothing operator: We use a block Gauss-Seidel
method as smoothing operator, e.g. [6], or a patch-block
Gauss-Seidel method, e.g. [21]. The latter should be
used for anisotropic problems.

B. AMG for edge elements

The second class originates from an FE-discretization
with edge FE-functions of the variational form (4).

Construction of ’virtual’ FE-meshes: It was moti-
vated by R. Hiptmair in [13] for geometric MG methods
that for this class of problems a refinement of the FE-
mesh can be performed on the nodes of an FE-mesh as it
is usually done for Lagrange FE-functions. We use this
fact and base our coarsening on an auxiliary matrix Bh
which is constructed for instance by the FE-element wise
setting

brij = − νr
‖aij‖2

i 6= j and (i, j) ∈ ωeh .

with νr the reluctivity of the material. Again the diago-
nal elements are computed via (14).

Example: Let us consider the FE-mesh of Fig. 3 and
choose element r = 1. We get the following element
matrix

B1
h = 100 ·


2.5 −0.5 −1 0
−0.5 2.5 0 −1
−1 0 2.5 −0.5
0 −1 −0.5 2.5

 .



The entries (B1
h)14, (B1

h)23, (B1
h)41 and (B1

h)32 are zero,
i.e., there is no diagonal edge in the virtual FE-mesh.

Let us recall that an FE-mesh is represented by

ωh = (ωnh , ω
e
h) ,

i.e., the set of nodes ωnh and the set of edges ωeh. The
coarse grid is defined by identifying each coarse grid node
j ∈ ωnC with an index k ∈ ωnH . This is expressed by the
index map ind (.) as

ωnH = ind (ωnC) .

A ’useful’ set of coarse grid edges ωeH can be constructed
if we invest in a special prolongation operator Qh for
the auxiliary matrix Bh. The prolongation operator Qh
is constructed such that each fine grid node prolongates
exactly from one coarse grid node, so that one arrives
at a partition of ωnh into clusters, each of them being
represented by a coarse grid variable. We extend the
index map ind : ωnC 7→ ωnH defined above onto the whole
fine set ωnh by assigning to all fine grid nodes of a cluster
the coarse grid index of the representative.

ind : ωnh → ωnH .

A consequence is that ind (i) = ind (j) iff i, j ∈ ωnh pro-
longate from the same coarse grid variable. We define an
agglomerate (cluster) Iih of a grid point i ∈ ωnh by (see
Fig. 5)

Iih = {j ∈ ωnh | ind (j) = ind (i)} ⊂ N i
h

and hence the set of coarse grid nodes can be written as

ωnH = {ind (i) | i ∈ ωnh} .

The prolongation operator Qh has only 0 and 1 entries

Ih
i

Ih
k

r

s

(r,s)

i
j(i,j)

coarse grid nodefine grid node

coarse grid edge

Ih
j

k

Fig. 5. Virtual FE-mesh with a feasible agglomeration and coarse
grid edges

by construction, i.e.,

(Qh)ij =

{
1 i ∈ ωnh , j = ind (i)
0 otherwise .

(21)

Now, a coarse grid edge only exists if there is at least
one fine edge connecting the agglomerates Iih and Ikh with
i 6= k (see Fig. 5), i.e.,

∃r ∈ Iih,∃s ∈ Ikh such that (r, s) ∈ ωeh .

Note that a decrease of the number of edges in the coars-
ening process is not proofed in general, but a decrease
is heuristically given, if the average number of nonzero
entries of Bh does not grow too fast.

Construction of coarse FE-spaces: The construc-
tion of the prolongation operator Ph : RNH 7→ R

Nh , is
delicate because of the kernel of the curl -operator, i.e.
all gradient fields. Ph is defined for i = (i1, i2) ∈ ωeh, j =
(j1, j2) ∈ ωeH as

(Ph)ij =

 1 if j = (ind (i1), ind (i2)),
−1 if j = (ind (i2), ind (i1)),
0 otherwise ,

(22)

by assuming a positive orientation of an edge j = (j1, j2)
from j1 to j2 if j1 < j2 holds. The constructed pro-
longation operator Ph has full rank, because the coarse
grid edges prolongate to NH distinct fine grid edges by
construction. For a detailed discussion see [27].

Smoothing operator: To complete the components
for an AMG method for edge element FE-discretizations,
we need an appropriate smoother. We consider two dif-
ferent types of smoothers for Kh. The first one was sug-
gested by D. Arnold, R. Falk and R. Winther in [2]. This
is a block Gauss-Seidel smoother where all edges that be-
long to Eih (see (17)) are smoothed simultaneously for all
i ∈ ωnh (see Fig. 6).

i

j

(i,j)

Fig. 6. Detail view of a virtual FE-mesh.

Another kind of smoother was suggested by R. Hipt-
mair in [13]. A mathematically equivalent formulation
is outlined in Alg. 4. Therein the vector ge,i

h
∈ RNh is

Algorithm 4 Hybrid smoother of Hiptmair
uh ← GaussSeidel(Kh, fh, uh)

for all i ∈ ωnh do

uh ← uh + ((f
h
−Khuh),ge,i

h
)

(Khge,ih ,ge,ih ) · ge,i
h

end for

defined by

ge,i
h

= grad hg
n,i
h

=

 1 if j < i (i, j) ∈ Eih ,
−1 if j > i (i, j) ∈ Eih ,
0 otherwise ,



with a vector gn,i
h
∈ RMh , (gn,i

h
)j = δij .

It should be noted, that the proposed AMG solver has
been adopted by Mifune et. al. and successfully imple-
mented [22].

C. AMG for Time Harmonic Case

In the harmonic case the time derivative of the mag-
netic vector potential is substituted by

∂A
∂t
→ jωÂ

with j the complex number, ω the angular frequency and
Â the complex magnetic vector potential. Therewith,
we have to apply the AMG method to a complex valued
and symmetric algebraic system of equations with system
matrix

Kh = Kre
h + jKim

h . (23)

In (23) Kre
h denotes the real part and Kim

h the complex
part of the system matrix.
The application to scalar potential equations has been
presented in [28], and adaption to the magnetic vector
potential formulation is straight forward as shown below.

Construction of ’virtual’ FE-meshes: The auxil-
iary matrix is defined to be real valued. This means, that
we setup Bh for an edge element discretization as defined
in Sec. V-B. For a nodal element discretization we can
use the procedure described in Sec. V-A for Kre

h .

Construction of coarse FE-spaces: For the con-
struction of a coarse grid operator KH we define the sys-
tem prolongation to be real valued and computed as de-
fined in Sec. V-A as well as Sec. V-B. Therefore we
get

KH = PTh KhPh = PTh K
re
h Ph+jPTh K

im
h Ph = Kre

H +jKim
H .

The prolongation Qh is also taken from the real valued
realizations correspondingly.

Smoothing operator: In the case of an algebraic sys-
tem of equations arising from a nodal FE-discretization
we apply a block Jacobi or Gauss-Seidel smoother in the
complex variant. The complex version of the smoother
proposed by D. Arnold, R. Falk and R. Winther in [2] is
used for an edge FE-discretization.

VI. Case Studies

In order to gain robustness and efficiency, the pro-
posed AMG methods were used as a preconditioner in
the conjugate gradient (CG) method for the static and
eddy current case (in time domain) and the Quasi Mini-
mal Residual (QMR) method for the time harmonic case.
The iteration was stopped as soon as an error reduction
in the preconditioner energy norm has been reduced by a
factor 10−6 for the PCG method. In the time harmonic
case (QMR solver) we use

‖f
h
−Khuh‖2 ≤ 10−6 ‖f

h
‖2 .

For all calculations a V (2, 2)-cycle has been applied and
the coarsest matrix equation is solved by a Cholesky fac-
torization (degrees of freedom ≤ 500). All computations
were done on an PC Pentium 1.7 GHz.

A good measure for the speed of coarsening is the so
called grid complexity, which is given by

GC(Kh) =

L∑
i=1

Mi

M1
, (24)

with L the number of levels and Mi the number of nodes
(edges) for level i. This number is close to 1, if the reduc-
tion of unknowns is done very fast. If the number is very
large then the coarsening is usually very slow. A second
measure which is more related to the memory consump-
tion and arithmetic costs is the operator complexity,
i.e.,

OC(Kh) =

L∑
i=1

NMEi ·Ni

NME1 ·N1
, (25)

where NMEi denotes the average number of non-zero
entries on level i and Ni the number of unknowns on this
level. This number gives an idea of how much memory
is used with respect to the finest grid. The same applies
for the arithmetic costs. Again this number is close to 1
if only a small amount of memory is required. The ab-
breviation MB denotes the amount of MegaByte used.
The computations with Lagrange and Nédélec FE-
functions were always done on the same FE-mesh. We
want to emphasize, that Nh = p |ωnh | for node (static
case: p = 3; eddy current case: p = 4) and Nh = |ωeh| for
edge FE-discretization.

A. Static Analysis

For the computational domain we consider the geome-
try of TEAM 20 (see Fig. 7), which has been discretized

Fig. 7. FE-mesh of TEAM 20 (without air region)

by tetrahedra elements.
Table I displays the evaluated grid complexity GC and

operator complexity OC as well as required memory for
the nodal (defined by n) and edge (defined by e) case. Nh
defines the number of unknowns. It can be clearly seen,
that the required memory scales optimal with the number
of unknowns and the values for OC and GC are close to 1.
The number of iterations as well as elapsed CPU-times
are shown in Tab. II. The short time for performing
the setup makes the AMG solvers very attractive for any
nonlinear problem.



Nh GC OC MB
n e n e n e n e

1.263 2.253 1.4 1.2 1.07 1.02 1.5 3
8.022 16.217 1.3 1.2 1.06 1.02 10 24
56.673 122.762 1.3 1.2 1.07 1.03 65 173

TABLE I

TEAM 20: Complexities and memory requirement

Nh Setup [s] Solve [s] Iter
n e n e n e n e

1.263 2.253 0.2 0.2 0.2 0.2 18 9
8.022 16.217 0.4 0.5 2.0 2.8 27 16
56.673 122.762 1.7 2.9 30.7 35.3 48 24

TABLE II

TEAM 20: CPU times and number of iterations

B. Transient Analysis

In order to show the performance of the proposed en-
hanced AMG methods for an eddy current problem, we
present results of 3D magnetic field computations for a
simplified MRI scanner with z-gradient coil, as shown in
Fig. 8 [24]. Here, gradient and magnet coils are assumed
as smeared cylindrical coils. Furthermore, only the three
inner cryostat cylinders are modeled. Table III displays

Fig. 8. FE-mesh of a simplified MRI scanner (not the full air
region is displayed)

the values for the grid complexity GC, the operator com-
plexity OC and the required memory. Again a very good
performance with optimal memory requirement can be
found.

Nh GC OC MB
n e n e n e n e

27.834 61.342 1.2 1.2 1.06 1.03 75 94
88.053 197.375 1.2 1.2 1.06 1.03 250 330
162.882 368.131 1.2 1.2 1.05 1.03 510 639

TABLE III

MRI-scanner: Complexities and memory requirement

The performance of the proposed AMG solvers con-
cerning number of iterations and CPU time is shown in
Tab. IV. Since in this example we have no parameter

Nh Setup [s] Solve [s] Iter
n e n e n e n e

27.834 61.342 2.5 1.5 10.3 7.6 15 10
88.053 197.375 7.7 5.8 31.2 38.2 15 15
162.882 368.131 14.6 10.1 64.1 75.2 16 15

TABLE IV

MRI-scanner: CPU times and number of iterations

jump in the reluctivity, the number of iterations keeps
quite constant, which results in an optimal convergence
rate.

C. Time Harmonic Analysis

Finally we show the performance of the AMG method
for the harmonic analysis. We present results of 3D mag-
netic field computations for an electric transformer as
shown in Fig. 9. In Tab. V the values for the grid com-

Fig. 9. FE-mesh of an electric transformer (no air region is dis-
played)

plexity GC, the operator complexity OC, the required
memory, number of iterations and the CPU-times can be
found. For this example we only used a edge discretiza-
tion with tetrahedral elements.

Nh GC OC MB Iter Setup [s] Solver [s]
4.786 1.2 1.02 9 19 0.1 1.5
37.390 1.2 1.02 72 30 1.1 22.5
296.064 1.2 1.03 580 51 9.6 319

TABLE V

Electric Transformer: Performance for different

FE-meshes

VII. Conclusion

The presented AMG solvers are well suited for the effi-
cient solution – both concerning CPU time and memory
requirements – of algebraic systems of equations arising
from nodal as well as edge FE discretizations of Maxwell’s
equation. Especially the presented algorithms for the
coarsening strategy make the solvers very attractive also



for nonlinear electromagnetic field problems, since the
setup time can be kept very small.

Further research will concentrate on improvements of
the prolongation operators to obtain even better conver-
gence rates. One possible method was proposed in [34]
(so called smoothed aggregation), which could be applied
for our problem classes.

If even more speedup is required for practical applica-
tions, then the presented AMG methods can be paral-
lelized on distributed memory computers. First promis-
ing results can be found in [11], [12].
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