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INTRODUCTION 
 
In many physical problems, we have to study the integral of a quantity over a p-dimensional manifold 
in an n-dimensional Euclidean space. In the study of these integrals, it is important to know in what 
manner the integral over the manifold depends on the position of the manifold in the Euclidean space. 
The purpose of differential forms is to study these integrals in a broad setting of geometry, topology, 
algebra and analysis. In the calculus of differential forms, the local field quantities are associated with 
the geometric and topological property of the manifold. One works with the integral quantities instead 
of local scalar or vector fields. The integral quantities have usually physically measurable units and 
are more interesting in the engineering applications. In addition, the fact that differential forms carry 
the geometric information of the manifold makes clear the difference between vectors related to the 
line integral such as the electric or magnetic field intensity and vectors related to the surface integral 
such as the flux or current density, which are ambiguously defined in vector algebra. Association of 
field quantities with the topological property of the manifold makes more understandable the 
modelling of multiply connected domains. In one word, the calculus of differential forms presents 
numerous advantages compared to the conventional vector or tensor algebra and turn out to be more 
efficient in the description of physical problems [1-4].  
 
In electromagnetics, application of differential forms enables a simple and clear representation of 
Maxwell’s equations. With the help of the exterior differential operator and Hodge operator founded 
in the calculus of differential forms, Maxwell equations can be presented in a formal flow diagram 
known as Tonti’s diagram [5]. This diagram shows clearly the duality between the two systems of 
Maxwell equations. It is helpful for the derivation of dual formulations in the computation of 
electromagnetic fields and allows a better understanding of dual approximation schemas. 
 
Application of differential forms in the numerical computation of electromagnetic fields was notably 
marked by the appearance of Whitney elements [6]. Whitney elements consider the differential forms 
as degrees of freedom. Their advantages are principally their capacity of allowing natural 
discretization of the systems with appropriate continuity of scalar and vector variables. With the help 
of differential forms, the high order curl-conformal and div-conformal elements proposed in [7] can 
be put in a more clear circumstance. 
 
One of the important notions in the calculus of differential forms is De Rham’s complex [1-2]. De 
Rham’s complex shows the relation between the spaces of differential forms of different degrees. 
Application of De Rham’s complex in electromagnetism shows the mathematical structure involved in 
electromagnetic theory. It allows a deep understanding in the study of differential operators grad, curl, 
div with their kernels and their co-domains. De Rham’s cohomology groups reveal the global 
topological property of the study domain. In three dimensions, they are related to the loops and the 
cavities in the study domain and have particular interest in the study of problems in multiply 
connected regions. De Rham’s complex can also be used to describe the relation between the 
functional spaces of differential form based elements of different degrees [8]. It illustrates not only the 
inclusion property of these elements, but also is helpful for the determination of the rank of the matrix 
system of an electromagnetic field problem and enables an easy understanding of the gauge condition 
in the case of working with potential variables.  
 



 

 

This paper gives a short presentation of the application of differential forms in the finite element 
computation of electromagnetic field. We give first a brief introduction of differential forms, in 
particular the notion of exact and closed forms, and De Rham’s complex. Maxwell equations in 
electromagnetics are then written in terms of differential forms and represented by Tonti’s diagram. 
The very useful De Rham’s complex is used to describe the relation between the functional spaces 
(domains of differential operators) in electromagnetics. The discrete spaces, i.e. elements based on 
differential forms of different degrees, as well as the discrete spaces of De Rham’s cohomology 
groups for the modelling of cuts and links in the case of multiply connected regions, are presented. 
Their relation is clarified by using De Rham’s complex. As an application, dual formulations of eddy 
current problems in the case of non-trivial study domain are presented. The rank of the matrix system 
is determined and the gauge condition in the case of working with vector potentials is discussed with 
the help of De Rham’s complex. 
  
We intentionally use alternately the vector notation and the differential form notation, whenever there 
is no confusion, in order to have a comparison of two calculus. 
 

 
DIFFERENTIAL FORMS AND DE RHAM’S COMPLEX 
 
Differential forms are expressions on which integration operates [1]. A differential form of degree p, 
or a p-form, is an expression where the integral is performed over a manifold of dimension p in a 
space of dimension n, i.e. the integrand of a p-fold integral in an n-dimensional space. The differential 
forms can be introduced according to the dimension of the manifold on which the variable is 
integrated. In electromagnetics, a scalar potential is a 0-form; the circulation of a vector potential or a 
(electric or magnetic) field intensity along a small segment is a 1-form, a flux (or current) across a 
small area is a 2-form and charges contained in a small volume are a 3-form. For example, the electric 
field is identified with a 1-form, its expression is e⋅dl, representing the electromotive force along a 
short line. Another example is the current across a small surface, j⋅ds, which defines a 2-form. An 
example of 3-form is the charges containing in a small volume, given by ρdv. We can note in 
particular that, the vectors related to line integral such as electric and magnetic fields, vector 
potentials, and the vectors related to surface integral such as current and flux densities correspond, 
respectively, to differential forms of degree 1 and 2. These vectors, different on their nature, cannot be 
distinguished with the vector presentation. 

 
Differential forms operate in exterior algebra. Exterior (wedge) product of a p-form ω and a q-form υ 
produces a (p+q)-form  with the skew symmetry property: ω∧ υ = (-1)pqυ∧ ω, (where p+q<n, n denotes 
the dimension of space). Two other operators permit transformation of a differential form of one 
degree to the other. One is the exterior derivation ‘d’. Application of this operator to a differential 
form leads to a form of higher degree. In three dimensions, it generalizes and unifies the familiar 
‘grad’, ‘curl’ and ‘div’ operators of vector algebra. The other operator is the star (Hodge) operator ‘*’. 
It transforms a p-form to an (n-p)-form. We will see later that this operator corresponds to the 
constitutive laws in physic problems. 

 
Let Dp(M) be the set of p-forms defined on an n-dimensional differentiable manifold M. The inclusion 
property dDp(M) ⊂  Dp+1(M) holds. This property is represented by a sequence called De Rham’s 
complex [2]. 

 

      D0 → d  … Dp → d  Dp+1 … → d Dn 
 



 

 

A form ω is said to be closed if dω = 0. A form ω is said to be exact if there exists a form υ (of one 
degree lower) such that ω = dυ. Since d(dυ) ≡ 0, every exact form is closed. Can we also say ‘every 
closed form is exact’? The answer is positive for a manifold not too complex (topologically trivial 
domains). But in general, the answer is negative. Let Zp(M) be the set of closed p-forms, Bp(M) be the 
set of exact p-forms. We have in general Bp(M) ⊂  Zp(M). The complement of Bp(M) in Zp(M), Hp(M) 
= Zp(M) \ Bp(M) is called De Rham’s pth cohomology group. The property of Hp(M) depends on the 
topology of the manifold [2]. The dimension of Hp(M) is finite and called pth Betti number of M. In 
particular, H0 is equal to the number of connected components of M. Hp (for p>0) vanishes if M is 
topologically trivial. The spaces of exact forms and closed forms are related by the Hodge 
decomposition: Zp(M) = Bp(M) ⊕  Hp(M). Taking the Hodge decomposition into account, De Rham’s 
complex can be shown in the form of Fig.1. 

 
 
 
 
 
 
 
 
 
 
Fig.1. De Rham’s complex showing relation of pth cohomology groups. 

 

De Rham’s pth cohomology group has the particular interest because they are related to the topology 
property of the manifold. In three dimensions, H 1 and H 2 are related to the loops and cavities in the 
manifold M [9-10]. The first and second Betti numbers, i.e. dim(H1) and dim(H2), correspond 
respectively to the number of loops and the number of cavities in M.  
 

MAXWELL EQUATIONS IN TERMS OF DIFFRENTIAL FORMS 
 
The fundamental equations of many physical problems can be put into a formal mathematical 
structure, they are classified by definition, balance and constitutive equations [5]. In electromagnetics, 
the Maxwell equations are put into two dual systems: Ampere’s system and Faraday’s system. In 
terms of differential forms, they are written as: 
 
Faraday’s system: de = – ∂tb, db = 0,   

Ampere’s system: dh = j + ∂td,  dd = ρ  (or dj = – ∂tρ), 
 
where e and h are 1-form electric and magnetic fields, b, d and j are 2-form magnetic, electric flux and 
current, ρ is a 3-form charge. The two dual systems are related by the Hodge (star) transformation, 
they are constitutive laws of the media: 

   d = ε*e, b = µ*h,  j = σ*e, 

where ε, µ and σ are, respectively the permittivity, the permeability and the conductivity. 
 
The 1-form electric field and magnetic field can also be expressed in terms of 1-form vector potentials 
a, t (or u) and the exterior derivative of 0-form scalar potentials v, φ : 
 

 Dp(M) 

 Dp+1(M) 

Bp(M) 

Bp+1(M) 

 d   

 Hp(M) 

 Hp+1(M) 

Zp(M) 

Zp+1(M) 



 

 

e = – ∂ta – dv,   h = t – dφ (h = ∂tu – dφ). 
 
Different scalar and vector variables written in terms of differential forms in the two dual systems of 
electromagnetic problems are shown in Table 1. It can be noted that differential forms are measurable 
quantities. Their units are also given in this table. 
 
Table 1. Differential forms and their units in electromagnetic systems  

 
differential 

forms 
Faraday system Ampere system 

0-form  v = v  φ = φ  

1-form e = e⋅dl a = a⋅dl h = h⋅dl 
t = t⋅dl 

u = u⋅⋅⋅⋅dl 

2-form  b = b⋅ds j = j⋅ds d = d⋅ds 

3-form    ρ = ρ dv 

Units Volt Weber Ampere Coulomb 

 
 
With the help of the exterior differential and the Hodge (star) operators, Maxwell’s equations can be 
represented in a formal flow diagram known as Tonti diagram [5]. The case of the eddy current 
problem (∂td = 0, ρ = 0) is shown in Fig.2. The left hand side represents Faraday’s equations and the 
unit of the forms is Weber or Volt. On the right hand side, we have the Ampere’s equations and the 
forms take the unit Ampere. The two dual systems are related by the constitutive laws (the Hodge 
transformation). This diagram illustrates clearly the sequence and the duality of Maxwell equations. It 
is very helpful for the derivation of dual finite element formulations. They are obtained by performing 
a conformal approach of one system using appropriate elements (elements based on differential forms 
as described later) and by solving the other system using the weak variational principle (integration by 
parts). 
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Fig.2. Tonti’s dual flow diagram of eddy current problems 
 

 



 

 

FUNCTIONAL SPACES 
 
An electromagnetic field has a finite energy in a bounded region. This implies that the field quantities, 
at least at the stationary state, are square integrable. It follows that the Hilbert spaces of square 
integrable forms are natural for the electromagnetism. Let Ω be a connected and open set (a bounded 
domain) in a three-dimensional Euclidean space, not necessarily topologically trivial. The field 
quantities (differential p-forms) belong to the following functional spaces (domains of differential 
operator d): 
 

H(d, Ω) = {ω ∈  Lp
2

 (Ω), dω ∈  Lp+1
2(Ω)},      p = 0, 1, 2. 

 
Where Lp

2(Ω) is the space of square integrable p-forms over Ω. In terms of more familiar vector 
presentation, they are written as 
 

H(grad, Ω) = {φ ∈  L2(Ω), grad φ ∈  IL2(Ω)} 
H(curl, Ω) = {u ∈  IL2(Ω), curl u ∈  IL2(Ω)} 
H(div, Ω) = {u ∈  IL2(Ω), div u ∈  L2(Ω)} 

 
where L2 and IL2 are the spaces of square integrable scalar and vector fields over Ω, respectively. 
These spaces have the following orthogonal decompositions: 
 

H(grad, Ω)   =  ker(grad) ⊕  cod(grad) 
H(curl, Ω)   =  ker(curl) ⊕  cod(curl) 
H(div, Ω)   =  ker(div) ⊕  cod(div) 

 
They are related by the following sequence (De Rham’s complex): 
 

H(grad, Ω)  → grad  H(curl, Ω)   → curl  H(div, Ω)    → div L2(Ω) 
 
 
We now consider the relation of De Rham’s cohomology groups H1(Ω) and H2(Ω) with the above 
functional spaces. In three dimensions, H1(Ω) and H2(Ω) are related to the loops and cavities in the 
domain Ω. They have the following properties [11]:  
 

H1(Ω) = {u∈ IL2(Ω) | curl u = 0, div u = 0, n⋅u|Γ = 0} 
H2(Ω) = {u∈ IL2(Ω) | curl u = 0, div u = 0, n×u|Γ = 0} 

 
where Γ is the boundary of Ω. The dimensions of H1 and H2 are finite and are equal to, respectively, 
the number of loops and the number of cavities in Ω. Remind that H1(Ω) ⊂  ker(curl) but not in 
cod(grad) and H2(Ω) ⊂  ker(div) but not in cod(curl), as described by the Hodge decomposition: 
 

ker(curl) = cod(grad) ⊕  H1(Ω) 
ker(div) = cod(curl) ⊕  H2(Ω) 

 
The functional spaces and De Rham’s cohomology groups are related by De Rham’s complex as 
shown in Fig.3 [9]. It illustrates clearly the mathematical structure behind the electromagnetic theory 
and is very useful in the study of electromagnetic problems.  
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. De Rham’s complex showing mathematical structure of electromagnetic theory. 

 
 
DISCRETE SPACES - ELEMENTS BASED ON DIFFERRENTIAL FORMS  
 
In order to approximate correctly and naturally the previous functional spaces, suitable elements must 
be adopted. These elements are derived with the help of the calculus of differential forms. Let the 
domain Ω be paved with a tetrahedral (3-simplex) mesh. The number of nodes, edges, facets and 
tetrahedra are noted, respctively, by N, E, F and T.  
 
We consider the general case of high order elements and note by Wq

p(Ω) the function space of q-order 
p-form elements over Ω. The case of the first order (q = 1) corresponds to the well know Whitney 
elements [6]. The functional space of p-form element Wq

p can be decomposed into a null space of 
differential operator Zq

p(Ω) (set of closed forms) and a range space of differential operator Yq
p(Ω):  

Wq
p = Zq

p ⊕  Yq
p.  The element Wq

p fulfils the following requirements: model correctly the null space 
Zq

p of the differential operator and is complete to q-1 order in the range space Yq
p under the 

differential operation.  
 
The basis functions of p-form elements take the p-form bases: λ i, dλ i, dλ i∧ dλ j, dλ i ∧ dλ j ∧ dλk, for p = 
0, 1, 2, 3, respectively, and have polynomial coefficients, where λ i is the barycentric coordinates of a 
point related the node i. The degrees of freedom of a p-form element are assigned to r-simplexes 
according to the order q (p ≤ r ≤ Min{p+q-1, 3}) [8].  
 
The p-form elements Wq

p(Ω) (p = 0, 1, 2 and 3) are discrete spaces of the functional spaces H(grad, 
Ω), H(curl, Ω), H(div, Ω) and L2(Ω), respectively. The inclusion property dWq

p ⊂  Wq
p+1 holds and is 

shown with the help of De Rham’s complex in Fig. 4, where WH1 and WH2, are, respectively, discrete 
spaces of the cohomology groups H1 and H2. The complex given in Fig.4 is the discrete form of the 
complex shown in Fig.3.  
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Fig.4.De Rham’s complex showing the relation between p-form elements. 
 

According to the analysis given in [8], the dimension of the function spaces Wq
p(Ω) and the dimension 

of the null spaces Zq
p(Ω) are, respectively, 

 
dim(Wq

0) = N + E(q-1) + F(q-2)(q-1)/2 + T (q-3)(q-2)(q-1)/6 
dim(Wq

1) = E q + F(q-1)q + T (q-2)(q-1)q/2 
dim(Wq

2) = F q(q+1)/2 + T (q-1)q(q+1)/2 
dim(Wq

3) = T q(q+1)(q+2) /6 
 

dim(Zq
0) = 1 

dim(Zq
1) = E (q-1) + F(q-2)(q-1)/2 + T (q-3)(q-2)(q-1)/6 + N – 1 + NH1 

dim(Zq
2) = F q(q+1)/2 + T q(q+1)(2q-5) /6  

 
where NH1 = dim(H1(Ω)) and NH2 = dim(H2(Ω)), are, respectively, number of loops and cavities in Ω. 

 
An interest remark is that the famous Euler formula is embedded in De Rham’s complex. In fact, 
according to De Rham’s complex shown in Fig.4, the equality dim(Yq

1) = dim(Zq
2) – NH2 holds. After 

the simplification, the Euler formula is straight foreword: 
 

N – E + F – T = 1 – NH1 + NH2 
 
The basis functions of q-order p-form elements have to fulfill the conformity and unisolvence 
requirement, i.e. a p-form element must match the continuity condition of p-form field on the interface 
of adjacent elements, and the basis functions must be independent to provide an unique solution of the 
field equation. Various high order p-form elements have been developed in recent years [12-17]. They 
are divided into two main categories: the interpolatory basis [14-17] and the hierarchical basis [12-
13]. Using the interpolatory bases, the degrees of freedom have usually a physical interpretation. 
However, the shape functions of different orders are all different. They are not adapted for mixing 
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elements of different order in the same mesh in the case of p-version adaptive mesh generation. In 
addition, the separation of null space and range spacein the case of interpolatory basis is not easy. 
That makes the gauging condition, whenever necessary, difficult. Recent studies showed the 
advantages of hierarchical bases [18]. The hierarchy means that the basis functions of the high order 
elements include all basis functions of lower order element spaces. This property allows mixing of 
different order of elements in the same mesh without the difficulty of matching field continuities. It is 
helpful for mixed h- and p-version adaptive mesh generation or for the development of adaptive 
multigrid solvers. Another advantage of hierarchical bases, which is not much mentioned before, is 
that the basis functions belonging to the null space and to the range space, respectively, can be easily 
identified. This is an important advantage for the application of a gauge condition. The basis functions 
belonging to the null space can be easily removed. 
 
We now consider WH1 and WH2, the discrete spaces of De Rham’s cohomology groups H1 and H2. 
They are related to the modelling of cuts and links in the case of a multiply connected domain. 
Detailed description about the modelling of H1 and H2 can be found in [10]. In this paper, the 
modelling of these spaces is presented in the context of De Rham’s complex. 
 
We note by Σi, i = 1, 2, …, NH1, the cutting surfaces which make the domain simply connected, and by 
Λ i, i = 1, 2, …, NH2 the links which connect all components of Γ. The cutting surface Σi cuts a layer of 
tetrahedra that we call the cutting domain and note by ΩΣi. WH1 belongs to the null space of Wq

1 (curl 
free) and cannot be expressed by a gradient. It is nonzero in the domain ΩΣi and vanishes elsewhere. 
The dimension of WH1 equals to the number of cuts. There is one degree of freedom in each cutting 
domain. The 1-form elements in ΩΣi are correlated. Taking these conditions in to account, the space 
WH1 is spanned by the following constraint functions: 

 
 wΣi = ∑

Σ∈
±

ie
e

E

w , i = 1, …, NH1. 

here we are shape functions of the Whitney 1-form element and EΣi is the set of edges across the 
cutting surface Σi. The sign depends on the orientation of edges with respect to the normal of cutting 
surfaces.  

 
We note by ΩΛi the linking domain constituted of one bundle of tetrahedra crossed by the link Λi. WH2 
is a null space of 2-form elements Wq

2 (having zero divergence), which cannot be presented by a curl 
field.  It is non-null only in ΩΛi. The degree of freedom is one per linking domain. The 2-form 
elements in ΩΛi are correlated. Shape functions of WH2 are hence given by 

 
wΛi = ∑

Λ∈
±

if
f

F

w , i = 1, …, NH2 

here wf are basis functions of Whitney 2-form element, wf ∈ W1
2, FΛj the set of facets passed by Λj, 

and NH2 the number of links Λj. The sign depends on the orientation of facets with respect to the 
direction of links. 

 
The spaces WH1 and WH2 are very useful in the computation of electromagnetic field in multiply 
connected regions. WH1 is important in the modelling of a curl free field such as the magnetic field in a 
multiply connected domain when there are non-zero currents flowing in the loops (conductor 
containing holes). Similarly, WH2 is useful in the modelling of a divergence free field such as the 
displacement field when the cavities contain non-zero charges [19]. 
 
 
 



 

 

 
DUAL FINITE ELEMENT FORMULATIONS OF EDDY CURRENT PROBLEMS  
 

 

 
Fig.5. A typical eddy current problem 
 
As an application, we consider the case of an eddy current problem shown in Fig.5. The study domain 
Ω contains a conducting region Ωc and an excitation coil Ωj with a given current density j0. The 
boundary of Ω is split into two parts ∂Ω = Γh ∪  Γe with Γh ∩ Γe = 0. On Γh we have n × h = 0 and on 
Γe, n × e = 0. Without loosing the generality, we consider the case where the conducting region Ωc and 
the excitation coil Ωj have holes (no trivial domains). 
 
Before the derivation of formulations, we express the excitation current j0 in Ωj by a source field t0 
(current vector potential) such that curl t0 = j. It can be noted that t0 defined in this way is not unique, 
but any field fulfilling curl t0 = j works. The most convenient way is to set t0 in a simply connected 
region Ωt composed of the excitation coil Ωj and the cutting domain ΩΣ0, with the boundary condition 
n × t0 = 0 on ∂Ωt and to calculate it using a finite element approximation [20]. After doing that, the 
magnetic field h in Ωt is split into a curl free field hr and the source field t0: h = hr + t0. The excitation 
coil Ωj is then removed from the study domain. In what follows, we will use a unified notation for the 
magnetic field h and keep in mind that h = hr in Ωt. 
 
Application of differential form based elements to the two dual systems of Maxwell equations as 
shown in Tonti diagram (Fig.1) leads to two dual formulations. The magnetic formulation is obtained 
by a conformal approximation of the Ampere’s theorem using differential form based elements and by 
solving the Faraday’s law using the weak variational principle (integration by parts). Taking the 
magnetic field (the magneto-motive force) as the working variables, the variational formulation in 
terms of differential forms is written as: 
 

Find h ∈  Wh
1 = {h ∈  Wq

1 | dh = 0 in Ω \ Ωc, h = 0 on Γh} 
 

0'*d'*d'dd1

j

0tt =∧µ+∧µ+∧
σ ∫∫∫

ΩΩΩ

hthhhh* ,  ∀  h' ∈  Wh
1   

 
With the more familiar vector notation, the formulation is  
 

Find h ∈  Wh
1 = {h ∈  Wq

1 | curl h = 0 in Ω \ Ωc, n × h = 0 on Γh} 
 

Ω

Ωc

Ωj

Γe

j0

Γh
ΩΣi ΩΣ0



 

 

0d'dd'ddcurl'curl1

j

0tt =Ω⋅µ+Ω⋅µ+Ω⋅
σ ∫∫∫

ΩΩΩ

thhhhh ,  ∀  h' ∈  Wh
1  

 
The domain Ω \ Ωc is multiply connected since the conductor contains holes. Let ΩΣi be cutting 
domains which make Ω \ Ωc simply connected and note by Ω’ = (Ω \ Ωc) \ ∪Ω Σi the simply connected 
domain. We now can determine the rank of the system with the help of De Ram’s complex shown in 
Fig.5. Since n×h = 0 on Γh, the degrees of freedom related to the simplexes on Γh are removed. We 
note by Ω’h the domain Ω’ excluding the boundary Γh, and by Ωc0 the conducting domain Ωc 
excluding the boundary ∂Ωc. According to De Rham’s complex given in Fig.4, the condition curl h = 
0 in the simply connected domain Ω’h can be satisfied by using a scalar potential φ such that h = grad 
φ, φ ∈  Wq

0(Ω’h). The gauge condition for the scalar potential is assured by the fact that the degrees of 
freedom related to φ on Γh are omitted (Here we suppose that Γh is connected. Otherwise, φ cannot be 
put to zero on all components of Γh. Constraints have to be introduced [21]).  One can also work 
directly with the variable h, by taking basis functions belonging to the null space of the 1-form 
element, i.e. h ∈  Zq

1(Ω’h). In the case of first order (Whitney) element, it consists to set the degrees of 
freedom of h on a tree constituted by a set of edges. When the elements of higher order are used, 
identification of the null space is not that easy unless elements of hierarchical basis are used. In the 
cutting domains ΩΣi, according to the analysis of the previous section, h ∈  WH1(∪Ω Σi). The rank of 
the whole system is dim(Wq

0(Ω’h)) + dim(Wq
1(Ωc0)) + NH1.  

 
This formulation ensures the tangential continuity of the magnetic field. The results give the 
circulation of magnetic fields along edges, and hence the currents across facets. 
 
In the conducting domain, the magnetic field h can be written as the sum of a current vector potential t 
∈  Wq

1(Ωc) and the gradient of a scalar potential φ ∈  Wq
0(Ωc). We get a formulation in terms of 

combined vector and scalar potentials. This constitutes an alternative of the previous field 
formulation. A gauge condition excluding the null space from the 1-form element is then necessary to 
ensure a unique solution of the vector potential. The dimension of the null space to be excluded is the 
same as the number of unknown scalar variables introduced. The rank of the system is dim(Wq

0(Ωh)) 
+ dim(Wq

1(Ωc0)) – dim(Zq
1(Ωc0)) + NH1, same as the formulation in terms of h in Ωc.  

 
The dual formulation, the electric one, is obtained by using p-form elements to approximate the 
variables in Faraday’s system and solving Ampere’s theorem in weak sense. Working with the time 
integral of the electric field in the conducting region and the magnetic vector potential in non- 
conducting region, the variational formulation in terms of differential forms is 
 

Find a ∈  Wa
1 = {a ∈  Wq

1 | a = 0 on Γe) 
 

  0'd'*d'dd1

j

0t =∧+∧σ+∧
µ ∫∫∫

ΩΩΩ

ataaaa* ,   ∀  a' ∈  Wa
1 

 
or using vector notation: 
 

Find a ∈  Wa
1 = {a ∈  Wq

1 | n × a = 0 on Γe) 
 

  0d'curld'ddcurl'curl1

j

0t =Ω⋅+Ω⋅σ+Ω⋅
µ ∫∫∫

ΩΩΩ

taaaaa , ∀  a' ∈  Wa
1 

 



 

 

The variable (1-form) a (such that curl a = b) must be seen as the time integral of electric field e in Ωc. 
In the non-conducting region Ω \ Ωc, we solve a divergence free field div b = 0. Since the surface 
integral of normal component of b over the boundary of Ω \ Ωc is identically zero, the space WH2 has 
no use in this application. We are not concerned by the trouble of non-simply connected region. The 
divergence free condition is simply assured by writing b = curl a. It can be seen from De Rham’s 
complex that, the flux density b is in the null space of divergence operator and the vector potential a is 
in the co-domain of the curl operator. The rank is hence the dimension of the range space of 1-form 
element. Appropriate gauge condition removing the null space from the functional space of 1-form 
element should be introduced to ensure the uniqueness of a. Considering n×a = 0 on Γe, the degrees of 
freedom related to the simplexes on Γe are omitted. We note by Ωe the domain Ω excluding the 
boundary Γe. Supposing the intersection of ∂Ωc and Γe is empty, the rank of the whole system is 
dim(Wq

1(Ωe)) - dim(Zq
1(Ωe \ Ωc)). Where dim(Zq

1(Ωe \ Ωc) corresponds to the number of unknowns 
removed in non-conducting region when a gauge condition is imposed. 
 
This formulation ensures the tangential continuity of electric field and gives the circulation of vector 
potential along edges, and hence the fluxes across facets. 
 
The electric formulation has also an alternative in terms of combined vector and scalar potentials. The 
field a (the time integral of the electric field e) in the conducting region can be replaced by the sum of 
a magnetic vector potential a ∈  Wq

1(Ωc) and the gradient of a scalar potential ψ ∈  Wq
0(Ωc). A gauge 

condition excluding the null space from the 1-form element is then necessary to ensure a unique 
solution of the vector potential. The scalar potential is gauged by imposing the value of ψ at one node 
if the intersection of ∂Ωc and Γe is empty. When this is done, the number of unknowns of the system is 
dim(Wq

1(Ωe)) + dim(Wq
0(Ωc)) – 1 – dim(Zq

1(Ωe)), same as the previous field formulation.  
 
It can be noted that, in this formulation, the current density j0 is replaced by curl t0 and the vector 
potential t0 is projected on the space of 1-form element with the help of integration by part. This 
projection ensures the compatibility of the equation and improves considerably the convergence 
behavior [20].  
 
Above formulations show that, in the conducting region, we can work with either the field variable or 
the potential variables. In the case of potential formulations, gauge condition has to be introduced to 
ensure the uniqueness. The rank of the matrix system is the same in both situations. It has to be 
pointed out that the gauge condition for the vector potential is not indispensable when an iterative 
solver is used. It is found that the convergence behavior is even better without the gauge condition 
[22]. According to the analysis given in [23], removing the null space of the 1-form elements 
diminishes the minimal non-zero eigenvalue and leads to a worse conditioning of the matrix system. 
 
 
CONCLUSION 
 
Differential forms present considerable advantages over the classical vector or tensor calculus not 
only in the electromagnetic theory analysis but also in the numerical computation of electromagnetic 
field. The dual flow diagram (Tonti diagram) is helpful for the derivation of dual finite element 
formulations of electromagnetic problems and makes clear the duality and the complementarity of 
dual approximation schema. Elements based on differential forms of different degrees constitute 
natural discrete spaces of different scalar and vector variables and ensure naturally the continuity 
requirement of different field quantities. De Rham’s complex reveals the mathematical framework 
behind the electromagnetic theory, including the geometric and topologic properties of the study 
domain. De Rham’s cohomology groups (spaces of closed but not exact forms) enables a better 
understanding of the modelling of curl-free or div-free field in multiply connected regions. With the 



 

 

help of De Rham’s complex, the link between the functional spaces of the elements based on 
differential forms is clearly illustrated. It is helpful to determine the rank of the matrix system and to 
understand the gauge conditions when potential variables are employed.  
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