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Technical article 
Some numerical aspects in electrodynamics of magnetic materials 

 
 

Abstract 
This paper deals with total force computation in magnetic materials. The most popular and widely adopted 

methods, namely the surface integration of the Maxwell’s stress tensor, the energy method and the equivalent 
source methods are reviewed and their main features and numerical drawbacks are highlighted. In particular, 
it is shown that equivalent source methods can also be written in terms of the so-called external field and 
evidence is given that these reformulated expressions can provide good accuracy and low computational 
costs. A comparative study among the discussed methods is finally carried out by means of numerical 
experiments on axisymmetric and 3D test geometries. 

 
1. Introduction 

The evaluation of forces acting upon magnetized continuous media is still a rather critical aspect of 
computational electromagnetism. This is mainly due to the fact that the most traditional approaches for the 
resultant force sometimes present numerical drawbacks, which make their results often inaccurate and not 
much reliable. 

At present, the computation of the total force in 2D and 3D electromagnetics is generally carried out by 
means of the surface integration of Maxwell’s stress tensor (MST) or using the magnetic energy (or 
alternatively co-energy) method, also called virtual work method (VWM). The most popular commercial 
electromagnetic codes for computer-aided design of electromagnetic devices are equipped with tools for force 
calculation based on MST and VWM. 

However, in spite of this large popularity, it is difficult to find in electromagnetic literature any well-
established and rigorous proof of the validity of both methods in all the typical configurations in which 
electromagnetic systems have to operate. By way of example, although MST is successfully used in presence 
of nonlinear ferromagnetic materials, no demonstration of its applicability in such cases can be found in 
classical textbooks of electrodynamics (see e.g. [1-3]). 

Similarly, VWM is usually justified (see e.g. [4-5]) writing down the energy conservation principle over a 
magnetic system in which mechanical deformations, exchanges of heat and changes of temperature as well as 
of thermodynamic internal energy are neglected during the virtual displacement. But these simplifications are, 
in reality, untenable, as shown in [6-7], since most of the physical quantities involved in the energy balance 
are mixed thermodynamic-magnetic terms. In addition, VWM can be employed only in absence of hysteretic 
phenomena, as classical thermodynamics cannot account for such a behavior and this results in the 
impossibility of defining the concept of magnetic energy. 

In recent years, the scientific activity on total force computation in 2D and 3D finite element modeling has 
been concerned with the research of alternative methods for MST and VWM and with their use within the 
most popular potential-oriented and field-oriented formulations [8-15]. In this context, the so-called 
equivalent source methods (ESM) have been investigated and their numerical reliability has been verified in 
connection to the adopted formulation to solve the 2D or 3D field problem and to the level of mesh 
refinement [14-16]. 

In this paper all the aforementioned methods are reviewed with the aim to highlight their main features and 
numerical drawbacks. Particular attention is devoted to the equivalent source methods, since it is possible to 
reformulate their expressions as functions of the external field, namely the difference between the total field 
(B or H) and the field produced by the equivalent magnetic sources representing the target body. It will be 
shown in the next sections that the use of the external field instead of the total one allows circumventing most 
of the numerical problems arising in force calculations. 

The paper is organized as follows. Section II is devoted to recalling all the possible expressions for the total 
force acting upon a magnetized body. In this context, starting from the concept of Coulombian magnetic 
dipole, a mathematical derivation of ESM is presented and a general procedure for the numerical evaluation 
of the external field is proposed. Next, in section III, the numerical drawbacks of all approaches are pointed 
out and a brief recall on the behavior of the magnetic field on the edges of a generic magnetized body is 
presented. This enables highlighting the singularity of the field on the corners of the body itself and how this 
singularity can perturb force calculation. Then, in section IV, some numerical experiments referring to an 
axisymmetric test case and a 3D one are discussed and a comparison among the methods is carried out. 
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Finally, in section V, some concluding remarks are drawn. 
 

2. The expressions for the total force acting upon a magnetized body 
Basically, the computation of the resultant force upon a magnetized body can be carried out by means of 

three methods: the equivalent source methods (ESM), the surface integration of Maxwell’s stress tensor 
(MST), and the virtual work method (VWM). 

 
A. The equivalent source methods 
Magnetization phenomena can be equally explained by viewing magnetized matter either as a collection of 

Amperian dipoles or of Coulombian magnetic dipoles [1], [17]. It is quite obvious that, independently of the 
point of view, the theory to be developed must be able to lead to the same values for the magnetic force. 

Therefore, let us consider a continuous distribution of Coulombian magnetic dipoles placed in the magnetic 
field Hext produced by prescribed external sources. The Coulombian magnetic dipole can be modeled as an 
aggregate of two magnetic charges +qm and –qm, and can be characterized by its magnetic dipole moment m: 

 rmq ,0d
ˆ dqlim

m

um
∞→→

= , (1) 

where rû  is the unit-vector of the straight line connecting –qm to +qm. 
In strict analogy with the electrostatic Coulomb force, the force acting upon the dipole can be evaluated as: 
 ( ) ( )−+ −= QextmQextmm qq rHrHF . (2) 
On the other hand, it results that: 
 ( ) ( ) ( ) extQQQextQext HrrrHrH ∇⋅−+= −+−+ . (3) 
Replacing the expression of Hext (rQ

+), arrested at the first order of expansion, into (2), one obtains: 
 ( ) extQQmm q HrrF ∇⋅−≅ −+ , (4) 

and then: 
 extmq ,0dm

m

lim HmFF ∇⋅==
∞→→

, (5) 

where the ∇ operator should be considered applied at the point occupied by the dipole. 
If we assume now that the continuous distribution of Coulombian dipoles occupies the volume Ω, the 

expression for the resultant force can be easily obtained as: 

 ∫
Ω

Ω Ω∇⋅= dextHMF , (6) 

where the magnetization density M has been introduced as the dipole moment per unit-volume and the 

symbol ( ) Ω⋅∫
Ω

d  refers to a volume integration. 

Let us recall now the following integral identity holding for any vector fields u and v, which obey to the 
divergence theorem in a given region Ω [1] 

 ( ) ( ) ( ) ( ) ( )∫∫∫∫∫
ΣΩΩΩΩ

××+Ω××∇=Ω⋅∇−Ω×∇×+Ω∇⋅ dSdddd vnuvuvuvuvu , (7) 

being Σ the external surface of Ω. 
Let us apply this identity to the region Ω occupied by the considered distribution, posing 

 




=
=

, 
, 

extBv
Mu

 (8) 

and recalling that the following two equations must hold true: 
 ext0ext HB µ= , (9) 
 Ω∈=×∇ Pany for   ,0extB . (10) 
One obtains: 

 ( ) ( ) ( )∫ ∫∫
Ω ΣΩ

××+Ω××∇=Ω∇⋅ dSdd extextext BnMBMBM . (11) 

Recalling now the well-known expressions for the volume and surface density of equivalent magnetizing 
currents [17]: 
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 MJ ×∇
µ

=
0

vm
1 , (12) 

 nMJ ×
µ

=
0

sm
1 , (13) 

equation (11) can be rewritten as: 

 ( ) ∫ ∫∫
Ω ΣΩ

Ω ×+Ω×=Ω∇⋅= dSdd extsmextvmext BJBJHMF . (14) 

This relationship shows that the resultant force upon the whole distribution may be computed by replacing 
the distribution itself with suitable equivalent magnetization currents. 

Let us now show that the same result for the resultant force is also obtained by replacing the magnetization 
currents with equivalent magnetic charges. 

Recalling another integral identity, holding for any vector fields u and v obeying the divergence theorem in 
the region Ω 

 ( ) ( ) ( )[ ] ( )[ ] ( )dS d d d  ∫∫∫∫
ΣΩΩΩ

⋅+Ω⋅∇−=Ω⋅∇−⋅∇=Ω∇⋅ uvnvuvuuvvu , (15) 

one has (setting u = M and v = Hext): 

 ( ) ( ) ( )∫ ∫∫
Ω ΣΩ

Ω ⋅+Ω⋅∇−=Ω∇⋅= dSdd extextext MHnHMHMF . (16) 

Let us focus the attention on the last integral of (16). The term MHext is a second-order tensor representing 
the dyadic product of the two vectors M and Hext. The operation n⋅(MHext) is hence a dot product at left 
between the vector n and the tensor MHext. Therefore it results: 

 ( ) ( )∫∫
ΣΣ

⋅=⋅ dS dS extext HMnMHn . (17) 

In the light of (17), (16) becomes: 

 ( ) ( ) ( )∫ ∫∫
Ω ΣΩ

Ω ⋅+Ω⋅∇−=Ω∇⋅= dS d d extextext HMnHMHMF . (18) 

It can easily be observed that equation (18) can be further simplified, noting that [17]: 
 M⋅−∇=ρm , (19) 
 nM ⋅=σm , (20) 

being ρm and σm, respectively, the volume and surface density of the equivalent magnetic charges. 
We then conclude that: 

 ( ) ∫ ∫∫
Ω ΣΩ

Ω σ+Ωρ=Ω∇⋅= dSdd extmextmext HHHMF , (21) 

as previously anticipated. 
Equations (6), (14) and (21) show that the force acting upon a magnetized body placed in an "external" 

field (Bext or, the same, Hext) can be evaluated in three different ways, according to the representation used for 
simulating the field produced by the magnetization of the body itself. These three formulae are generally 
referred to as equivalent source methods for force calculation, since they are based on the definition of 
suitable distributions of magnetic dipoles or currents or charges. 

They are expressed as a function of Bext or Hext, but can also be rewritten in terms of the total field Btot, sum 
between the former and the field due to the magnetization of the body, namely BM (Fig. 1). 

Fig. 1 - Definition of Btot and Bext for an observation point inside a uniformly 
magnetized body near a circular coil carrying a stationary current. 
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The external field can therefore be rewritten as [17-18]: 

 




−=
−=

,
,

Mext

Mext

HHH
BBB

 (22) 

having posed, for shortness, B = Btot and H = Htot. 
It is possible to show that the following three equalities must hold true [17]: 

 dS M
2
1dd

0

2
n

ext nHMHMF
µ

+Ω∇⋅=Ω∇⋅= ∫∫∫
ΣΩΩ

Ω . (23) 

 ∫ ∫∫ ∫
Ω Σ

−+

Ω Σ

Ω
+σ+Ωρ=σ+Ωρ= dS
2

ddSd mmextmextm
HHHHHF  (24) 

 ∫ ∫∫ ∫
Ω Σ

+

Ω Σ

Ω
+×+Ω×=×+Ω×= dS
2

ddSd -
smvmextsmextvm

BBJBJBJBJF  (25) 

Equation (23) shows that equivalent magnetic dipole method can be also formulated in terms of the total 
field H and this implies the addition of a surface term, depending on the normal component of magnetization. 
The two integrands at the r.h.s. of (23) are usually referred to as Kelvin’s formulae and they provide the 
correct expressions for the volume and the surface force densities acting within a magnetized body [17]. 
In equations (24)-(25), representing the expressions as functions of the total field for the equivalent magnetic 
charge method and the equivalent magnetizing current method respectively, both fields H and B are averaged 
on the external surface Σ of the body, since, differently from Hext and Bext, they experience a jump in their 
normal components on Σ. 

It should be highlighted that, both from a theoretical and a numerical standpoint, formulae involving the 
external field should be considered the most appropriate way to compute force, due to the smooth behavior of 
this latter field on the surface of the target body (the external field does not suffer any discontinuity on Σ). 

As far as the numerical computation of Hext and Bext is concerned, this can be accomplished in different 
ways. We propose to evaluate firstly the contribution to B provided in empty space by the equivalent 
magnetizing currents flowing inside the target body and on its surface. Once this field, namely BM, is obtained 
in each node of the discretized domain, the external field Bext can be derived by simply subtracting it to the 
total field B provided by the FEM solution of the complete case. 

The problem can be consequently approached in a two-step procedure: first, calculating the distribution of 
magnetizing currents from (12) and (13); then, imposing them as field sources in a second FEM solution with 
all the materials replaced by air [14]. 

 
B. Maxwell’s stress tensor 
The expression of Maxwell's stress tensor for the magnetic field in free space is [17] 

 IBBT
0

2

0

)M(

2
B-1
µµ

= , (26) 

where BB is the dyadic product of the magnetic field B by itself and I  is the identity-tensor. 
It is easy to show that: 

(i) at any regular point, where a finite volume current density exists, the result is: 
 )M(TBJf ⋅∇=×=Ω , (27) 

(ii) at any point where a finite surface current density JS exists, the result is: 

 ( ))M()M(
SS 2 −+

−+ −⋅=
+

×= TTnBBJf  , (28) 

with obvious meaning of the symbols. 
The use of Maxwell's stress tensor is always limited to situations where the resultant force exerted by the 

magnetic field upon a magnetized body surrounded by vacuum is to be calculated. 
In such cases, one has: 

 ( )( )dS M∫
Σ

Ω ⋅= TnF , (29) 

having indicated with Σ any closed surface (lying entirely in vacuum) bounding the region Ω where the 
current flows. 
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C. Virtual work method 
According to this method, the force is derived from the variation of the magnetic energy (or, alternatively, 

co-energy) caused by a suitable infinitesimal rigid displacement of the considered body. The use of the energy 
rather than the co-energy is determined by the nature of the transformation performed: if the magnetic fluxes 
are kept constant during the displacement of the body, the magnetic energy must be employed, whereas the 
magnetic co-energy should be used if, on the contrary, the magnetic fluxes can vary and the currents remain 
unchanged. 

In this latter case, it can be shown [7] that the resultant force FΩ acting upon the target body can be 
expressed as: 

 '
mdWd =⋅Ω rF , (30) 

where dr is an elementary rigid displacement of the body and Wm’ is the magnetic co-energy, defined as: 

 ( ) Ω











⋅= ∫ ∫

∞Ω

d dW
0

'
m

H

HHB , (31) 

being ∞Ω  the whole space. 
Similarly, in the case of constant magnetic fluxes, it can be proven [7] that the following result must hold 

true: 
 mdWd −=⋅Ω rF , (32) 

where Wm is the magnetic energy, defined as: 

 ( ) Ω











⋅= ∫ ∫

∞Ω

d dWm

B

0

BBH , (33) 

being the meaning of the symbols now obvious. 
 

3. Critical analysis of the methods: the problem of the corner singularity of the self-field of the 
target body 

From a numerical standpoint, the methods described in the previous section are based on volume 
integration (VWM), surface integration (MST) and both a volume and a surface integration (ESM). 

Typically, the surface integration of Maxwell’s stress tensor has to be performed in very thin air regions 
like the air-gap between the fixed part of an electromagnetic device and the moving one. In such situations, 
the following problems can arise: if the surface is chosen very close to the body, the numerical results are 
very sensitive to the field discontinuity occurring at the boundary of the magnetized body; if, on the contrary, 
the surface is far from the body, the numerical errors affecting the evaluation of the surface integral may grow 
unavoidably. That is why it is usually common practice to perform several simulations varying the distance 
between the closed surface in air and the target body and to consider as reference force value for MST the 
arithmetic average of the results obtained. This procedure permits gaining accuracy but increases the post-
processing time to acquire force value. 

Also VWM is characterized by high computational costs, since it needs the evaluation of the magnetic 
energy Wm (or co-energy Wm’) on the whole domain for several small rigid displacements of the target body 
around its initial position and along its movement spatial coordinate. This requires the execution of several 
field simulations and then a suitable interpolation of the obtained values of Wm (Wm’) in order to compute 
finally the force as the derivative of Wm (Wm’) with respect to the displacement. 

As far as ESM are concerned, they main source of numerical errors affecting their results is the surface 
integration along the boundary of the target body, where a field discontinuity occurs. It should be noticed 
however that this drawback affects only ESM written in terms of the total field. 

The numerical integration process is undoubtedly a source of errors in the force value, but accuracy can be 
lost also because of numerical errors affecting the fields, due to the adopted numerical formulation and to the 
singular behavior of the magnetic field on the edges of the target body. 

Let us examine in detail this latter problem, considering a two-dimensional magnetized body with arbitrary 
polygonal shape. The field due to its magnetization can be computed by means of the equivalent current 
method. Considering, for the sake of simplicity, linear materials, the equivalent current results in a surface 
distribution expressed by (13). 
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Fig. 2 - Generic corner of a polygonal magnetized body. 
 
Focusing now the attention on a generic corner of the body (Fig. 2), we are interested in analyzing the 

properties of the magnetic induction field at the points (x = ± a, y = 0). The z-component of the magnetic 
vector potential due to the magnetizing current sheet on the x axes, between x = -a and x = a and with surface 
density Jsm1(x)=(M×n1⋅ez)/µ0 = Mx(x)/µ0 can be expressed as: 

 [ ]












+−
π

= ∫
−

a

a

22
xz 'dxy)'xx(ln)'x(M

2
1)y,x(A , (34) 

and the magnetic induction is consequently given by: 

 












+−π
= ∫

−

a

a
22xx 'dx

y)'xx(
y)'x(M

2
1)y,x(B , (35) 

 












+−
−

π
−= ∫

−

a

a
22xy 'dx

y)'xx(
'xx)'x(M

2
1)y,x(B . (36) 

With the assumption that ∃ M > 0 such that Mx ≥ M for x∈[-a,a], it can be shown that By is singular at (x = 
±a, y = 0), while Bx not only exhibits a discontinuity for x∈(-a,a) and y=0 but also cannot be defined at the 
ends, even for continuity. To this aim, let us consider the limit of By(x,0) when x tends to a+. It results that: 

 ≤












−π
−= ∫

−
≥
=

a

a

x
ax
0yy 'dx

)'xx(
1)'x(M

2
1B −∞→

+
−

π
=













−π
− ∫

−
ax
axln

2
M'dx

)'xx(
1M

2
1

a

a

, (37) 

for x→a+. 
For Bx, instead, one obtains: 

 ≥












+−π
= ∫

−
≥
=

a

a

22x0y
axx 'dx

y)'xa(
y)'x(M

2
1B

4
M

y
a2tan

2
M'dx

y)'xa(
yM

2
1 1

a

a

22 →
π

=












+−π
−

−
∫ , (38) 

for y→0+; 

 ≤












+−π
= ∫

−
≤
=

a

a
22x0y

axx 'dx
y)'xa(

y)'x(M
2
1B

4
M

y
a2tan

2
M'dx

y)'xa(
yM

2
1 1

a

a

22 −→
π

=












+−π
−

−
∫ , (39) 

for y→0-. 
Further, Bx ≡ 0 for y=0 and x < -a or x > a. 
As previously mentioned, in FEM modeling the singularity of the self-field of the target body gives rise to 

a numerical error affecting the total field, sum of the former and that created by other sources. 
For a given mesh size, the relative magnitude of this error and its influence on the evaluation of the total 

force acting on the target body depend on the ratio between the magnetization field BM, and the external field 
Bext. In ferromagnetic materials, both BM and Bext are linked to external sources and when the contribution of 
these is prevalent, the error is high only in close proximity to the edge. On the contrary, in permanent 
magnets, magnetization is (almost) independent on the external sources. As it will be shown in the next 
section, in these situations, especially when low currents are involved and the total field is practically 
coincident with that of the magnet, the error spreads over a more extended area surrounding the singularity 
point. This leads to the necessity of very dense discretizations to obtain reliable values of force with the 
expressions involving the total field. On the other side, it should be stressed again that ESM using the external 
field do not suffer of this drawback, since the field of the target body is not included in these relations. 
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4. Numerical computations 
The discussed methods have been numerically tested on axisymmetric and 3D problems. The examined test 

cases have been selected in order to highlight critical aspects in force computation. 

A. Axisymmetric test case 
Team Workshop problem 23 [20-21] was considered as axisymmetric case study. It consists in determining 

the repulsive force between a coil and a magnet (Fig. 3). 

Fig. 3 - Team problem 23. 
 
The problem definition provides dimensions for four different configurations but we analyzed only the one 

involving the larger coil and the larger Samarium-Cobalt magnet, when both are completely aligned. In 
particular, we calculated the repulsive force for a fixed value of the distance δ between the coil and the 
magnet (δ = 0.381 mm) and for the lowest current I = 10 mA. This configuration, critical from the force 
computation viewpoint both for the reduced dimensions of the air gap and for the extremely low value of the 
force itself, is not simply a theoretical example but it can represent, in our experience, also an acoustic 
transducer for biomedical applications. 

Since it has been highlighted in [21] that the reported material properties of the permanent magnet differ 
from the real values, a disagreement between measured and computed values of force was observed. So we 
decided to adopt as reference value the force calculated on the coil with the volume integration of J×B, when 
B comes from an adaptive solution with tolerance set to 10-4. 

We used five different meshes (mesh 1→ coarse; mesh 5→ very dense) to solve this problem. In Table I 
the results obtained with MST, VWM and with the application of the equivalent charge method (ESMQ), the 
equivalent dipole method (ESMD) and the equivalent current method (ESMI) are reported. ESM results refer 
to the formulae expressed as functions of the external field. 

 
 

TABLE I 
FORCE ON THE MAGNET [N] 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 
Fref -0.0020677 -0.0020677 -0.0020677  -0.0020677 -0.0020677 

MST - - -0.0021582 -0.0020406 -0.0020734 
VWM - - - -0.0016001 -0.0025012 
ESMQ -0.0020520 -0.0020628 -0.0020664 -0.0020674 -0.0020675 
ESMD -0.0020520 -0.0020628 -0.0020664 -0.0020674 -0.0020675 
ESMI -0.0020667 -0.0020688 -0.0020706 -0.0020705 -0.0020703 

 
 
As far as MST is concerned, we performed several simulations varying the distance d between the closed 

surface in air and the magnet (Fig. 4). Results obtained with mesh 1 and 2 exhibited so high oscillations to 
result wholly unfounded. 

When the level of mesh refinement is increased, MST becomes more stable for surfaces not very close to 
the magnet, although oscillations can still be observed. 
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Fig. 4 - Results obtained with MST on several surfaces enclosing the magnet. 
 
In order to provide a reference force value for MST we therefore considered the arithmetic average of the 

results obtained only in this more stabilized region. 
Force computations carried out with VWM seem to be more sensitive to the accuracy of the mesh than 

those carried out with MST. For the considered problem, Wm’ showed extremely small variations, since the 
field provided by the coil is negligible with respect to the field of the magnet. Thus, only with the most 
refined meshes (mesh 4 and 5) we succeeded in interpolating Wm’ and in computing the force. It is worth 
noting that the obtained results are affected anyway by large inaccuracies (differences higher than 20 %). 

As far as ESM are concerned, they exhibited high numerical robustness, since they provided reliable results 
even when poor meshes were used (Fig. 5). 

Fig. 5 - ESM vs. discretization. The bold line represents the correct value of force. 
 
The poor accuracy and efficiency of classical methods is not only due to the singularity on the edges of the 

self-field of the magnet, but also to the dominant contribution that it gives to the total field [16]. 

B. 3D test cases 
The presented 3D test case concerns with the evaluation of the attracting force between two cubic rigid 

magnets (side equal to 10 mm, Br = 1 T along the same direction for both magnets) placed face to face at a 
distance of 5 mm. This problem, solved analytically in [22], was discretized using three different meshes with 
48, 500 and 4000 elements for each magnet respectively. The obtained results are listed in Table II. 

 
TABLE II 

FORCE ON THE CUBIC MAGNET [N] 
 Mesh 1 Mesh 2 Mesh 3 

Analytical 6.568 6.568 6.568 
MST 7.09754 7.47062 6.73695 

VWM 7.20314 6.56755 6.57234 
ESMQ 6.33122 6.68592 6.64007 
ESMD 6.42301 6.60710 6.61891 
ESMI 6.19460 6.41129 6.65433 
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In this case, MST did not reach stability with respect to the distance between the integration surface and the 
first magnet (Fig. 6). This must be attributed to the presence of the second magnet. Therefore, the values 
obtained with surfaces in proximity of the two magnets were neglected for the evaluation of the averaged 
MST. 

It is apparent from Table II that VWM provides a good accuracy in the results. In this case, indeed, 
significant variations of the co-energy Wm’ can be appreciated when the rigid displacements are performed. 
This is due to the fact that the two fields produced by magnets have the same intensity. Thus, even small 
displacements can give rise to appreciable variations of the field configuration. 

Fig. 6 - MST vs. d for the two magnets face to face. 
 
This problem, solved with the most refined mesh, was also used to compare the CPU time of the tested 
methods. In particular, we compared VWM, MST and ESMQ using 5 solutions for VWM and 45 values of d 
for MST. The surface integration, required both by MST and ESMQ, was performed using respectively 20×20 
and 200×200 gaussian points (min and max values in Fig. 7). As can be seen in Fig. 7, ESMQ show the best 
performances. 

Fig. 7 – CPU time (in seconds) on a Digital Personal Workstation 500 AU. 
 

5. Conclusions 
The most popular methods for total magnetic force calculation have been reviewed in this paper. It has 

been shown that the equivalent source methods can be reformulated in terms of the so-called external field 
and it has been pointed out that these new expressions allow circumventing numerical errors and instabilities 
due to the singularity of the self-field of the magnetized target body on its corners. All methods have been 
finally compared on axisymmetric and three-dimensional problems, and their accuracy has been analyzed in 
connection to the level of refinement of the used FEM grid. 
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