
Technical article 

Efficient Boundary Element Solutions of Electrostatic Fields Using the Fast 
Multipole Method 

In contrast to the direct method, when applying (2) no 
distinction between different domains is necessary, that 
means for each evaluation point the integration has to be 
performed over all surface charge densities. 

Introduction 

A wide spread method for the solution of electrostatic 
problems is the boundary element method (BEM). The 
surrounding infinite space is taken into account exactly and 
only the surfaces of linear, isotropic media have to be 
discretized. To overcome the full populated matrix of the 
resulting system of linear equations fast and efficient 
methods like the fast multipole method (FMM) [1] can be 
used. When assembling the system matrix or postprocessing 
the solved problem, singular or nearly singular integrals 
must be computed. To calculate these integrals with a high 
accuracy efficient integration techniques were developed 
[2, 3]. The focus of this paper is on direct and indirect 
boundary element formulations and their application to the 
solution of electrostatic problems. Especially the efficient 
solution of the system of linear equations and the fast 
postprocessing using the fast multipole method is 
considered. 

Description of the problem and discretization 

A general electrostatic problem consists of conductors 
embedded into multiple dielectrics (Fig. 1). It is assumed, 
that the linear and isotropic dielectrics are piecewise homo-
geneous. The conductors’ potential can be known or can be 
left unknown. 

 
Direct and indirect boundary element formulations 

Fig. 1  Conductors embedded in multiple, piecewise homogeneous 
dielectrics 

Boundary element formulations can be summarized into two 
formulations, the direct and the indirect method [4]. A main 
property of the direct method is, that the potential in an 
arbitrary evaluation point inside a domain is calculated from 
its values and normal derivatives on the boundary of the 
domain. In contrast to this in the indirect method the poten-
tial in an arbitrary evaluation point is obtained from sources 
on the boundary, which are charges in the case of electro-
static problems. 

Normally the direct method is based on Green’s theorem, 
which must be modified for evaluation points on the 
boundary 
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In the case of piecewise homogeneous, isotropic and linear 
dielectrics, it suffices to describe the dielectrics with 
boundary values. That means only the surfaces of the 
dielectrics and the conductors must be discretized and the 
boundary element method can be used. Commonly used 
surface elements are triangular and quadrilateral elements 
with Lagrangian polynomials for the interpolation between 
the nodes of the elements, the so-called shape functions 

( )iN r . The usage of linear polynomials simplifies the 
numerical treatment but on the other hand a relative large 
number of elements is needed for a good approximation of 
geometry and sources. Therefore often second order 
elements are preferred. 

The so-called singularity coefficient  becomes 2( )c r π  on a 
smooth boundary [4]. Actually (1) can only be applied to 
closed domains, but the surrounding infinite space can be 
treated as a closed domain, too, since the boundary in 
infinity makes no contribution to the integrals in (1) [5]. 

Conventional solution of the problem 

As mentioned above in the indirect method the potential in 
an arbitrary evaluation point is computed from the surface 
charge densities ( )σ r  on the boundaries 

 ( ) ( )
0

'1 d
4πε '

=
−∫

A

u
σ r

r
r r

' . (2) 

To numerically solve an electrostatic problem with the 
boundary element method the collocation or the Galerkin 
method can be used. Assembling the system of linear equa-
tions is relative simple, when the collocation method is 
applied, but often the Galerkin method is more suitable. Not 
only the number of elements can be reduced to obtain a 
comparable accuracy as the collocation method, but also 
numerical problems at the computation of the singularity 
coefficients or of the normal component of the electric field 
in corners or on edges are overcome. A



Firstly the assembly of the system of linear equations for the 
indirect method is described. On the surfaces of the con-
ductors a Dirichlet boundary condition, the known potential, 
must be fulfilled and (2) can be discretized 
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where i is a node on the conductor and the summation over j 
must be performed over all nodes. On a surface between two 
dielectrics the normal component of the dielectric displace-
ment is continuous, what can be formulated as Neumann 
boundary condition. The corresponding integral equation is 
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Computing the integrations in (3) or in (4) the surfaces iA  
and jA  coincide for  and the integrand becomes 
singular. In both cases the integrals are weakly singular [5]. 
Singular integrals cannot be calculated with standard 
Gaussian quradrature techniques, instead improved integra-
tion methods are needed. An approach for the efficient and 
accurate integration of weakly singular integrals is, to 
perform a coordinate transformation. The singular point is 
then the origin of a cylindrical coordinate system. A 
consequence of that coordinate transformation is the 
resulting Jacobian, which regularizes the singularity. If the 
surface A

i j=

i is close to the surface Aj the integral in (4) 
becomes nearly strong singular. Then additionally to the 
coordinate transformation a Taylor’s series expansion of the 
integrand must be calculated to regularize the integral [2, 3]. 

When the direct method is applied, the assembly of the 
system matrix is more complicated. A distinction between 
different domains is necessary. Furthermore the different 
domains must be coupled on their boundaries. The basic 
integral equation applying Galerkin method has the form 
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Depending on the known boundary conditions the left and 
right hand side of the system of linear equations are varying. 
Two domains are coupled by replacing the boundary values 
of the potential and its normal derivative of one domain by 
the corresponding values of the other domain. 

LU-decomposition is a direct solver for the system of linear 
equations for both the direct and the indirect method. An 
advantage of such a solver is, that the system matrix is 
inverted once and can then be applied to several right hand 
sides. However the computational costs are of O(N³), where 
N is the number of unknowns. A preconditioned iterative 

solver reduces the computational costs to approximately 
O(N²). In most cases the problem size is limited by the 
needed memory for the matrix storage, since the memory 
requirements are of O(N²). 

Efficient solution of the problem 

To reduce the memory requirements of the full populated 
system matrix fast methods like the fast multipole method 
are applied. Additionally these fast methods also reduce the 
computational costs. However then the usage of an iterative 
solver is required, but this is not a restriction. In the fol-
lowing the fast multipole method is exemplary described for 
the indirect method. 

In each iteration step the product of the system matrix with 
the current solution, which corresponds to the current 
surface charge density, is computed 

 { } [ ]{ }y A x= , (6) 

where it’s not necessary to store the matrix [ ]A  explicitly. 

A truncated series expansion of Green’s function in spheri-
cal harmonics 
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is the basis of the fast multipole method, where ( ),m
nY ϑ ϕ  

are normalized spherical harmonics [1]. When (7) is applied, 
a strict distinction between the source domain and the 
domain with the evaluation points is required. Since 
spherical coordinates are used, these domains are described 
by spheres. Before the interactions between the elements can 
be computed, all elements are arranged in a hierarchical 
grouping scheme. In the first step of the multipole algorithm 
the surface charge densities on the elements are replaced by 
equivalent multipoles in the domains. The interactions 
between domains far from each other are calculated for large 
domains and only for domains lying close to each other the 
interactions are computed for small domains. If the distance 
between two elements is too small for the application of (7), 
conventional integrations (3) or (4) are evaluated. This 
hierarchical algorithm reduces the memory requirements and 
the computational cost to approximately O(N) and with it 
very large problems can be solved [6]. 

An alternative method to the fast multipole method is the 
adaptive cross approximation technique (ACA) [7], there the 
matrix is approximated by low rank matrices. This reduces 
the computational costs and the memory requirements for 
the system matrix to approximately O(N), too. An advantage 
of the ACA is, that it can be applied easily to different 
kernels of integral equations. 



Postprocessing 

After the solution of the system of linear equations the 
potential or the electric field in an arbitrary point is com-
puted by integrating over all surface charge densities  
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If the direct method is used, surface integrals over the 
boundary values of the considered domain have to be 
calculated 
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For large problems with a large number of elements the 
evaluation of (8), (9) or (10) can be very time consuming, 
especially when the field in many evaluation points is 
calculated. To reduce the computational costs, the fast 
multipole method can be applied, as well [8]. 

Numerical Examples 

All presented examples were computed on a Digital 
AlphaServer 1200 5/533 with 2 GByte memory. A commer-
cial meshing tool was used for the discretization of the 
surfaces with eight-noded quadrilateral second order ele-
ments. The system of linear equations is obtained by the 
application of the Galerkin method and solved with GMRES 
and a Jacobi preconditioner [9]. The accuracy of the residual 
in GMRES is set to 10 . 7−

The first example consists of two electrodes (Fig. 2). One of 
the electrodes is coated with a dielectric with r 10=ε . The 
potential of the coated electrode is 1 V and the potential of 
the other electrode –1 V. For a numerical solution of the 
problem, the surfaces are discretized with 4068 elements. 

The application of the indirect method leads to a system of 
linear equations with 12210 unknowns. The storage of the 
complete full populated system matrix would require 
1137 MByte. Computing the matrix-vector-product with the 
fast multipole method this can be reduced to 156 MByte. 
The iterative solver converged after 106 iteration steps in 
6408 s. For the calculation of the potential in 401 evaluation 
points along an axis through the dielectric and the small air 
gap between the electrodes only 5.8 s are required (Fig. 3). 
The problem can be solved with the direct method, too. Then 
a system of linear equations with 16280 unknowns is solved 
in 28334 s after 179 iteration steps. The memory require-

ments are 244 MByte. In Fig. 3 the potential in the dielectric 
and the air gap is depicted. 

 

Fig. 2  Example with two electrodes, one electrode is coated with a dielectric 

 

Fig. 3  Potential obtained with the indirect and the direct method in the 
dielectric and the air gap 

As second example a model of a chip with ten pins con-
nected to conducting paths on a printed circuit board is 
investigated (Fig. 4). When considering such configurations, 
derived field variable like the capacitance coefficients are of 
large interest. In this example the capacitance between the 
conductor, which consists of pin 1 and its conducting path, 
and the conductor, which is composed of pin 7 and its 
conducting path, is examined. All other conductors and the 
backside of the printed circuit board are connected together 
and treated as one conductor. 

Since the pins of the chip are modeled as thin conductors, 
the indirect method is preferred for the solution of the 
problem. Very time consuming in this context is the com-
putation of the free surface charge densities on the conduc-
tors from the sum of all charges, which are obtained as 
solution of the system of linear equations. But the applica-



tion of the fast multipole method brings the computational 
costs down to an acceptable level. 

 

Discretizing the problem with 6448 elements leads to a 
system of linear equations with 20964 unknowns. The whole 
problem is solved after 24657 s and the memory 
requirements are 195 MByte. With this relative coarse 
discretization of the conductors a capacitance of 1.631 fF 
and 1.623 fF respectively between the examined pins is 
achieved. 

 
Fig. 5  Experiment in high voltage technique for the simulation of a 
breakdown caused by conduction particles on dielectric spacers 

Fig. 4  Chip connected to a printed circuit board 

 

In the third example a typical arrangement of electrodes in 
high voltage technique is considered. Often in high voltage 
systems a small conducting particle is lying on the dielectric 
insulators between the electrodes. If the particle is small 
enough, it will not disturb the operation of the system. But 
for long thin particles the electric field strength near the 
particle is too large and a breakdown will occur. 

The examined experiment consists of two electrodes with a 
voltage of 100 kV between them (Fig. 5). To simulate the 
particle long needles with a small diameter are used and 
positioned on dielectric spacers (Fig. 6). 

Near the ends of the particles high electric field strengths are 
expected. That’s why the particle and the surrounding of the 
particle is fine meshed. For the rest of the problem a coarse 
mesh suffices. In whole the problem is discretized with 9529 
elements. The system of linear equations with 28857 
unknowns is solved in 41663 s after 240 iteration steps. 
Note, that without a preconditioner the iterative solver 
wouldn’t converge. 

Fig. 6  Detail of Fig. 5, conducting particle on a spacer 

In order to show the capability of the fast multipole method 
for the postprocessing the potential in 226151 evaluation 
points was computed (Fig. 9). This computation took 4323 s, 
what is larger than expected, too. The grid of the evaluation 
points is relative fine and many elements are relative large, 
so a large number of near-field interactions must be 
computed. 

Since a problem oriented mesh was used and the size of the 
elements is extremely varying, the memory requirements are 
larger than it’s usual for problems with about 30000 un-
knowns. In this case 932 MByte were needed, of which 
760 MByte are caused by the near-field matrix. 

A consequence of the high electric field strength near the 
particle is, that the surface charge densities near the particle 
vary extremely (Fig. 7). Additionally it can be seen, that at 
the end of the particle the high surface charge density on the 
spacer can also be found on the half of the neighboring 
elements, since the elements have common nodes. To 
compute reliable and meaningful values for the electric field, 
an axis 0.6 mm above the particle was chosen for the 
evaluation points. As expected near the particle high electric 
field strengths are obtained (Fig. 8). 

For comparison reasons the same problem was discretized 
with 30989 elements, but a more homogeneous mesh was 
used, especially the large electrodes are finer meshed. Then a 
system of linear equations with 93409 unknowns must be 
solved. The memory requirements are 1.2 GByte, of which 
865 MByte are needed for the near-field matrix. The prob-
lem was solved in 86385 s after 290 iteration steps and the 
computation of the potential took only 1062 s, since more 
interactions could be computed with far-field interactions. 



 

Fig. 7  Surface charge densities in the surrounding of the end of the left 
particle 

 

Fig. 8 Electric field strength 0.6 mm above the particle 

 

Fig. 9 Potential between the electrodes 

Conclusions 

Examining electrostatic problems with linear, piecewise 
homogeneous media the boundary element method is very 
attractive. Only the surfaces have to be discretized and the 

surrounding infinite space is taken into account exactly. In 
combination with an efficient method like the fast multipole 
method large problems can be solved on a small computer, 
since the memory requirements and the computational costs 
are only approximately proportional to the number of 
unknowns. The computation of field variables, even in a 
large number of evaluation points, can be done efficiently 
with the fast multipole method. 

Of course, the boundary element method and the fast mul-
tipole method can also be applied to non-linear magneto-
static or eddy current problems. Then it’s a good choice to 
couple the boundary element method with the finite element 
method, especially when moving bodies are considered. In 
the field of electromagnetic scattering problems the 
boundary element method in combination with the fast 
multipole method is applies very successfully for many 
years. 
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