Technical article

Local and Global Constraints in Finite Element Modelling
and the Benefits of Nodal and Edge Elements Coupling

1. Introduction

Various constraints can he encountered in partial differential
problems. On the one hand, there are local constraints, which
locally act on fields. These are usually boundary conditions,
fixing components of fields, as well as interface conditions,
connesting such components, On the other hand, global behavic
of fields can be constrained. leading 10 define global consira
It is the ease when vector field fluxes and circulations have o be
defined, again in order to be either fixed or connected
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A finite element model of a partial differential problem, through
weak formulations, then leads to split up the considered
constraints in two families, known as essential and natural

I'his means that some constraints are strongly
satisfied while others are only weakly satisfied.

Itis the aim of this paper to make a survey of local and global
constraints encountered in finite element models of
clectromagnetic systems. It particularly points out the benefits
of using both nodal and edge finite elements to achieve their
consistent discrete definitions. There are indeed properties that
are worth 1o be kept from the continuous to the discrete level.
The constraints are defined in the frame of dual formulations in
order to point out their dual, or complementary, natures.
Systematic explicit characterizations of constrained function
spaces are shown to be quite convenient.

Detailed developments are deliberately omitted; in particular, all
the studied constr are directly expressed at the discrete
level. i.e. in finite element spaces. The stress is rather laid on
numerous applications benefiting from the proposed systematic
approach, presented in an evolutive way. i.¢. from scalar to
veetor fields formulations, from Jocal to global essential and
natural constraints.

2. Scalar Potential Formulations

A. Essential constraints

Various electromagnetic problem formulations make use of
scalar potentials, of which the gradient is a ph
(eg.e = — grad v where e is the electric field and v is the
electric scalar potential, in electrestatics: also in electrokineics
and magnetostatics). These potentials define fields of local
quantities and are commonly approximated with nodal finite
elements [ 1] ie

I vector field
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where N is the set of nodes of the sudied domain €, 5 s the
nodal basis function associated with node n and v is the value
of v at node n. Functions s . % n & N, form a basis for the

nadal finite element space §"(€2) without constréiint. In cise
constraints exist, they no longer form a basis. The direct
expression of these constraints has to reveal the basis functions
to consider, i.e. which can serve as test functions in the [inite
clement method .
Classical boundary conditions lixing the scalar potential on
certain boundaries, i.c. Dirichlet conditions, are commonly used
[1]. They simply consist in fixing values of some coefficients
v, und then in extracting the associated functions 8 from the

basis [unction sel.

Other boundary conditions on parts of the boundary of the
studied domain can imply the defmition of floating values for
sealar potentials [2], [3]. A floating value is an unknown
constant on 4 region and comes from a homegeneous boundary
condition for the tangential component ol the assoctated
physical vect - x grad v
surface T, implies that v is a constant on T f belon,
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set C. of floating boundaries; n is the normal to ). Inorder to
explicitly define such constraints, the nodes of £ are classified
i complementary subsets: N, which is the set of nodes inside

Q, and NL¥ & €, which are the sets of nades of parls I
(Fig. 1). Floating potentials being constant on each T, (1) can

then e decomposed as [3]
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wheres ;¥ n & N, and i fe C.are basis lunctions for

| . ;0 s
the constrained potential; Sv(€) s the construined space.
Each function s is associated with the group of nodes — a

global geomelrical entity, while nodes n & N_are elementary

entities — of boundary T, (Fig. 1), The suppart of s (i.e. its
domain of non-zero values) is limited to a transition lay
containing all the geometrical elements having nodes on T

Dirichlet and floating potential constraints constitute essential
constraints, being directly expressed in the scalar potenrial
function space.
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1. Nodes and groups of nodes asseciated with the characterization of ¢

sealar potential with foating valwes |

B. Natural constraints

Acscalar potential v can be involved ina s
formulation of the generalized problem

i polential

r=-grad v, divs=1nN, s=gr, (4-5-6)
with appropriated boundary conditions. Note that (4) comes
from an equation of the form curl r = 0, and in case this
original equation contains a source term K, e curl r = k., (4)

becomes ¢ =~ grad v where r_is a source field satis!

curl 1= k. Generalized fields r, s, v, 11, k_and characte
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The scalar potential weak formulation for (4-3-6) is obtained
from the weak form of (3}, together with (4) and (6), i.e,

(—ogradv.gradv') g —<ns v r, Hngradvn =0

Yy'e Sl\f(ﬂ) . (7)

where n + g is a constraint on the generalized fux density s

assoctated with nonfixed potential boundaries I of domain 2.
e.g. on Neumann boundaries as well as on floating potential
boundaries Fofe Co( -, - )and( -, - ) respeetively
denote a volume integral in £2 and a surface int
sealar produet of their arguments. Such constraints are known as
natural constraints, i€, they only appear through integral terms
in weak formulations. They are respectively of local and global
types.

The key point when dealing with the considered global
constzaints is that cach associated global test function &', [ & (e

is-equal to one on boundary 1", This function therefore gives a

cantribution equal o < n - s 1 > and thus to the flux y' of

s leaving £ through surface f € C,, leading to [3]

ywi= (fu,grml\‘.gra(h“)Q +(ngrads g, 0

The flux is therefore expressed in average by the volume
integral in (8) in a transition layer (support of s' : Fig. 1). This
approach is in perfect accordance with the discretized weak
formulation (7) of the problem and thus with an only weakly
satisfied conservation of flux. The computation of the global
Nux based on the explicit surface integration of m - s (ie.

=@ n - grad v) would be affected by the choice of the
integration surface. There would be generally no reason for the
so-compuied lux 10 be equal to the fux given by the volume
integral in the transition layer, whatever the surface.

This method is useful for the computation of lumped parameter
models or when both potential and flux have to be considered,
t.g. in case of circuit coupling

3. Vector Field and Potential Formulations

Fhe methodology presented for scalar potential formulations
will now be transposed for vector field and potential
formulations, i.e. from nodal (o edge finite element spaces and
formulations, The aim is to point out the natural and consistent
character of this transposition,

A. Essential constrainis

Both dual h- and b-conform magnetodynamic formulatons are
considered; a magnetic field b formulation and & magnetic
vector potential a formulation (4],

The general expression of the magnetic field hin Q2 inah
formulation is [5]

h=h +h - grad¢ . (9)
Field h_is a source magnetic field [5], [6] associated with the
imposed current density j_in stranded conductors Q, ie.a

global constraint, through equation

curl h = (48]

Field b is the associated reaction field in conducting regions €2

whi

@ is the a

sociated reaction magnetic scalar potential in
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Classical essential boundary conditions concern tangential
compenents of h and can be transposed to constraints on ¢ The
source lield constraint is Laverably approximated with edge
finite elements to reduce the cancellation error in magnetic
materials [7]. Indeed, both h_and the gradient of a nodal finite
clement approximated ¢ are included as well in this space [8],
19]. An exact complementarity between these three fields can
therefore be obtained.

Two kinds of essential constraints can be associated as well with
the magnetic scalar potential ¢. Potental ¢ defined in sz_" is also

ce

defined on bavndary 962 of €2 . which leuds (o interf.
constraints between hoand ¢ [10]. Also, potential & can be
multivalued when £ © is muluply connected. in which case culs
must be defined o make this domain simply connected [10], [11]
A diserete characterization of the magnetic field using edge
finite elements enables to satisly the considered constraints, i.e
151,110

hi=hg+ zm—'\ sy + Zn.:.\l,k vt 2o i (g

where E

is the set of inner edges of £2, N © is the set of nodes
inside €2 and on its boundary d€., and C is a set of well

defined cuts which make €% simply connected. The so-defined
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constrained function space is noted S ()
Characterization { 1) explicitly defines a coupling between [ield
h(in €2 : given by all three sums) and a scalar potential ¢ (the
gradient of ¢ is given by the second and third sums; the third
sum enables multivalued potentials 1o be considered). Actually,
patential ¢ in Qr" is decomposed in continuous and

discontinuous parts, of which the gradients are respectively
given by the second and third sums in (11). Coefficients T
represent cireulations of b along well defined paths (equal to the
{luxes ol their curl and thus to the currents through associated
surfaces) and functions ¢ are global vector basis functions
associated with cuts C. Nate that such a characterization
enables function ¥ and thus the associated scalar potential, o

be fully continuous in a multiply connected domain, the
discontinuity being taken into account by functions ¢,

A similar treatment can be made for the t-w formulation | 12],
withh = h_+ t — grad ®in €.

With the magnetic vector potential formulation, the general
expression of the electric field e via a magnetic vector polentis
a invelves the gradient of an eleetric sealar potential v in the
condueting regions, 1.e. [13], [14]

e=-d a-gadvinQ . wihb =cul ainQ  (12-13)

fied.

s0 that the Faraday equation curl e = — d b

Classical essential boundary conditions concern tangential
components of a, i.e. normal component of b, The Iree-cotree
gauge condition [15] can be used as an additional essential
constraint, which consists in fixing the eirculations of a to zero
along the edges of a tree built in the gauged domain. Another
kind of gauge condition can be delined as a natural constraint,
i.e. as a consuaint only satisfied weakly through an additional
penalty term in the weak formulation [13], as it will be
explained hereafter,




As for the global constraint treatment, it consists in defining, for
each massive conduetor i, a unit source electric scalar poter
v, (also noted v ) associated with a unit voltage [14], leading to

al
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cach function v, being then a basis function for the associated
voltage V. By this specific way. veltage essential global
constraints can be defined.

Such a determination can be done using an clectrokinetic finite
clement formulation for each conductar in £2_and with
appropriate boundary conditions, in particular v, equal to 0 and

1 on its two electrodes. A generalized source potential can be
used as well, with a support limited 1o the finite elements
located on one side of a cross-section for each conductor (Fig.
2) | 14]. The source potential v, can then be simply the sum of

the nodal basis functions s, of all the nades Jocated on that

cross-section, noted s' for seetion i'i'. ie.

vy =sl :Z"Er s (15

with a support limited to a transition layer.

Transition
layer

l 1 %
Inductor €1, [UES TR

Cross-
section

Fig 2 Cross-section and associated transition laver in a conduetor

B. Natural constrainis

The h-¢ magnetodynamic formulation is obtained from the
weak form of the Faraday equation curl e = - d, b, with
b=phadj= g eiec[4],[16]

Syl ) g+ Wcurlh.curlh')ul +(‘07J]'5‘CUIH]')_Q{
r<nxegh'>r =0, vh'eS%,(SlJ. (16)
1
where Sl is the constrained function space defined on Q

and containing the basis functions for h {coupled to =b) as well
as for the test function h', Swiface electric fieldn x e

a

natural boundary condition on boundaries [ of two kinds.

Either, it can be a locally specified field, i.e. a classical natural
boundary condition, or a ficld for which only associated global
quantities are known (functionals of e ), i.e. voltages. Indeed,
cach global test function ¢ from (11} gives a contribution lo the

surface integral term equal to the voltage V. ie.
Aph.e)g (ot eurdhueurle;)g, ==Y, . (17)

which is the natural weak circuit relation for massive conductor
P15, [16]. It is the natural global constraint for the voltage,

For stranded conductors, the basis functions of h i (11), Le.

the source magnetic fields h_ | due o unit currents. lead 1o, when

usedd s test functions e,

Gphhg g+l (o

peurlhy g =

(18)

This relation allows a natural computation of the total magnetic
flux through all the wires of the conductor in perfect accerdance
with the weak formulation (16). without the need of any
supplementary integral formula [5], [16],

Voltages therelore appear as the weak global quantities in
h-formulations whereas currents are the associated strong
quantitics, These quantities have to be fixed respectively
through essential constraints in (11) and natural constraints
(17-18),
As for the a-v magnetodynamic formulation, it is obtained from
the weak form of the Ampere equation curl h = j. with

= hoandj = o e ic [13]

(p-teurla,curla ) Hofa,a g Hogradva'ly =0,
va'esh() . (1%

1
where 3a(82) i the constrained function space (with boundsry

and gauge conditions) defined on £ and containing the basis
functions for a as well as for the test function a’,

In the same way as curl h = j implies div j , weak
formulation (19) implies, by taking a' = grad v’ asa test

function. that

(oéa.gradv g +(ogradv.gradVig =<n-jv>p

v eF, (L), (20)

where I is the part of the boundary of Q which is crossed by a

current, l"mmu]mmn (19) 1s actually also the weak form of div
i=0inQ. Althe discrete level, (h

when the émdmm of v is included in the space of a', which is
the case when edge and nodal elements are used respectively for
a' and v', and thus for a and v [8], [9]. Otherwise, ¢.g. using
nodal elements for a and v, both (19) and (20) must be taken
into account, with an additional penalty term in (19) to ensure a
1ge condition in L [13].

implicaton is enly true

|
This justifies the definition of 8282} a5 an edge finite element

0
function spuce, and 5:(20) 45 the assoe

clement space, with the relation grad Q)
[81. [9].

Each global test function s' = v’ from (14}, equal 1o on¢ on
boundary I', gives a contribution equal to < n -

I = and

thus to the current |, through that surface.

(508, gradsi ) +V| (ograd Vo' prads! o, .21

Bquation (21) is the circuit relation associated with massive
conductor i, ie. a relation between its voltage V_and its current

l‘ [14]. It is the natural global constraint for the current. Again,

the form of this relation is coherent with the way the problem is




approximated, Le. with (19) and {20), and thus with an only

weakly satisfied conservation of current. The current 1s obtained
rather from a volume integration in 4 transition layer located on
one side of the cross-section (Fig. 2; because the support of s' is
reduced (o this layer in € ) than from a numerical surfa

mlegration of n - j = n - @ ¢ on this section. Thix explicit
surface integration would be affected by the choice of the
integration surface

4. Conclusions

The systematic explicit characterization of constrained Function
spaces has been revealed quite useful for expressing both local
and global constraints in various electromagneric problems. It
usually enables direct interpretations of the degrees of freedom,
1t has been particularly pointed out that edge linite elements are
ideal complementary components for nodal elements in the
sense that they enable consistent discrete forms of hoth essential
and natural constraints. On the one hand, they enable 10
transpose scalar field teatments 1o vector ficld treatments, pe.
local boundary and interface conditions for tangential vector
fields. On the other hand, they can be strongly coupled with
nodal elements when both scalar and vector lields are
considered, either in common or complementary domains,
respectively for source fields and interface conditions.

This systematic approach can be efficiently considered as well
at the software level to contribute to a software environment
open o various coupling aspects encountered in numerical
maodeling.
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