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Abstract ──The essential components and control structures 

of modern adaptive finite element methods, for analysis and 
simulation in electromagnetic applications, are presented and 
discussed.  Whilst the development is intended to survey the 
full range of techniques, this contribution is focused mainly 
on fully combined hp formulations, designed for parallel and 
distributed computational environments. In addition to this 
theoretical presentation and evaluation, a range of implemen-
tations and computed results are reported, to demonstrate the 
advantages and drawbacks of the more promising approaches. 
These selected overview topics are organized and presented, 
primarily, to address, inform and educate the non-specialist.  
 

Index Terms ── Finite element methods, adaptive systems, 
error analysis, parallel processing, electromagnetic analysis. 
                   

I. INTRODUCTION           
 
 Adaptive finite element analysis (FEA) for the modeling 
and simulation of electromagnetic applications has become 
increasingly important over the years, and is now a mature 
and well-established research area.  The focus of this contri-
bution is to overview the structures, essential components and 
automatic control systems of modern adaptive finite element 
methods (AFEMs), and to explore the potential benefits and 
related costs of employing them in practical and cost-effective 
electromagnetic computer-aided design environments.  Unlike 
more technically specific contributions in the area, this work 
is intended to address, inform and educate the non-specialist.  
 The main difficulty with computational analysis is that a 
very large number of free modeling parameters are frequently 
necessary for computing accurate and reliable simulations of 
realistic systems:  sufficient mathematical degrees of freedom 
(DOF) are required to both resolve the geometric and material 
features of practical devices, and to represent the fields of the 
electromagnetic system. As a result, the computational effort 
required for the electromagnetic simulation can frequently be 
prohibitive.  Currently, one promising approach to overcome 
this type of computational barrier is to employ adaptive solver 
technologies which are capable of intelligently evolving and 
improving an efficient distribution of DOF over the problem 
domain.  Adaptive methods begin with relatively inexpensive 
initial discretizations for systems, then establish operational 
solution error distributions over them, and subsequently add 
DOF to the models to improve them [1], [2]. 
 During the past five to ten years, significant progress has 
been achieved in the development of advanced AFEMs for 
electromagnetic analysis and simulation, which can compute 
sufficiently accurate solutions to problems using many fewer 
DOF than non-adaptive methods [2]-[7]. In addition, recent 
research and development progress with advanced strategy 
feedback control systems, which are employed to guide the 
adaptive process, now hold great promise for overcoming the 
computational bottleneck [4]-[7].  The main purpose of this 
contribution is to review the implications of using accurate 
 

and reliable AFEMs for efficient computational analysis and 
design in practical engineering applications. 
 To date, a number of different types of adaptive systems 
have been developed for electromagnetic FEA, and some are 
now in reasonably widespread use, while others represent a 
relatively new and underdeveloped area of research [1], [2], 
[4], [5], [8].  In order to accurately and efficiently model the 
highly non-uniform electromagnetic fields developed within 
sophisticated systems, AFEMs that can reliably identify and 
selectively refine the regions of high solution error need to be 
established.  Presently, four basic types of adaption models 
are applied to refine finite element approximations:  h-type;  
p-type; combined h- and p-type (called hp-type); and r-type.  
Essentially, these models only differ in the techniques used to 
update the finite element discretization, within the adaptive 
feedback loop: 
 
A.  Generate initial finite element discretization. 
Repeat: 

B.  Assemble and solve finite element problem. 
C.  Evaluate solution accuracy;  if adequate then STOP. 
D.  Identify regions of inadequate discretization. 
E.  Determine required discretization refinements. 
F.  Update finite element discretization. 

Until STOP 
 
Briefly stated, h-type adaption models add new elements into 
a mesh to improve the discretization; p-type adaption models 
increase the degree of approximation used for the elements in 
a mesh to improve the discretization; hp-type adaption models 
apply a combination of both of these procedures; and r-type 
adaption models reposition element vertices within the mesh 
to improve solution accuracy.  In addition, a relatively broad 
range of refinement criteria have been developed during the 
past decade, that can be used to identify and locate regions of 
relatively high solution error within the problem domain, due 
to inadequate discretization [1], [2], [4], [5], [8].  A summary 
of the essential concepts and some recent research develop-
ments in the study of AFEMs for electromagnetic applications 
is presented in the following section. 
                 

II. ADAPTIVE FINITE ELEMENT METHODS           
 
 The finite element method (FEM) is a powerful numerical 
analysis technique which is well-suited to and appropriate for 
solving a wide variety of electromagnetic applications prob-
lems computationally [9]-[17].  Amongst the many methods 
used in computational electromagnetics [16]-[25], its ability 
to manage problems with complex geometries, as well as its 
broad applicability to static, quasi-static, wave and transient 
systems, and to problems containing material regions that are 
nonlinear, inhomogeneous and anisotropic, all make the FEM 
one of the most versatile and powerful computational analysis 
and simulation schemes available today [13]-[17]. Moreover, 
the solid theoretical foundations on which the FEM is based, 
 



as well as the rigorous mathematical analyses concerning the 
existence, convergence, and the uniqueness of finite element 
solutions that have been established, further justify its use in 
electromagnetics research and design [26]-[37].  Currently, 
FEA is depended upon frequently in electromagnetic design: 
typically, FEA tools are applied to numerically simulate and 
evaluate the performance of a newly proposed device design 
before building a prototype, or to computationally investigate 
the electromagnetic characteristics of natural and man-made 
systems and their interactions with, or their impact on, their 
surrounding environments [38]-[42]. 

While FEMs are presently used extensively for electromag-
netics analysis and design, [43], [44], the use of AFEMs has 
gained considerable attention in recent years from numerical 
analysts for solving problems more efficiently than standard 
FEMs permit [45].  The accuracy of a finite element solution 
is directly dependent on the number of free parameters used 
to mathematically represent the problem, and how effectively 
those parameters, or mathematical DOF, are distributed over 
the problem space.  Furthermore, the full computational cost 
associated with obtaining a finite element solution is related 
to both the number and the interconnectivity of the DOF used 
in the problem discretization. Consequently, the most efficient 
distribution of DOF for a problem is that which provides a 
sufficiently accurate solution for the lowest number of free 
parameters.  Currently, the only practical way to achieve this 
objective is by using adaptive solution strategies which are 
capable of intelligently evolving and improving an efficient 
distribution of DOF over the problem domain by establishing 
solution error distributions, and then adjusting or adding DOF 
to the discretization to correct them [2]-[4].   By increasing 
the numbers of DOF in the vicinities of higher solution error 
only, it is possible to make the most significant improvement 
in the global accuracy of the finite element solution, for the 
minimum additional computational cost.  In contrast, while 
uniformly increasing the number of free parameters over the 
problem domain could provide an even greater improvement 
in the computed solution accuracy, the per capita increase in 
accuracy for each new DOF may not be as high, since new 
DOF added to regions which were already sufficiently well 
discretized would not necessarily contribute to a significant 
improvement in the overall solution accuracy [1], [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One of the primary objectives of AFEMs is to compute the 
solution to an engineering problem, to within a pre-specified 
accuracy tolerance, for the smallest possible computational 
cost.  In order to achieve this goal, the fundamental approach 
underlying the majority of all AFEMs involves the efficient, 
iterative improvement of an (ideally) convergent sequence of 
increasingly accurate approximations of the true solution to a 
given engineering problem.  A simple conceptual framework 
which is meaningful for the study of AFEMs is shown within 
the context of the general finite element solution scheme, in 
Fig. 1, where the individual steps of an adaptive method are 
constituents of one (or the other) of two major, procedural 
components: namely, the adaption model, and the feedback 
control system that is used to guide the adaptive finite 
element process.  Simply put, the adaption model includes 
those steps involved in updating the discretization, while the 
feedback control system is concerned with those procedures 
related to resolving how to increase the level of discretization 
over a problem.  Consequently, the combined specifications 
of the adaption model, together with a feedback control 
strategy, serve to define an adaptive method in this paradigm. 

An adaption model is a set of well-defined procedures used 
within AFEMs to update the finite element discretization. As 
outlined earlier, there are four basic types of adaption models 
presently under study in the mainstream literature: (i) h-type, 
(ii) p-type, (iii) combined hp-type, and (iv) r-type.  Each of 
the basic models possesses strong positive attributes, along 
with distinct disadvantages, which render their use in AFEMs 
effective under different conditions; all four are considered in 
this work. These adaption models are described and discussed 
in greater detail in the following four subsections, to illustrate 
their importance in developing effective practical AFEMs. 
 
A. The h-type Adaption Model 
 

In h-type adaption models, refinement of the finite element 
discretization is accomplished by modifying the sizes (h) of 
elements within the mesh, while keeping the order (p) of the 
approximating functions of the elements fixed.  Consequently, 
in order to improve the accuracy of a finite element solution 
using an h-type adaption model, the number of free parame-
ters used to compute the solution is increased by increasing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 

Fig. 1.  The adaption model and feedback control system framework for the study of AFEMs, within the context of the general 
finite element solution scheme.  The general finite element solution process, usually, involves:  (i) a pre-processing unit for 
building a computational model of the problem; (ii) a finite element solver for computing solutions to the discretized problems; 
and (iii) a post-processing unit for analyzing the computed solutions. 



the total number of elements in the mesh; thereby, decreasing 
the overall average size, havg , of elements in the mesh: 
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where hi is the size of the ith element in a mesh comprised of a 
total of N elements. 

A variety of AFEMs which are solely based on h-adaption 
models have been applied quite successfully in a broad range 
of electrical engineering applications [4], [8], [46], [47]-[58]. 
In particular, for problems where mathematical singularities 
in the field solutions exist, such as those which occur at sharp 
material edges and corners [59], h-type adaption models have 
proven to be quite effective, where a large number of smaller 
elements are required close to these singularities, but fewer, 
larger elements of the same order suffice farther away [1], [2], 
[50], [60], [61].  Given that the approximate error in a finite 
element solution is O (h min [p+1, ς] ), where ς < 1 in the vicinity 
of most singularities, it is evident that reducing the element 
sizes (h) near a singularity may be more advantageous than 
raising the degree of approximation (p).  Numerical studies 
have also shown that h-type refinement near singularities in 
finite element electromagnetics can yield near optimal rates of 
convergence, for certain levels of discretization [2]. 
 
B. The p-type Adaption Model 
 

In p-type adaption models, refinement of the finite element 
discretization is accomplished by adapting the orders (p) of 
approximating functions on elements, while holding the sizes 
(h) of the elements in the mesh constant. Standard Lagrangian 
elements require the same order approximating functions be 
used over the full mesh, to ensure a continuous finite element 
solution [13]; however, hierarchal elements permit increasing 
the order of individually selected elements in the mesh, while 
still ensuring C 0 continuity of the computed solution.  Hence, 
it is possible to evolve efficient distributions of DOF by only 
raising the polynomial order of the elements in the inaccurate 
regions of the mesh.  Based on the interpolation theory error 
model described in the previous section, the point-wise error 
in a finite element solution is approximately O (h p+1) within 
sub-regions of a problem domain where no singularities are 
present.  Therefore, if the finite element mesh is such that the 
element sizes are sufficiently small in regions far away from 
any singularity, then the improvement in the accuracy of the 
computed solution should be greater with an increase in the 
polynomial orders (p) of the approximating functions, when 
compared with a decrease in element sizes (h), according to 
the interpolation theory error model.  Numerical studies have 
shown that, under certain conditions, p-type refinement can 
result in better rates of solution error convergence than that 
which can be achieved using h-adaption models [2]. 

In finite element electromagnetics, p-type adaption models 
incorporating hierarchal elements have been shown especially 
useful in high frequency problems, where the fields possess a 
wave-like variation, and are better modeled in certain parts of 
the mesh by higher order elements, and lower order elements 
provide a sufficiently accurate approximation in other regions 
of the mesh [62].  Further, with high frequency analyses, the 
wave-like fields located far away from material boundaries 
are particularly well represented by higher order polynomial 
approximating functions, and p-type refinement can be a very 

attractive alternative to h-type refinement since it avoids the 
cost of re-meshing [1], [62]-[64].  Finally, it is worth noting 
that the use of hierarchal finite elements in p-type adaption 
models has also been shown effective for low-frequency finite 
element electromagnetics [65]. 

The practical implementation of p-type adaption models 
involves key issues which must be addressed.  The choice of 
basis functions used to form hierarchal elements can play a 
major role in the effectiveness of a practical p-type adaption 
model.  Attention must be paid to the linear independence of 
the basis functions. If the basis functions that are used to form 
the approximating functions over an element are not linearly 
independent (even if they are nearly linearly dependent), then 
the resulting finite element matrices required to compute the 
numerical solution for the discretized problem might be ill-
conditioned.  Depending on whether a direct or an iterative 
method is used to solve the matrix problem that results, ill-
conditioned matrices can lead to inaccurate solutions and 
slow convergence rates, respectively [66], therefore, research 
into hierarchal basis functions has constituted an important 
component of the literature related to p-type adaption models 
over recent years [62], [67], [68].  One successful approach 
that has been adopted in order to develop hierarchal elements 
which preserve a manageable degree of linear independence 
between their basis functions, is to employ orthogonal poly-
nomials in the formulation of  basis functions [67], [68]. 

AFEMs which employ p-type adaption models have been 
especially valuable in the computational analysis and design 
of three-dimensional systems [3].  In particular, the formation 
of a well-structured mesh of tetrahedral elements, based on 
Delaunay or other types of algorithms, is a complicated and 
relatively expensive computational task [69]-[72].  Therefore, 
p-type adaptive refinement for hierarchal tetrahedra is often 
considered more favorable than h-type adaption, for three-
dimensional problems [3].  However, a sufficiently h-refined 
mesh is often an important prerequisite for p-type adaption 
models to be effective [1], [73]. 
 
 C. The hp-type Adaption Model 
 

For hp-type adaption models, finite element discretization 
refinement is achieved by adapting both the sizes (h) and the 
orders (p) of elements in a mesh.  In general, combined hp-
adaptive approaches use both h-type and p-type refinements 
in order to exploit the valuable advantages of each of these 
adaption models.  Theoretical studies and numerical results 
indicate that the ability to independently vary the two basic 
discretization parameters, h and p, should provide adaptive 
methods which employ combined hp-type adaption models 
with the possibility and potential of realizing superior rates of 
solution error convergence compared against those methods 
that utilize only pure h-type or p-type adaption models [61], 
[74]-[77].  The putative enhanced performance of combined 
hp-type adaption-based approaches arises from the fact that 
the solution accuracies may be more efficiently improved by 
reducing the element sizes in certain regions of the problem 
domain, whereas, increasing the order of the approximating 
functions over other regions of the solution realm may yield 
the most significant impact on the overall solution accuracy. 
Therefore, a hybrid adaption model capable of both types of 
refinements should, at least in theory, yield optimal rates of 
solution error convergence.  

The implementation and control of a fully hybrid hp-type 
system can be inherently more complex and subtle than that  



of its simpler h-type or p-type counterparts.  In addition to the 
key issues that are relevant to the design and implementation 
of individual h-type and p-type adaption models, a number of 
further concerns arise, related to the coupling of the h-type 
and p-type refinement procedures.  Although many of these 
issues have been addressed (at least to certain extents) in the 
literature, the focus has been primarily on structured meshes, 
for which the relationships between the discretization para-
meters, associated with consecutive iterations, remain rather 
well-defined [75], [76], [78]-[80]. 

One major research problem that has emerged associated 
with the implementation of true combined hp-type adaption 
models, is the development of systematic approaches for gen-
erating discretizations with optimized relative distributions of 
h-type and p-type DOF [2],[81]-[84].  For example, in fully-
coupled hp-type adaption models, for which h and p can be 
adapted simultaneously in any given iteration of the adaptive 
process, one of the primary difficulties is to determine which 
parts of the discretization to enhance with h-refinement, and 
which to update through p-refinement, such that the greatest 
improvement in solution accuracy is gained for a prescribed 
increase in the previous number of DOF used to compute the 
approximate solution [2], [81].  Similarly, in decoupled hp-
adaption models, for which only one or the other of the two 
basic refinements are exploited during each iteration of the 
adaptive feedback loop, the dilemma of which discretization 
parameter, h or p, to adapt at a given iteration to achieve the 
maximal decrease in solution error per unit new DOF exists 
[74], [84]-[86].  Resolving these difficulties is equivalent to 
determining the optimal trajectory through an abstract space 
of admissible hp-distributions, beginning from a fixed initial 
discretization, and given a final required solution accuracy; 
where, the space of permissible trajectories is dependent upon 
the constraints of the specific adaptive method under consid-
eration, i.e., the specific combination of the chosen adaption 
model, and associated feedback control system.  In this case, 
the optimal trajectory is interpreted as that which yields the 
lowest cumulative computational cost [87]. 

Although some theoretical approaches have been suggested 
for determining optimal hp-trajectories, the resulting discrete 
optimization problems are not readily solvable in a rigorous, 
analytical manner, if at all, for systems of realistic complexity 
[81], [83], [88]; therefore, numerical experiments have also 
been relied upon to gain insight into these problems [2], [82], 
[89].  Based in part on such theoretical and numerical invest-
igations, practicable approaches have been developed which 
can, although not necessarily optimally, evolve distributions 
of the discretization parameters in such a way that  hybrid hp-
based adaptive methods outperform pure h-type and p-type 
systems.  One intuitive approach which has been developed 
recently, and used successfully, for electromagnetic adaptive 
FEA (AFEA) is reported in [5]; it is based on using parallel 
processing to evaluate two or more competing discretization 
strategies at each hp-refinement step to help guide the overall 
evolution of the adaption.  However, it should be stated that 
numerical studies have shown, that, despite the advantages of 
hp-type adaption models, sometimes the simpler non-hybrid 
models can yield superior results under certain conditions. 
 
D. The r-type Adaption Model 
 

In r-type adaption models, the finite element discretization 
is refined by adapting the positions (r) of element vertices in 
the mesh, in order to improve the accuracy of the computed 

solution [90].  r-type adaption models can evolve efficient 
finite element discretizations through repositioning element 
vertices such that there is a sharper focus of DOF in regions 
where the solution variation is most significant.  The r-type 
adaption model is most frequently employed when maximal 
solution accuracy is required from discretizations of a given 
fixed number of DOF [2], [75], [78], [91], [92].  As a result, 
r-adaption has been primarily investigated in the context of 
adaptive systems which are based on evolving optimal finite 
element discretizations [2], [4], [90], [93]-[110]. 
 

III. ADVANCED STRATEGY AFEMs 
 

Today, the research and development of optimized AFEMs 
which are effective, reliable and versatile enough for general 
application in electromagnetics analysis and design, represent 
a critical component of the state-of-the-art in FEA research. 
The purpose of this section is to review recent advances in 
this area, which have been achieved through the development 
of practical adaptive refinement procedures, that are capable 
of effectively reproducing the main modeling characteristics 
and performance attributes of optimal discretizations, without 
the expense of solving the optimal discretization problem. 

One relatively recent and promising research direction for 
hp-adaptive FEA has targeted the development of enhanced 
adaptive refinement strategies which exploit the strengths of 
practical workstation-level parallel and distributed processing 
environments [5].  The remainder of this survey presentation 
will focus on highlighting a representative sampling of these 
strategies and techniques.  

To date, conclusive contributions towards an efficient and 
effective coupling of parallel processing and hp-adaption for 
electromagnetics remain rare.  Unlike standard approaches, 
the most interesting avenues of this research are focused on 
developing and tuning hp-adaptive subsystems and strategies 
to exploit the inherent strengths of a parallel environment, as 
opposed to constructing parallelizations of existing algorithms 
which were not developed with parallel processing in mind.  
The thrust of these new research directions is founded on the 
strong belief that only fundamental approaches, which take 
the nature of parallel and distributed computing environments 
into consideration from the ground up, can yield hp-adaptive 
systems that will be capable of exploiting the full potential of 
such environments. 

The hp-adaptive process for FEA may be interpreted as a 
simple system, consisting of complex subsystems.  While the 
individual subsystems can be sophisticated, and rather large, 
they are also well-understood, and essentially non-adaptive.  
On the other hand, while the main feedback system (outlined 
in section I) consists of only a handful of steps, they can be 
quite sensitive and fairly subtle in their interaction. 

According to current theory and practice, it is important to 
keep the cumulative computational cost (measured as elapsed 
runtime) of the adaptive control and discretization refinement 
processes small relative to that of the finite element solver, to 
gain the full potential of an hp-adaptive approach [1], [111].  
Based on typical h-type and p-type adaptive implementations, 
elapsed runtime cost ratios of 10:1 (or better) are commonly 
realized.  This distribution of computational effort indicates 
there is an empirical balance between adaptive refinement and 
solution calculations that seems to be effective for most 
practical adaptive systems running on sequential machines.  
However, for parallel and distributed implementations, this 
balance can be significantly less efficient, since the full-scale 



speedup potential of local error estimator evaluation and hp 
discretization refinement can be far superior to that of finite 
element solver execution [5], [66], [112], [113].  Therefore, 
relative to serial implementations, the use of more complex 
and computationally intensive adaption strategies is indicated. 
Furthermore, a parallel environment permits the comparative 
assessment of competing discretization schemes, at each hp-
refinement step, to help guide the evolution of the adaption. 

A sampling of investigative studies and illustrative results 
taken from the research project described in [5] is presented 
in the following section. 
 

IV. INVESTIGATIVE STUDIES AND ILLUSTRATIVE RESULTS 
 

At each refinement step, the main concerns of hp-adaption 
are: where should extra DOF be inserted; what type of DOF 
should be used; and how many DOF should be added.  The 
following investigations have been designed to explore the 
potential advantages of addressing these points in a parallel 
processing environment.  The first study examines the value 
of using pairs of complementary error estimators to determine 
where to insert new DOF into a discretization.  In this case, 
an unbiased average of two complementary errors was used to 
assess each element, at each adaptive step, within a practical 
“h- followed by p-refinement” hp-adaption formulation.  The 
second case study was designed to investigate the potential 
benefits of constructing (and solving) both h- and p-refined 
discretizations, at each adaptive step, to determine what type 
of DOF should be added into the discretization at each step.  
In this case, both a single-step depth search (two refinement 
scenarios:  pure h and pure p) and a double-step depth search 
(four scenarios:  pure h followed by pure h; pure h followed 
by pure p; pure p followed by pure p; and pure p followed by 
pure h) were examined.  The third study also addresses the 
“what type of DOF” question.  In this case, the potential value 
of adding a mixture of h- and p-type DOF at each adaptive 
step was examined:  50% of the prescribed DOF update was 
inserted as p-type, guided by a p-type error estimator; and the 
remaining 50% was added as h-type, according to an h-type 
error estimator.  The fourth study examines the advantages of 
constructing and solving a range of discretizations that differ 
only in the number of new DOF added, at each adaptive step, 
in order to determine how many DOF should be added to the 
discretization at each step.  In this case, four different %DOF 
refinement levels, ranging from a 25% increase in DOF, to 
refining each element in the discretization, were investigated 
and compared within the practical h-followed by p-adaption 
system.  The final study also addresses the “how many DOF” 
question.  In this case, two straightforward schemes that are 
based on the distribution and relative strengths of the errors 
throughout the discretization were utilized to determine how 
many DOF should be added at each adaptive step.  The first 
scheme simply directs that all elements with above average 
error levels should be refined; the second scheme scans the 
error level list, sorted by descending magnitude, for the first 
statistically significant abrupt jump in error level, and selects 
all elements with errors higher than that level for refinement. 

These five investigative studies were carried out using two 
basic FEA test systems:  the standard “L” benchmark setup, 
prescribed in [4]; and a high-frequency variation defined on 
the same 2D geometry and initial mesh.  These investigations 
form a subset of the larger body of work described in [5], and 
the illustrative results reported below have been reproduced 
from these earlier studies.  Briefly, Fig.2 represents ¼ of the  

Fig. 2.  Two-dimensional geometry and the initial mesh for the two 
investigative study test problems; and the final hp discretization for 
the first investigative study, based on the averaged error estimators. 

 
cross-section of an infinitely long, translationally symmetric, 
air-filled, coaxial line – for test system 1.  The objective is to 
solve for the electrostatic scalar potential, in the air between 
the conductors, when a unit voltage difference is maintained 
across the conductors.  For test problem 2, Fig. 2 represents a 
sharply truncated 90o corner in a planar microstrip circuit.  In 
this case, the objective is to resolve the variation of EN in the 
substrate between the strip and the ground plane, given that: 
one port is prescribed to unit excitation; the second port is a 
short-circuit; the exterior region boundaries are modeled as 
perfect magnetic walls; and, the system is set to operate at a 
normalized frequency equal to 1/3 of the width of the ports. 
The results for the first three investigative studies are based 
on test problem 1 computations, using an initial discretization 
of eight first-order triangles.  The results for studies four and 
five are based on test problem 2, and an initial discretization 
of eight second-order triangles.  For each case, the adaption 
performance results are represented in terms of normalized 
FEA functional error, versus cumulative computational cost.  
Further, each result is derived from and representative of test 
data spanning a minimum 1000-fold reduction in functional 
error.  Finally, simple 50% DOF updates (per adaptive step) 
were employed for the first three studies; and h- followed by 
p-adaption was applied in studies one, four and five.   

The results of the first investigative study are reported in 
Fig. 3.  The standard DN field discontinuity and the recently 
developed functional-gradient error estimators [4] were used 
as a complementary pair with the h-adaption; while the PDE 
residual and hierarchal coefficient estimators [1] were used 
for the p-adaption.  In addition to the performance obtained 
by applying the averages of the two sets of estimators, three 
related curves are plotted to gauge adaption efficiency: the 
two conventional adaption results, corresponding to the best 
(most efficient) and worst of the four possible pairings of the 
two h-type and the two p-type estimators, together with the 
optimal uniform refinement h- followed by p-adaption result, 
are provided for direct performance comparisons. 
 The results of the second study are reported in Fig. 4.  To 
fix the focus of the investigation, only the PDE residual error 
estimator was used for both h- and p-adaption.  In this study, 
optimal h- followed by p-adaption results for both 50% DOF 
(Ideal h-p) and uniform (Uniform h-p) updates are also plotted 
for convenience of comparison.  The single-step depth search 
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 Fig. 3.  Comparative hp-adaption performance results for the first 
investigative study, addressing the potential benefits of applying the 
average of complementary pairs of standard AFEA error estimators. 
      
performance curve is denoted “Level 1 h-p”; the double-step 
depth search results plot is labeled “Level 2 h-p”. 

The results of investigative study three are reported in Fig. 
5.  As in the previous study, the PDE residual error estimator 
was used in each case.  In this study, performance results for 
pure h-adaption, pure p-adaption, and optimal uniform refine-
ment h- followed by p-adaption are plotted for comparison.   

The results of the fourth study are reported in Fig. 6.  In 
this case, the PDE residual estimator was used for h-adaption, 
and the hierarchal coefficient estimator for p-adaption.  The 
four DOF refinement levels examined were:  25% DOF; 50% 
DOF; 100% DOF; and uniform mesh refinement.  These four 
refinement updates were constructed, solved and compared at 
each adaptive step, to determine how many DOF to add to the 
discretization at each step.  For comparison, the performance 
of this search-based result (labeled “Mixed”) is also plotted, 
together with the four constant-level %DOF update curves. 

The results of the fifth investigative study are reported in 
Fig. 7.  As done with the fourth study, only the PDE residual 
error estimator was used for the h-adaption and the hierarchal  
 
      

 

 

 
Fig. 4.  Comparative hp-adaption performance results for the second 
investigative study, addressing the potential benefits of monitoring 
both h-type and p-type FEA discretization updates simultaneously. 

 
Fig. 5.  Comparative h-, p- and hp-adaption performance results for 
the third investigative study, addressing the potential advantages of 
applying both h- and p-type refinements in the same adaptive step. 

 
coefficient error estimator was used for the p-adaption.  The 
“above average” DOF result curve is labeled “Average”; the 
“abrupt jump” DOF curve is labeled “Variable”.  The constant 
level %DOF update result curves (given earlier in Fig. 6) are 
also plotted in Fig. 7, to facilitate a direct comparison. 

 
V. ANALYSIS OF TEST RESULTS 

 
All five of the sample investigative studies outlined above 

were designed to explore a selection of possibilities, and their 
associated potential advantages, of incorporating parallel and  

 

 

  
Fig. 6.  Comparative hp-adaption performance results for the fourth 
investigative study, addressing the potential benefits of monitoring 
multiple %DOF mesh updates simultaneously in each adaptive step.  



 

Fig. 7.  Comparative hp-adaption performance results for the fifth 
investigative study, addressing the potential benefits of using local 
error distributions to determine DOF updates at each adaptive step. 

 
distributed processing concepts “from the ground up” within 
hp-adaptive FEA, for applications in electromagnetics.  The 
results of the computational experiments provide supportive 
evidence for a range of basic hypotheses on the considerable 
benefits associated with a parallel processing environment.  
The most significant of these findings are summarized below. 
 
1. Facts:  The placement of added DOF in AFEA can be very 

important to the adaption performance; and, two (or more) 
error estimators can be evaluated nearly as inexpensively 
as one in a parallel or distributed computing environment. 

 

   Hypothesis:  Complementary error estimators (pairs/sets) 
should be able to identify more detailed and decisive local 
error distributions, with  less refinement-model dependent 
bias and distortion, and therefore yield increased adaption 
efficiency and stability at minimal added cost in a parallel 
or distributed computing environment. 

 

  Support:  (study one) Using combined, or averaged, error 
estimator techniques can yield substantially better perfor-
mance results than methods that apply the same estimators 
singly; in this test, the averaged approach was comparable 
to the most effective individual strategy available. 

 
2. Facts:  The types of DOF added to an evolving discretiz-

ation can be very important to hp-adaption performance; 
two (or more) refinement scenarios can be constructed and 
evaluated in almost the same elapsed runtime as one, in an 
efficient parallel or distributed processing environment. 

 

   Hypothesis:  Comparative evaluations of potential h- and  
p-refinement update scenarios at each step should be able 
to deliver more appropriately focused discretizations, and 
thereby lead to better optimized hp-adaption trajectories. 

 

   Support: (study two) Locally optimized refinement type 
selections can yield substantial improvements in adaption 
efficiency over standard h followed by p strategies; and, 
the benefit seems to increase with the depth of the search, 
and number of refinement update scenarios considered. 

3. Facts:  The amount of DOF added to an evolving AFEA 
discretization can be important to overall adaption perfor-
mance; two (or more) mesh refinements can be constructed 
and evaluated nearly as inexpensively as one in a parallel 
or distributed computing environment. 

 

   Hypothesis:  Comparative evaluations of various sizes of 
DOF refinements should be able to identify more effective 
and efficient discretization updates, and thereby facilitate 
increasingly optimized hp-adaption trajectories. 

 

   Support:  (study four) Stepwise-optimized AFEA %DOF 
updates can produce remarkable improvements in overall 
adaption efficiency, compared to conventional, fixed-size 
%DOF updates; in this test, the optimized strategy strongly 
outperformed all of the standard updates which were used 
to determine this final mixed %DOF result. 

 
4. Facts:  The performance of  hp-adaptive formulations for 

sequential environments can be improved when the types 
and amount of DOF can be “tuned” to each adaptive step. 

 

   Hypothesis:  The parallel processing strategies discussed 
above should be able to be adapted to sequential comput-
ing AFEA systems, and thereby yield comparable related 
benefits within serial adaption environments. 

 

   Support:  (study three) The enhanced performance of the 
50/50 mixture of h- and p-refinements (per adaptive step) 
indicates that non-trivial hp-adaption efficiency improve-
ments can be realized at relatively small additional cost in 
a serial environment.  Further, (study five) the remarkable 
efficiency achieved by the “abrupt jump” (Variable) DOF 
updates shows that excellent serial adaption performance 
improvements are possible at a very reasonable cost. 
 

VI. CONCLUSIONS 
 

The primary benefit of AFEMs is that they provide for the 
efficient, accurate and reliable computational analysis of very 
large continuum problems, for only a relatively small fraction 
of the cost associated with non-adaptive FEA.  The objective 
of this contribution has been twofold: first, to present a user-
friendly introduction to modern AFEA for electromagnetics 
applications to the non-specialist, through an overview of the 
main structures, essential components and feedback control 
systems of AFEMs.  The second goal has been to provide a 
portal onto certain interesting aspects of the state-of-the-art 
research currently under investigation, on the development of 
practicable AFEMs for parallel and distributed processing 
workstation environments.  Regarding the first objective, the 
structure and underlying importance of the adaptive feedback 
loop, and its essential control systems, have been introduced 
and explained.  Further, the full range of adaptive refinement 
models has been defined, compared and critically evaluated.  
Finally, the primary use, and critical importance, of efficient 
and effective local error estimation procedures, appropriate 
for the individual refinement models, have been summarized. 

In regards to the second objective of this contribution, it is 
noteworthy that the reported investigative studies have served 
to demonstrate that substantial advantages are available with 
the development and application of hp-adaptive FEMs, for 
electromagnetic analysis and design, in practical parallel and 
distributed computing environments.   Furthermore, this work 
has served to illustrate some of the possibilities and potential 
benefits of designing parallel processing AFEA strategies and 



modules “from the ground up”, as opposed to implementing 
direct parallelizations of existing sequential algorithms, that 
were never intended for parallel and distributed computing in 
the first place.  Finally, new hp-adaption error estimation and 
local refinement strategies for practicable parallel processing 
workstation environments have been developed and tested. 

In closing, it should be remarked that a number of issues 
associated with adaption have been purposefully excluded in 
this contribution, to balance the scope, specificity and clarity 
of the presentation.  These subjects should not necessarily be 
considered as secondary, or unimportant:  the authors believe 
that many of these interesting, and potentially critical, topics 
justify the focus of future research endeavors, e.g. 

 
•  Different parallel and distributed computing environments 

possess different intrinsic strengths and weaknesses, e.g., 
numbers of available processors, processing power, data 
communications costs and overhead.  Are some adaptive 
strategies, formulations and constructs more appropriate 
for (or poorly suited to!) certain parallel and distributed 
processing environments, and if so, which? 

 
•  There have been increasingly clear indications that a few 

of the other standard AFEA modules could also benefit 
from a “ground up” redesign for parallel and distributed 
computing, e.g., hp mesh generation and refinement [73].  
What are the potential gains and the associated costs of 
implementing these algorithm and software updates? 

 
•  The parallel processing AFEA strategies and techniques 

studied in this introductory overview have been treated as 
essentially independent components, e.g., determining the 
best type of adaption model was considered separate from 
the determination of the most effective size (%DOF) for 
the refinement update.  Can these associated components 
be integrated and applied effectively in combination, to 
yield even stronger performance characteristics; and if 
so, how — and what are the attendant implications? 
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