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Abstract 
 
The Finite Integration Technique (FIT) rewrites Maxwell's equations in their integral form 
into a discrete formulation. The resulting algebraic set of equations, the Maxwell-Grid-
Equations (MGE), are well-suited for numerical simulation, but they represent also the 
theoretical basis of a discrete electromagnetic field theory. The approximation of the method 
lies in the construction principle of the constitutive material equations. Extensions to the so-
called classical FIT such as the Non-orthogonal FIT or the Conformal FIT are presented.  
In addition, the basic algebraic properties of this discrete electromagnetic field theory allow to  
prove conservation properties with respect to energy and charge of the discrete formulation 
and give an explanation of the stability properties of numerical time domain formulations. 
The usual restriction of the FIT to a mere spatial semi-discretization scheme is explained in 
response to the article of Tonti [19]. 
 
  

Introduction 
 
The known macroscopic electromagnetic phenomena can be described by the solutions of the 
four Maxwell’s equations 
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here specifically given in their integral form. In this form, they do not require the additional 
mathematical smoothness properties on the field strength vectors and flux density vectors as if 
they would be formulated in a differential way and their macroscopic character is given with 
the connection to geometric objects in 3�  such as volumes V , areas A  and lines L . 
Since the first formulation of this set of equations, for several generations of mathematicians, 
physicists and engineers only analytical methods were available to attain solutions.  Thus, the 
continuous differential formulations of Maxwell’s equations, featuring field strength and flux 
density vectors as state variables, have become a starting point when applying such analytical 
methods. Their application is however limited to cases with very simple geometries and 
material distributions and thus quite often the number of required simplifications and model 
assumptions prohibits to achieve realistic solutions of technical applications. Nonetheless, 



 

 

electrical engineers and physicists during most of the last two centuries had to focus on the 
differential formulation of Maxwell’s equations. 
With the introduction of computers, new mathematical tools and engineering disciplines had 
to be devised to actually solve the electromagnetics equations. Since digital computer 
arithmetics typically just allows to process a finite number of real and integer values, the 
crucial step of almost any computational solution method is a discretization of Maxwell’s 
equations. In the past decades various such methods have been devised, typically based on the 
continuous differential formulation of Maxwell’s equations.  
 
In the article of Tonti [19] a discrete form of the equations of electromagnetism has been 
developed, which specifically does not involve the vector fields of the differential 
formulations. In this paper we show that this approach originating from theoretical 
considerations on the physical structure of Maxwell’s equations is closely related, if not 
identical, to the methodology of the Finite Integration Technique (FIT) described in [24]. We 
will comment on those aspects of the treatise in [19], where a difference to the FIT approach 
becomes visible. Our point of view is mainly focused on the practical computational solution 
of the discrete systems, which motivates the FIT reformulation of the equations in (1). 
The paper is organized as follows: In the first part the ideas and the notation of the Finite 
Integration Technique are derived directly from Maxwell’s equations in integral form. In 
section two the constitutive equations are incorporated and extensions to the classical FIT 
such as the Non-orthogonal Finite Integration Technique or the Conformal Finite Integration 
Technique are addressed; the algebraic properties of the resulting discrete formulation are 
shortly stated, followed by a discussion comparing the time continuous and the time discrete 
formulations of electromagnetism.  
 
 

The Finite Integration Technique 
 
Since its first publication by Weiland in 1977 [21], the foundation of the Finite Integration 
Technique are Maxwell’s equations in their integral formulation (1).  
For practical calculations, a first step of the FI-method consists in the spatial restriction of the 
electromagnetic field problem, which usually represents an open boundary problem, to a 
bounded space region 3Ω∈� containing the space region of interest. The decomposition of 
the computational domain Ω  into a finite number of simplicial cells nV , such as tetrahedra, 
hexahedra or combinations thereof, has to fulfill the premise, that all cells have to fit exactly 
to each other, i.e., the intersection of two different cells is either empty or it must be a two-
dimensional, simply connected facet mA G∈ , a one-dimensional edge kL G∈  shared by both 
cells or a vertex lN G∈ . This decomposition yields the finite simplicial cells complex G, 
which serves as computational grid.  
Each edge of the cells includes an initial orientation, i.e., a direction, such that the union of all 
these cell edges can be described as a directed graph. Analogously, also the facets of the cell 
complex are associated with an orientation, i.e., their facet normal vectors are directed.   
 
Starting with this very general cell-based approach to a spatial discretization it is clear, that 
the FI-Technique is not restricted to three-dimensional Cartesian meshes, which were used in 
earlier publications on the method rather for their relative efficiency with respect to grid 
generation and fast data structures. The contemporary FIT framework allows to consider all 
types of coordinate grid meshes, orthogonal and non-orthogonal meshes  [13], [20], [24]. Also 
so-called consistent subgridding schemes (corresponding to a local mesh refinement including 
grid line termination techniques) have been developed [17]. Theoretically, the FI-Technique 



 

 

itself even extends to non-simplicial cells, as long as the resulting cell complex is 
homeomorphic to a simplicial cell complex. For practical application such general cell 
complexes, where the cell edges may be curves, only play a role if they occur as coordinate  
meshes.  
 
After the definition of the grid cell complex G, the further introduction of the FI-theory can be 
restricted to a single cell volume nV . To this end, we define a set of so-called integral state 
variables of the FIT: 
The real number :

k
k L

e E ds= ⋅∫
r r)  is the electric voltage along the edge kL  bounding the 

facet m nA V∈∂ , the number :
m

m A
b B dA= ⋅∫
) rr)

 represents the magnetic flux through the cell facet 

mA bounding nV . Collecting the electric voltages ie)  into a column vector { } : k
k k L Ge ∈=e) )  and 

of the magnetic facet fluxes mb
))

 in { }
: m

m
m A G

b
∈

=b
)) ))

 , Faraday’s law in (1) can be rewritten for 

all cell surfaces of the complex G in the system of linear ordinary differential equations 
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The resulting matrix { }, ,i j i j

C=C contains only topological information on the incidence 

relation of the cell edges within G and on the orientation of the edges and the facets, which 
determines the signs of its components following the right-screw-rule of Maxwell’s curl 
equations. Hence it features matrix coefficients { }, 1,0,1i jC ∈ − and represents a discrete curl-
operator on the grid G. Fig. 1 depicts the situation for a cell facet nA . The integral 
formulation of Faraday's law in (1) is valid for each single facet mA  of G and the discrete 
approach in the FIT naturally extends to larger facet areas iA A=U  due to the 

relation
iiA A

= ∑∫ ∫ . The same result will hold for line integrals. This motivates the spatial 

discretization approach by a finite cell complex chosen within the Finite Integration 
Technique. 
 

                                                    
Fig.1 A cell facet nA  of a cell complex G with the allocation of electric voltages 

, ...,1 4e e) )  along the edges and magnetic flux nb
))

 allocated on this surface. 

Faraday’s law rewrites for this facet as d
1 2 3 4 dt ne e e e b+ + − − = −

))) ) ) ) . 
 
The second discrete differential operator to be considered is the divergence operator. Its 
derivation originates from Maxwell's equation describing the non-existence of magnetic 
charges which is considered for a cell nV G∈  as shown in Fig. 2. 
 



 

 

                                        
Fig.2 Mesh cell of G with an allocation of all flux quantities contributing to the closed 
surface integral for the non-existence of magnetic charges within a cell volume. The 

integral balance for this cell volume reads as 1 2 3 4 5 6 0b b b b b b− + − + − + =
) ) ) ) ) )) ) ) ) ) )
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Collecting this relation for a single cell for all the flux variables in the whole cell complex G, 
this yields the system of linear equations  

,
:

0 :
j

i j j i
j A G

S b i V G
∈
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.                                                   (5) 

The matrix coefficients of the discrete divergence (“source”) operator , ,{ }i j i jS=S depend 

only on the grid incidence relations just as the discrete curl-matrix C , i.e., { }, 1,0,1i jS ∈ − . 
 
The discretization of the remaining two Maxwell equations within the Finite Integration 
Technique is executed on a second, so-called dual cell complex G% , which at this point is only 
required to fulfil the same theoretical prerequisites as the primal cell complex G. Further 
constraints on G% , however, will become necessary when introducing the constitutive material 
relations.  
 
Along the edge cells kL%  of G%  we integrate the magnetic field intensities resulting in a 

magnetomotive force :
k

k L
h H ds= ⋅∫ %

r) r , called magnetic grid voltage with the physical unit 

Ampère. 

On the cells surfaces kA%  of G%  the dielectric fluxes :
k

k A
d D dA= ⋅∫ %
) rr)

 and the electric currents 

:
k

k A
j J dA= ⋅∫ %
) rr)

 are allocated in analogy to magnetic facet fluxes on G.  

 
The discretization of Ampère's law in integral form in (1) can be performed for an arbitrary 
facet kA%  of a dual grid cell V%  in complete analogy to Faraday's law by summing up the 
magnetic grid voltages in order to obtain the displacement current and the conductive current 
through the considered cell facet.  
 
Finally, Gauss' law in integral form can be discretized for the dual grid cells, introducing the 
electric charge content , :

k
E k V

q dVρ= ∫ % of the dual grid cell kV% . Both reformulations of 

Maxwell’s equations for the dual grid cell complex G%  will result in matrix equations 
containing the topological grid operators C%  for the dual discrete curl and S%  for the dual 
discrete divergence, both featuring a tilde sign to show that they belong to G% . For the cell 
complex pair { , }G G%  the complete set of discrete matrix equations, the so-called Maxwell-
Grid-Equations (MGE) are 
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Irrotational electromagnetic fields in Ω  can be represented as gradient-fields of scalar 
potentials according to Poincare's lemma. Within the context of the FIT one deals with 
electric grid voltages allocated on the cell edges. To represent these as difference of two nodal 
potential values, discrete potential values lφ  are allocated at the grid mesh points lN G∈ , 
such that the relation 1l l keφ φ+ − = )  holds for every oriented edge kL  of G, which connects 
node lN to 1lN + . 
Collecting these discrete potential values and their relations into a vector { } : i

i i N Gφ ∈=Φ for 

the cell complex G, one obtains the grid vector relation  
                                                                    = −e GΦ)

,                                                           (7) 
where the discrete gradient matrix G indeed is the negative transpose of the dual discrete 
divergence operator. 
Analogously, the same procedure can be applied using magnetic scalar potentials on the cell 
vertices of the dual cell complex to derive the discrete gradient matrix G%  for the irrotational 
dual magnetic grid voltages with = −h GΨ

)
% , where Ψ  is a magnetic scalar nodal potential 

vector. 
 
A discretization has been performed for Maxwell's equations only in the form of a restriction 
of the equations (1) to a finite number of areas A  and volumes V  and the computational 
domain has been artificially bounded. The information that these equations hold is only about 
integral state variables which are either allocated on points (potentials), edges (voltages), 
surfaces (fluxes) or the cell volume (charges). The resulting matrix equations are an exact 
representation of Maxwell's Equations in integral form on a grid doublet { , }G G% , where so far 
no relations between the cell complexes G and G%  have been defined.  
 
 

The Constitutive Material Equations 
 
For the calculation of solutions, the four equations in (1) have to be coupled with the 
constitutive material relations. In order to be able to couple flux and voltage degrees of 
freedom, additional constraints concerning the relation between G and G%  have to be 
specified, including especifically the duality conditions, i.e. the identical orientation and 
labeling of the intersecting edges and facets:  
 

• Each  edge mL G∈  intersects one (and only one) facet mA G∈% % , the same holds vice versa 

for pL G∈ %%  and pA G∈ . 

• Each node lN G∈  is located in exactly one dual cell volume lV G∈ %% , the same holds vice 

versa for nN G∈ %%  and nV G∈ . 



 

 

• The unified volume of all grid cells nV G∈ equals the union of all dual grid cells lV G∈ %% , 
which represents the computaional domain. 

 
A reordering and, if necessary, a reversal of the predefined orientations of the edge and facet 
degrees of freedom is performed in the component vectors with two aims: the numbering 
indices of each pair of intersecting geometrical objects are required to be identical and the 
orientations of  the edges of G and orientations of their intersecting facets of G% , i.e., their flux 
directions, should be identical. The resulting duality of the cell complex pair { , }G G%  is 
responsible for essential properties of the final discrete formulation. Starting directly with (1), 
the topic of orientation reduces in practical applications of the FIT to the obligation “to get the 
signs right”.  
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Fig.4 The coupling of the degrees of freedom on G and G%  is performed in the 
constitutive material equations. The electric grid voltages me)  allocated onto the edge 

mL G∈  is coupled to a facet flux mj
))

 allocated on a dual facet mA G∈% % . This 
involves an averaging process of the four cell conductivities 1 4, ,κ κK  to a 

valueκ . The coupling constitutive equation here is / | | / | |m m m mj A e Lκ= ⋅
)) )% ,  

 
In [19] this principle was proposed for the definition of the constitutive material equations 
under the assumption of local uniformity of the fields involved, thus eliminating the need to 
resort to the state variables of the differential formulation of Maxwell’s equations for a point-
wise definition. In this presentation, though, no averaging for the material parameters was 
introduced. It should be noted, however, that the uniformity assumption always requires a 
homogeneous material distribution. At interfaces of different materials, as e.g. depicted in Fig. 
4 with a situation of different cell conductivity values 1 2 3 4κ κ κ κ≠ = =  for the intersection 

point of mL  and mA% , always a non-uniform situation will occur due to the discontinuity of the 
flux and current density vectors. This argument requires averaging of the material distribution 
of the cells in G to keep up the argument of uniformity. 
Nonetheless, keeping in mind the character of the constitutive material relations as a result of 
an approximative physical modeling of the actual material behavior, this approach can be 
considered to be as valid as the well-known point-wise introduction of the constitutive 
material equations.  
When using the approach in (8) within a computational scheme, where the uniformity 
assumption is supposedly false, the availability of continuous integrand fields, however, 
allows to use Taylor’s expansion for estimating the order of the truncation error convergence 
of this approach. 
With the definition of a maximum length max{| |,| | , }h L L L G L G= ∈ ∈ %% %  of the grid cell 

edges for e.g. a Cartesian grid doublet { , }G G% , an entry of the diagonal material matrix of 
conductivities is derived by  
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for the corresponding coupling of a grid voltage me)  along the edge mL G∈  and a facet flux 

mj
))

 through the facet mA G∈% % . The specific construction of the constitutive relation in (9) 
takes into account the continuity of the electric field intensity vector along the edge mL  which 
holds even for different material distributions within the adjacent cells. The truncation error 
exponents 1 2,l l  have values 1 23, 3l l= =  in the case of non-uniform grid spacing or if the cell 
conductivities iκ  differ in their value, otherwise 1 24, 3l l= =  holds. The material relations for 
the permittivities are derived analogously to (8) and (9), whereas the coupling of the magnetic 
fluxes and the magnetic voltages involves the consideration of the averaged reluctivities iν  

along the dual edges mL G∈ %%  [24]. This coupling approach differs from the facet oriented 
coupling in (9) for the electric grid voltages and the facet currents, since it takes into account 
the normal continuity of the magnetic flux density vectors. 
 
With the one-to-one correspondence of the dual facets and their orthogonally penetrating 
edges the construction principle in (8) results in the discrete material matrix relations 
 

0
, ,E mε κ ν= = = −d M e +p j M e h M b p
)) )) )) ) )) ) ) )

                              (10) 
 
featuring only diagonal matrices for materials modeled with diagonal or isotropic material 
tensors [24]. Here εM  is the permittivity matrix, κM  is the (usually singular) matrix of 

electric conductivities, 
0νM the matrix of magnetic reluctivities and Ep

))
 and Mp

)
 arise from 

electric and magnetic polarizations. Due to the specific requirements on the orientations of the 
edges and their dual facet these matrices are diagonal, symmetric and positive-definite (or 
semi-definite in the case of κM , since electromagnetic problems typically feature also 
nonconductive regions.) Whereas the integral state variables of the FIT arise from the exact 
reformulation of the Maxwell equations (1), the constitutive material matrices of the FIT 
contain the averaged information of the material and the grid dimensions. Any discretization 
error of the method is found to be located in the discrete constitutive material equations [24]. 
 
A critical issue for practical calculations is the generation of the dual-orthogonal cell complex 
pair { , }G G%  for a given material distribution of an electromagnetics problem. Coordinate axis 
parallel orthogonal grids, where each cell is filled with only one material as shown in Fig. 4 
will result in the problem of staircase approximations of curved boundary surfaces. To 
overcome this problem, sophisticated partially filled cell techniques have been developed in 
the context of the FIT for an improved geometry approximation and material averaging inside 
the cells such as the triangular subvolume technique [22] and the computationally more 
expensive tetrahedral subvolume technique, which goes back to nodal-oriented Finite 
Difference formulations in [11].  
 



 

 

                    
 

Fig.5 Both figures show the averaging process of the classical FIT for the cell material 
properties for the dual cell facet A G∈% %  in the presence of cell subvolumes, which 
are filled with materials of different electrical conductivities 1 6, ,κ κK . Fig. 5a) 
depicts the situation for triangularly filled cells, whereas Fig. 5b) features tetrahedral 
cell subvolumes. In both cases the averaging process for the conductivity on A%  yields 

6
1, 3/ | | : 1/ | | | |i ii iA

dA A A Aκ κ κ= ≠⋅ ≈ = ⋅ ⋅∑∫ %
r

% % % , where | |iA%  is the area of A%  

cutting the subcell with conductivity iκ . 
 

For the more sophisticated Conformal Finite Integration Technique (CFIT) [6] arbitrarily 
filled cells allow an improved approximation of curved surface material interfaces 
independent of the grid topology (see Fig. 6), using a technique similar to the one proposed in 
[26] for so-called Conformal FDTD schemes. This approach allows to use computationally 
efficient and easy to generate structured Cartesian, i.e., orthogonal, grid complexes, while at 
the same time significantly reducing the geometry approximation error of the method when 
compared to the classical approach. 
 
In the past, the construction of material relations using dual-orthogonal grid complexes for the 
FIT has been performed for tensor-product-type grids in 2D and 3D [24], as well as for 
general 2D triangular dual orthogonal cells complexes [20]. While this common choice was 
mainly motivated by  reasons of the resulting higher computational efficiency, it might have 
been cause for an often-encountered misconception, that the FIT might be restricted to these 
grid types only.   
For topologically regular, non-orthogonal cell complexes some of these computational 
efficiency advantages of coordinate parallel grid types may be maintained, but they also allow 
for a better approximation of curved material interfaces within computational schemes (See 
Fig. 6). 
For these non-orthogonal cell complexes, however, the one-to-one correspondence of cell 
edges and dual facets will not necessarily coincide with a one-to-one relation of the 
corresponding voltage and flux degrees of freedom, since an additional interpolation process 
is required for the coupling of G  and G% , which involves additional flux degrees of freedom. 
The resulting material matrices of the Non-orthogonal Finite Integration Technique (NFIT) 
are symmetric, but no longer diagonal [13], [14], [15].              



 

 

                           
 

Fig.6 Techniques to geometrically model curved material surfaces within the 
framework of the FIT: Fig. a) depicts the use of triangularly filled cells used in the 
standard FIT. Fig. 6b) introduces a topologically non-regular local grid refinement 
with a subgridding technique. In 6c) the refined partially filled cell technique of the 
Conformal FIT yields a smaller geometric volume error than the standard FIT of Fig. 
6a), while maintaining the same orthogonal grid. Fig. 6d) shows an approximation of 
the surface for the Non-orthogonal FIT (NFIT) using a topologically regular grid. 

 
A treatment of dispersive, gyrotropic or nonlinear material properties within the FI Technique 
requires numerical schemes which concentrate on suitable modifications of the material 
matrices. Typically these numerical schemes, however, require to consider averaged 
components of field intensity or flux density vectors, which contradicts the proposed idea in 
[19] to completely discard these state-variables of the differential formulation in the 
electromagnetics equations. 
 
The basic idea for the derivation of the material matrices in FIT is originally motivated by 
physical considerations, including the consideration of the continuity requirements of the 
fields involved. The derivation of the material matrices for Whitney-Finite-Element schemes 
originates from a variational formulation. It involves the element-by-element quadrature of 
the Whitney edge shape functions eiw  [2], given here e.g. for the mass matrix of 
conductivities on a tetrahedral element grid with 

       { } , :
je eii j A
dAκ κ= ⋅∫M w w
r

.                                             (11) 

As in the NFIT case, the resultant material matrices of the discrete constitutive equations will 
be symmetric (and eventually badly conditioned for obtuse edge angles) and non-diagonal, 
which prohibits the construction of an efficient leapfrog time integration scheme, since the 
inverse of εM  is not available as sparse matrix. 
 
 

Algebraic Properties 
 
Essential properties of the discrete representation of Maxwell’s equations arise from the 
relations  
                                                             0, 0,= =SC SC% %                                                    (12) 



 

 

which can be directly derived from the grid topology [3], [5]. 
It allows to prove charge conservation in the MGE and the derivation of the continuity 
equation directly from the original MGE with 
 

                                       ( )d d
dt dt

0E⋅ ⋅ ⇒ + =S Ch = S d+ j q Sj
) )) ) )) )

% % % %                                (13) 

Due to the additional constraints on the orientation and the numbering on the cell edges of G 
and its dual cell facets G% , we receive the duality relation of the two curl-operators of G and 
G%  with 

                                                                     TC = C% .                                                           (14) 
 
This property is visualized in Fig. 3 for a local situation. 
 
The generalized symmetry in (14) and the symmetry of the material matrices in (10) results in 
a real-valued, non-negative eigenvalue spectrum of the curlcurl-operator 1 1

ε ν ε
− −M CM CM% . 

With the identities (12), this allows to prove that all static and dynamic eigensolutions 
represent a complete, orthogonal set of basis vectors for all grid vectors of G representing the 
solutions of the discrete MGEs [23], [5]. This result is a sufficient prerequisite for the stability 
of numerical time integration schemes. In addition, the duality relation (14) allows to prove 
energy conservation for the time continuous MGE [18]. 

The duality relation (14), the relations (12) and the identities T TG = -S , G = -S% % , which 
can be shown to hold for the discrete gradient operator, yield the matrix operator identities 
                                                           CG = 0, CG = 0,% %                                                   (15) 
which both state that discrete gradient fields on G  and G%  are irrotational. 
The discrete algebraic identities (12) and (15) correspond to the continuous relations 
div curl = 0  and curl grad = 0 , respectively.  
 
 

Time Continuous or Time Discrete? 
 
In [19] Tonti suggested to consider a time integrated reformulation of (1), thus getting rid of 
the time derivatives in (1). This approach results in a dual staggered cell complex in time for 
the structure of his global (=integral) electrodynamic state-variables. In the FIT approach this 
duality in time is typically not considered, rendering the Maxwell Grid Equations as a set of 
time continuous ordinary differential equations. The FIT qualifies as a method of lines [8] 
following a first-space-then-time semi-discretization approach, which was specifically 
criticized in [10] as a shortcoming of the FIT. Following the idea of a staggered discrete 
structure in time as proposed in [19], Yee-like leapfrog schemes [25],  such as e.g. the Finite 
Integration Time Domain scheme [24]  given with  

                                         ( )
( 1) ( ) 1 ( 1/ 2)

( 3/ 2) ( 1/ 2) ( 1) ( 1)
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ε
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∆ ⋅
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%                               (16) 

seem to become the natural algorithm of choice to treat electrodynamic problems. 
Contemporary leapfrog FDTD/FITD schemes with the extensions such conformal path 
techniques (similar to CFIT) and perfectly matched layer (PML) absorbing boundary 
conditions [1] indeed are powerful tools for numerical electromagnetic field simulations. The 



 

 

leapfrog time integration scheme, however, as a mere numerical time integration scheme 
among others, has severe disadvantages in the restrictive Courant-Friedrich-Levi (CFL) 
stability limit on the length of the time steps [18], in the existence of a dispersion error and in 
simulations of highly resonant structures. The first restriction is especially a problem for 
quasistatic field simulations, where often an unfeasible high amount of time steps results from 
the stability condition. Here some ingenious workarounds have been devised, such as e.g. a 
deliberate down-scaling the speed of light suggested in [9], allowing for larger stable FDTD 
time steps, or a scaling of the excitation frequencies and material properties for quasistatic 
field simulations in biological tissue [7]. These ideas seem to successfully follow the 
reasoning: If your favorite tool is a hammer, make sure your problem looks like a nail.  
A similar situation may occur, if grid cells of very small diameter are local part of the cell 
complex, where the CFL condition will restrict the maximum time step length for the whole 
grid. This situation, however, may be overcome with the application of local time stepping 
techniques within the leapfrog schemes or with more recent FDTD variants using the 
alternating direction implicit method [12], [27]. Transient leapfrog simulations of highly 
resonant structures typically will also result in very long simulation times. For such 
applications frequency domain simulations should be preferred. 
The dispersion error of the standard leapfrog scheme limits the number of wave lengths that 
can be calculated and thus it limits the size of possible calculation domains to only a few 
wavelengths (<30 λ ) in each space direction. This actually prohibits to use this scheme for 
HF-simulations, where the computational domain is large, e.g. for a radar antenna radiation 
problem including the whole airport.  
Hence, the discrete-in-space-continuous-in-time MGEs of FIT are more versatile with respect 
to varying computational needs: They allow to treat an originally physical problem as a mere 
set of ordinary differential equations, differential-algebraic equations for transient quasistatic 
problems and merely algebraic equations for stationary problems [4], [24]. Thus decoupled 
from a physical background, a well-stocked repository of numerical methods is available for 
these matrix equations. As a result, computational simulations can be performed for the whole 
frequency range of electrodynamic applications [24]. Even for HF-field simulations, where 
leapfrog schemes excel for computational domains with small dimensions, alternative time 
integration schemes of higher order [16] or absolutely stable and conservative, implicit 
formulations such as Newmark’s Averaged Acceleration method are available [4].  
For the solution of Maxwell’s equations (1), which in the end ultimately motivates their 
reformulation with the FIT into the Maxwell-Grid-Equations, the time continuous formulation  
of both (1) and (6) yields higher flexibility with the numerical solution methods. At the same 
time, a discrete formulation of (1) which is also of integral nature in time identical to the one 
proposed in [19] is always just one additional time integration of  the equations (6) away. 
  
 

Conclusion 
 
The Finite Integration Technique reformulates the original continuous Maxwell equations into 
a set of time continuous algebro-differential equations, the Maxwell-Grid-Equations. With 
integral quantities such as magnetic and electric fluxes and voltages as the state variables of 
the FIT, possible errors of the discrete formulation are located only in the discrete constitutive 
material equations. The equations of the contemporary FIT, with its various extensions not 
only allow to devise efficient numerical schemes for the whole range of electromagnetic 
problems, but they also represent the first discrete field theory in the sense of [19]. The FI 
Technique is explained to deliberately omit the introduction of an additional integral structure 
in time for its state-variables for reasons of greater flexibility with the numerical schemes to 
be applied. 
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