Technical article

Scalar and Vector Elements on Overlapping

Patches

Abstract — We consider generalized scalar and vector elements
on overlapping patches. No structured FEM-like meshes are
required: the patches may have arbitrary shapes and overlap
arbitrarily; each patch may have its own system of approximat-
ing functions reflecting the local behavior of the solution (e.g.
edge or corner singularities). In the vector case, the new elements
may be viewed as a generalization of tetrahedral edge elements.
Waveguide problems, with or without corner singularities, are
presented as illustrative examples,

L INTRODUCTION: FiM AND 15 Gi
TI[E Finite Element Method (FEM) typically guarantees a
certain order of piecewise-polynomial approximation on
structured meshes. It would often be desirable 1o remove or
relax the restrictions on mesh structure while maintaining he
same level of approximation accuracy. For example, in prob-
lems involving mechanical motion it would be natural if finite
elements were allowed 1o overlap. The proper continiiny of
the numerical solution can be maintained easily even if ele-
ments do overlap (see [18] and a more detailed explanation
below), but the accuracy requirement is eritical.
» The standard FEM is based on pelynomial approximating
functions. This is another undesirable limitation: ideally, one
would want to tailor the basis functions to a specific local
behavior of the field (e.g. spatial oscillations, edges and corner
singularities, boundary layers).

VERALIZATION

Fig. 1 illustrates this very schematically. For a field that be-
haves differently in different subregions, it would be desirable
1o use different types of local approximating functions, pro-
vided these approximations can be merged seamlessly.

Over the last decade, various generalizations of FEM have
been proposed, with a strong emphasis on ‘meshlessness’ —
unfortunately, in some instances at the expense of the most
fundamental requirement of approximation accuracy. For
example, the Moving Least Squares or Diffuse Element Meth-
ods [2] do not generally reproduce even linear polynomials
exactly. While the reproducibility of polynomials is not,
strictly speaking, necessary for convergence, it is quite desir-
able both theoretically and practically (few practitioners
would aceept a numerical method that doeé nol represent a
linear solution).

An overview of meshless methods can be found in [2], [7],
[11]. In computational electromagnetics, versions of the Dil-
fuse Element Method were applied by Maréchal et al. [8]-

[,

A relatively new class of methods that removes (he restric-
tions on mesh structure and on the type ol approximation used
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but still guarantees consistency and accuracy is based on the
idea of partitton of unity (Section 11)

A distinctive feature of partition of unity methods that
makes them more flexible and accurate than many other
‘meshless’ methads is the presence of nwo sets of functions.
Functions of the first set (denoted with ¢; in this paper) sum
up to one everywhere in the domain and form a partition of
unity, Each of these functions vanishes outside its respective
pateh and can be viewed as z weighting factor in the splitting
of the global solution into its “patch components’.

Fig
ary #
be seamlessly merged using Partition of

ronimations of the field can

The second st of functions (denoted with ¢ later in this pa-
per) is local approximating functions defined over each patch;
they characterize the local behavior of the solution but need
not satisfy any additional conditions on patch boundaries,

As 4 consequence, any relevant approximating functions
can be incorporated into the basis, Adaptivity is implemented
very easily: since there are few restrictions on the placement
of overlapping paiches and on the functional bases therein,
patches can be added or removed, and / or the approximation
accuracy within each patch can be enhanced. The analogs of
h- and p-refinement are thus straightforward and do net re-
quire ‘remeshing’

In the remainder of the paper, we outline the essence of the
Generalized FE — Partition of Unity method [11, [7], [11]. [16]
its connection o the standard FEM, and remaining problems,
In addition, we propose new vector elements on overlapping
patehes of arbitrary shape: these elements can be viewed a5 a



generalization of Nedelec-Whilney edge elements, The vecto-
rial method gives the same flexibility in the choice of patches
and basis functions as its scalar prototype and ensures that
tangential, but not necessarily normal, components of the
approximate solution are. continuous. Numerical examples
given in Scction IV include applications of both scalar and
vector elements on overlapping patches.

1L THEPARTITION OF UNITY METHOD
A. Approximation Accuracy is Crucial

In FEM, one considers an infinite sequence of finite-
dimensienal FE spaces {@, ], where fi > 0 is a “small” parame-
ter, usually, but not necessarily, the mesh size (in practice,
only one or a few spaces of this conceptually infinite sequence
are dealt with), The approximation error &, 1s ypically ex-

< bt (1}

—rr_,‘

where the minimum is taken over all approximation functions
1, & ;¢ is a constant (the same for all Q); parametery > 0
is the order of approximation:

|| is a certain norm, usually

an cnergy norm closely related to the boundary value problem
under consideration.

Approximation is necessary and in many cascs sufficient for
convergence of the numerical solution 1y, € (), obtained usu-
ally by Galerkin or other variational methods (see e.g. [17] for
more details on the convergence of FEM for low-frequency
problems).

We insist that the approximation condition (1) be maim-
tained for all generalizations of FEM that we consider,

B. Objective and the Main ldea

The computational domain € is covered by overlapping
patches £, =1, 2, ... fpuenes. An almost random 2D setup is
shown in Fig. 2. Domain £2 {the large rectangle) is covered by
five overlapping patches Q;: two rectangles (€2, and £;): an
ellipse (€2;), and two patches with irregular shapes (€, and
€25). Rectangle £ overlaps with all other patches except for
€Q;; £ happens to overlap with all other patches, etc. Of
course, this particular arrangement of patches is given here for
illustrative purposes only: but in principle it's valid. As noted
previously, some of the patches may represent subregions
with & special behavior of the solution (singularities, boundary
layers, etc.) that need to be approximated accordingly; other
patches may represent regions with a generic / unknown be-
havior where polynomial approximation may be the best
choice

To achieve better approximation and better solufion accu-
racy. one could increase the number of patches {which would
be analogous to A-relinement in FEM) and / or increase the
approximation accuracy within some (or all) patches, which
would be analogous 1o p-refinement.

Local approximations over individual patches need 1o be
merged into a global one “seamlessly,” that is. with little or no
loss in the order of approximation. We illustrate the impor-
tance of this requirement with an example from one of the
authors' experiénce a decade ago. To model rotor motion in
electric machines, overlapping rectangular elements in the air
wap were proposed [ 18] (Fig, 3). Nodes marked by circles are
‘active’ and have bilinear basis functions associated with
them, while the unmarked nodes are ‘dummy’ (similar to
boundary nodes with homogeneous Dirichlet conditions).

Q, Q

Q.; -Qﬁ

Fig: 2. A schematic 2D example of a domain £ (the large rectangle) covered
hy five overlapping patches €,

rotor

stator

fotor motion

Fig. 3. Rectangular clements with an overlapping layer for problems with
otion, For ¢ d stator side meshes i
thed and the overlap is only partially shown, Cireles indi-

cate ‘active’ (‘non-Dirichlet’) nodes,

rotor
the

ity, only fragments of the rotor

rotor

2. 4. Overlapping trimngular elements may in principle be applicd, 0o, but
the order of approximation detzriorates substamially.

The required smoothness of the approximate solutien can
always be assured, even for overlapping meshes. Indeed, as
long as the basis functions are sufficiently smooth (e.g. have
first derivatives, not necessarily continuous), their linear com-
binations are equally smooth. regardless of whether the under-
lying elements overlap,

However, approximation accuracy remains the key. For an
overlapping layer of rectangular elements (Fig. 3), the ap-
proximation error is of the same order as in the conventional
FEM, and quite accurate simulation results were reported in
[18]. But for overlapping friangular clements (Fig. 4} the
accuracy does deteriorate unless the partition of unity proce-
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dure is used as described below (in any event, overlapping
triangular elements may not be a good practical chaice).

C. Using Partition of Unity to Merge Local Approximations

Suppose we have a system of functions {@,}, 1 £ < fpepes
that form a partition of unity; that is,

Z;‘:‘wm- 9, = |

where each @, is associated (in the manner deseribed below)

in€ supple;) =Lk (2)

with the respective patch €0, and vanishes outside that patch. If

this is the case, the @'s act essentially as weighs that let ene
decompose any function (e.g. the exact field and its numerical
approximation) into its ‘patch components’ as

u = 22;""" ug, (3)

If the solution u is approximated locally, i.e. over each patch
€2, by a certain function uy, these local approximations can he
merged as

W= T 4

i=1

Then the field error over the whole domain € is

€, = va’v*")":},[m = Hzl;““V[(um—u)gﬁl]
< 250 Il +
20 o —ul .

Thug. under the assumption that the above norms of ¢, are
bounded, the global approximation essentially reduces, due to
the partition of unity, to local approximations over each patch.
For the original and more rigorous analysis, see [11], [1].

L)

V[“n; —u J”LJ )

Vo,

[NTER)

D. Generating a Partition of Unity

Within each patch, one defines a single function (that we
call a parch shape function, denoted @, ) that vanishes on the
boundary d€, and outside ;. Exception: @, can be non-
zero on parts of d€2; lying on the domain boundary 0D,

One way 1o define the shape function for a rectangular
patch L™, x5 x [yf™, yi™ ] stricy inside the do-

main is
@ = (x- x:ms ) Iknux —X) (v - y’:(:aisx X },?m )

(Fig. 5). The shape function in a patch adjacent to the domain

min i

boundary (say, x" = x

min L min min

and y""= ¥™" where x

and y™ correspond to the edges of the com[j;?lmtional do-
main as a whole. see Fig. 6) could be

P = (RO )

B N S T TR LB e s

Obviously, there are many other possibilities of defining the
shape functions.

Fig. 6. A “palch shape function” at the demain boundary,

To avoid any misunderstanding. let us compare the termi-
nology used for overlapping patches with the notions of the
conventional FEM. In the standard FEM, the ‘shape func-
tions" double as basis functions. The numerical solution is a
linear combination of these functions. Hence their primary
role is 10 represent the numerical solution, and their depend-
ence on shape is to some extent superfluous.

Not so for the partition of unity method, We are dealing
with fwe sets of functions, The first one is the patch shape
functions @, and their normalized versions @y, below, These
functions have the effect of focalizing the approximation: any
function multiplied by @, will obviously vanish outside the
respeclive patch, The second set consists of local approximat-
ing functions within each patch, as described below.

The standard FEM — say. with triangular or tetrahedral ele-
ments — can be viewed as a particular case of the partition of
unity method. In nodal FEM, ‘patches’ are clusters of ele-
ments sharing a common node. and the baryeentric coordi-
nates A defined on these clusters form a partition of unity.
An example of such function A supported on a cluster of six
triamgular elements s shown in Fig. 7.

A partition of unity is created by sormalizing the @, 's
(Fig.8):




(clearly, the sum of @y is identically equal to one).

| ——— H
7777 nodek !
‘ i

centrie courdinate functions e sum up o unity everywhere in the

domain and thus form a partition of unity.

Once the partition of unity is available. the numerical solution
15 sought as @ linear combination of # approximating func-
Lions w; :

w(x) = Z:l—x an; (6)

and the standard Galerkin or Ritz procedure can be applied to
find the unknown coefficients.

Fig. 8. A normalized patch shape function (@ .

The y functions are constructed as follows. First. each patch
k is endowed with a local system of basis functions {gy}.
There is no restriction on the behavior of these functions at the
pateh boundary, They can be chosen as polynomials, sinu-
soids, exponentials, or any other functions providing a good
local approximation to the solution over the partch,

Functions w; of (6) are obtained by multiplying each local
basis function g on £; by the respective normalized patch
shape function @ =

Y = g2y (&h)

Local approximations over the patches are merged into a
global one by the partition of unity (¢} (see Section 1I-C).

11, VECTOR ELEMENTS BY PARTITION OF UNITY

New vector elements constructed in this section generalize
tetrahedral edge elements o arbitrary overlapping patches. We
show that using a set of scalar functions with reasonable ap-
proximation properties in the Sobolev space H'(62) as a start-
ing point. one can generate an ‘edge-element’-type space with
equally reasonable approximation properties in H(curl, £},
The underlying scalar lunctions can, in particular, be obtained
by partition of unity on overlapping patches.

Thus we start with a set of seefar functions {y,} (/=12
o) in H'(€2) and let
V= span {y)

We shall make a reasonable assumption that any lincar
Tunctien of coordinates can be represented exactly by the y's,
that is

ax+bv+ez+d e W (81
for any numbers a, b, ¢, d.

Twao vector spaces can now be introduced by analogy with

Nedelee-Whitney elements on tetrahedra [ 13], [14], [4]. [23]:
V=span [vy) withvy =y Vg, 1 <ii<n ]
W=span {wy) with wy =y Vy, =y Vys 1€i<j<an (10)
Remarkably. several critical properties of spaces V and W
can be formulated and proven with almost no additional as-
sumplions. These properties are formally summarized as theo-

rems below and given withoul proofs; see [20]. [21] for de-
Lails.

Theorem 1.

e V (1a)

YaVu e W oV (1)
=1

V % ZF‘ yoe VxW = VxV (lley

=]
for any vector coefficients ¢; and scalar coefficients a.

Corollary 1. 1f a scalar function £ R is a linear combina-
tion of y's, i.e. fe V. then Vi'e W. Inshort,

YWie Wa'l (12)
Corollary 2. Let £ be a vector function Q-8 in Hlcurl, Q)
that can be approximated with a given degree of accuracy by
functions in '¥'; that is,

< £ (13)

H (eurl, Qy

&, again being some vector coefficients. Then. if (8) holds,

Vs can be approximated with the same, or better, accuracy
€ by a function in W:
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f
"
min |Vx| F = aw, < g 14a)
weW Z‘ ! J {
=l Ly (8
o
TTE F—Eam 2§ (14b)
i=l fieurl, §2)

(The last inequality implies approximation of hoth F and its
curl by functions in V.)

Theorem 2. If the set [y} is constructed on (overlapping)
patche in Section I, then wy; and vy, have continuous tan-
gential components (but not necessarily continuous normal
components) across all parch boundaries,

IV, NUMERICAL EXAMPLES

A, Linearly Polarized EM Wave in a Ishaped Waveguide |
with Imperfectly Conducting Walls

The electric lield experiences a singularity in the vicinity of
an edge of & good conductor. If the character of this singular-
ity is known a priori, the appropriate (singular) approximating
functions can be incorporated in the partition of unity method.

Let us consider propagation of a linearly polarized wave in
a [-shaped waveguide. We assume that the only component of
the electrical field is directed along the z-axis (Fig.9): I') and
[, are surfaces of imperfect and perfect conductors, respec-
tively, and Ty is the waveguide port.

A

T

Am— Y

Fig. 9. Waveguide with imperfectly conducting walls
The problem can be formulated in terms of E, as follows:
VIE +k°
E,|

f_:.+z”_L% =0, E| =0
N an ; i
i

=Egsinfk, v+@,) (15)

In (15) Z is the electric impedance whose behavior in the
vicinity of the edge can be approximated as [15]:

d E 4
z, 2 tan(x/6) el s Laniz{6) (16)
I, ap oH, ap
We represent the electric field as the sum
E,=Ej+u (17

where Ey is any smooth function satisfying the inhomogene-
ous houndary conditions at the port:
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£y

= Eosintk,y +g0), ol =0. (18)
The boundary value problem for u is obtained by substituting
representation (17) into problem (15) and taking into account

boundary conditions [18):
Vit kin=-VE +k°E,

d(u+ F, (19
u| =0, |u +2M =0, u,. =0 )
T di g

The weak formulation of this problem is well known:

j(fo Vo' ki) dS2 - I%i({(’ ds =
@ iy (20)
= I (VE, V' =k Egt’) d©2

O

Here u’ is 4 ‘test’ function from H'(€2) satisfying the essential
boundary conditions on g€,

Discretization of (20) can be obtained from the weak formu-

lation in the standard way, by restricting both # and # to the
finite-dimensional space constructed by partition of unity (see
Section 1} and then applying the Galerkin method:
u =Y = g O 20
L (21) subseript “ is used for simplicity in lieu of & pair of
subscripts “m'” (for the patch number} and "™ (the local index
for an approximating function within a paich m). Thus the
numerical solution is sought as a linear combination of ap-
proximating functions y that act as trial functions «” in (20),

To generate a partition of unity, we start with the patch
shape functions ¢ chesen in the form:

(" ‘-Vl))(I =l )[‘ - ."u)(‘f - ,"1]-

F= (x, v € Ly xy IxLyg 1] @2

0, otherwise

where x; and y; are defined in Fig. 10. The function family
{¢; 1 with its elements;

6.=5./ %8, @)
fon
defines a partition of unity over an exfended domain Q
(ABCDEF) that includes the waveguide: € = 0 (Fig. 10).

A

C ®m »w® uAD

Fig.10. The geometric setup.



Partition of unity vver £ (as opposed 10€) ) can be obtained
by simple truncation:

P07} (xry)eQ

gl y) = (24)

0, otherwise
The local {patch-wise) approximating functions g, were taken
as polynomials of order up to six:

81 = Boun = {a=20)" (p=yp)" (23)

{in the patches adjacent to the boundaries only polynomials
salislying the homogeneous boundary conditions were consid-
ered). To approximate singularity effectively, function v(x, y)
= p'w (p being the distance [rom the edge) was added to the
set of approximating functions in the paiches adjacent to the
edge. Figs, 11, 12 represent numerical solutions obtained for
12 patches with 258 degrees of freedom altogether.

Fig.11 Eleetric field in a waveguide with imperfectly conducting walls,

Fig, 12, Electric field in the wav de with perfectly conducting walls.

B. Linearly Polarized EM Wave in a shoped Waveguide
with Perfectly Conducting Walls

Consider a linearly polarized monochromatic EM wave in a
T-shaped waveguide (Fig. 13). Walls Iy are now perfectly
conducting. We solve the problem using new generalized
vector elements. The total magnetic field can be decomposed
into the incident field . (satisfying inhomogencous condi-
tions at the port) and the remaining two-compenent field A
the boundary value problem for H being

VxVxH -k*H =~(VxVxH,, -kl

i H =0

(26)

ine)

(/i 15 the unit normal vector).

— L

Fig.13, Waveguide with perlectly conducting walls

The weak formulation of problem (26) is

(i) (rxii)-iii dirlav =
@ ) i . ) an
= [[(Vx i) (wx )=k, - A av
Q
In this example. the domain is covered by three overlapping
patches (Fig.14).

Fig: 14, Three ovelapping patches (lifted for clanity]

We restrict both £ and H” to the finite-dimensional space
formed by functions vy, ny = (8,9, V(g ,@,) . The bound-

ary condition is imposed on the normal components of the
basis functions:

i 0 (28)

This condition is fulfilled automatically 1f

=0 (293

i - (.H;V‘t:,‘)lm =

Lacal Tunctions g; on each patch are polynomials of order up
to 8. These polynomials satisfy the homogeneous condition
(29) on the domain boundarics. There are 2,025 degrees of
freedom altogether. The field distribution (Fig.15. 16) is in a

good agreement with the PUM modeling on the same patches
(Fig. 17).

Wl : i | 1CS Newsietter 11



Fig.15. The x-component of the magnetic field.

. The y-component of the magnetic field along the dashed line in
F\g 1" Dashed fine - scalar elements by partition of unity: solid line - vector
elements.

V. THE: PRICE

The price to be paid for the high generality and flexibility of
generalized FE-partition of unity methods is related to (adap-
tive) numerical integration over the intersections of arbitrary
patches in the Galerkin method, to possible ill-conditioning of
the algebraic system, and conseguently 1o the overall numeri-
cal efficiency. In practice, we expect that reasonable compro-
mises will be adopted, whereby the structure of the overlap-
ping patches and the systems of appmmmalmg functions will
remain manageable.

CONCLUSION

The generalized FE-partition of unity method is highly
flexible and allows one to approximate different types of local
behavior of the solution (including singularities and boundary
layers) and seamlessly merge these local approximations. The
proposed novel vector spaces generalize tetrahedral Whitney-
Nedelee edge elements to a system ol arbitrary overlapping
patches. This class of methods (in beth scalar and vector
TGS Newteten 1171111111401 100
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cases) may prove useful for various problems with singulari-
ties, boundary layers, and motion.
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