The armature pasition vs. time computed by SPICE for
typical cireuit values is shown in Fig. 6. The closing time is
changed from measurements [4], due 1o the back pressure
created by the hydraulic fluid flow.

Conclusion

Based on analogies between electromagnetics and hydraulics,

SPICE can be used 1o successfully simulate hydraulic

cireuits, Analysis of coupled electromagnetic/hydraulic
systems can be performed using dependent SPICE sources.

References

[1] John Lumkes. Conrrol Straicgies for Dynamic Systents.
Milwaukee Schoal of Engineering, July 1999, page 23.

[2] T. McDermott, B Zhou, J. Gilmore, and Z. Cendes.,
“Electromechanical system simulation with medels
senerated from finite element solutions,” JEEE Trans.
Magnetics, v. 33, March 1997, pp. 1682-1685.

|3] Jack L. Johnson, Design of Electrohydraulic Sysiems for
Industric! Motion Centrol, Parker Hannifin Corporation,
Cleveland, OH, 44112, 1991,

[4] K. Bessho, S. Yamada, and Y. Kanamura, “Analysis of
transient characteristics of plunger type electromagne
Flectr, Engineering Japan. v. 98, July 1978, pp: 56-62.

[5] John R. Brauer and Q. M. Chen, “Alternative dynamic
electromech 1l models of magnetic actuators
containing eddy currents.” IEEE Trans, Magnelics, v. 36,
2000, in press.

John R. Brauer
brauer@msoe.edu

Technical article

The question of spurious modes revisited

It is well known that Galerkin finite element models of
waveguides or resonant cavities may be affected by spurious
modes [1-3]. In fact, when the variational eigenproblem
modelling a waveguide or a resonant cavity is discretised by
a Galerkin finite elernent method. it may happen that some
of the abtained finite element cigensolutions have unphysical
features and are strongly sensilive (0 the mesh size and that
the situation cannot be improved by refining the mesh. From
a mathematical viewpoint the approximation may fail to
converge, in a sense appropriate for an eigenproblem. as the
mesh size tends to zero

Whether spurious solutions actually occur or not depends on
the specific finite element used in the Galerkin
approximation and it is well known that edge elements on
triangular or tetrahedral meshes never suffer this drawback,
while vector nodal elements do. unless very particular
meshes are used [4-6],

A question naturally arise, then: why edge elements are
spurious-free, while vector nodal elements are not, in
general? Which is the property that makes the difference?

Till now, it has been believed the answer w
are spurious-free because the

edge elements
nite element space they

generate contains all the gradient of the scalar nodal
clements aver the same mesh, a property not shared, in
general, by vector nodal elements [6]

This is not the complete answer, however. As a matter of
fact, we have proved that an element is spurious-free il and
only if the finite element space it generates salisfics a set of
three conditions [7]. The first one is fulfilled by any
reasonable element; veetor nodal elements included. and
simply means that the e element space is able to
approximate the space where the solution is sought. The
second condition means that the finite element space
contains an irrotational subspace able to approximate the
kernel of the curl operator and is satisfied by edge elements
just because they contain the gradients of scalar nodal
elements. While it is common opinion that these two
conditions are sufficient to avoid spectral pollution [4-6],
actually a third condition is required, which, like the second
one, is satisfied by the edge elements, but not by the vector
nodal clements. This is a diserete compactness condition [8],
which seems to be almost unknown to the electromagnetic
community. Anyway, its relevance to the question of
spurious modes has never been stressed before.

But, let us start from the beginning and state the problem we
are dealing with.

Let €2 be a bounded simply connected region with a
connected boundary I representing an empty cavity
resonator with an ideally conducting wall and define the
following spaces, scalar products and norms.




V=H (cur) = {v e LA | curly e LAQP v xn| . =0].
0 I

¥, = i'ln(cu:']":SE) = {L eV | cwly = ()].

V= H, (curliz) ~ H{divie),

dixg:()}.

where H(div'i€2) = {\ & L3O

(\i‘ \")—'J-li v dQ and :"I L (V- "y 2 are the natural sci
0

product and norm of LY€%,

(1, v ) = Ccurtu,curl v+ (@v) g

ourl

are the natural scalar product and norm of V.
V| proves to be the orthogonal complement of ¥, in V.

The electric ficld ¢ and the wavenumber k are determined by
the eigenproblem

Find 0#eeV ad ke R gpech that

(curlc.uml\')f Kiev) Wve V. (P)

which is equivalent to the Maxwell system.

A conforming finite element approximation of problem (F),
however. would require a divergence-free finite element
space., which is difficult to obtain

Hence, problem (P) is substituted by the modified problem
Find O=eeV ad keR such that

(curle,ourlv)=k (e, v) ¥

¥ (MP)
which is then approximated by the finite element problem
Find D#eeV, and ky € R such that

(eurle, curlvy )=Ki (e, v, ) vy €V, (FEP)
where V, © Vs the linite element space and, as usual, the
mesh parameter b > 0 determines a specific member of a
family of meshes and has the meaning of maximum clement

diameter of that particular mesh. The usual assumptions
against element degeneration as h — 0 are understood [9].

We have then this peculiar situation;

s Problem (MP) has the same solutions of problem (P) plus
the infinite dimensional eigenspace V, belonging to K=0

o Problem (FEP) is an approximation of problem (MP) and
some of its solutions will be approximations of (0, V“).

s Our aim is obtaining approximate solations of (P) from
(FEP). L

In spile of their similarity, problems (P) and (MP) are very
different in character. This difference, which is revealed by
the presence of an infinite dimensional eigenspace in
problem (MP), originates [rom the fact that V is compactly

embedded in LAQ)Y, while V is not. Unfortunately, we
cannol avoid using this technical concept in our discussion,
since compactness properties do play a crucial role in the
whale guestion of spurious modes.
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v

is compacily embedded in L2 mcans that any

1
hounded sequence Yo B of Vi tie such that Yo €V and
o I ; ’ .

||\‘.‘ Hewrt <C Jor some constant C and any n) contains a sub-

sequence (still denoted by ¥, 1) converging in LXQY (i.e.
SEQUENCe g

such that lim v, —v| =0 for some ve LAgay). (CP)
e

Hach of the problems (P), (MP) and (FEP) is equivalent to
an eigenvalue problem for a suitable operator. Property (CP)
implies that we can associate to problem (P) an eigenvalue
problem for a compact aperator, namely an operator
mapping bounded sequences to sequences containing
converging sub-sequences (but this defining property is not
important in this context). What is remarkable is that
compact operators have a simple spectrum, consisting of a
countable set of isolated eigenvalues of finite multiplicity,
which is less critical to be numerically approximated than a
general one. Unfortunately, as V is not compactly enibedded
in LA(Q2), instead, the operator associated to problem (MP)
is not compact, but just continuous,

Hence, by substituting problem (MP} for (P), a difficulty (the
divergence-free constraint) has been eluded, but new ones
have been introduced: the extrancous solution (0. V) and the
noncompactness of the underlying operator.

In order that (FEP) can be really used to approximately solve

(P), it is now clear that we need two things:

o (FEP) must e a good approximation of (MP) in spite of
the noncompactness of the underlving operator.

o All the solutions of (FEP) approximating (0, V) must be
easily identified to be discarded.

When both the above requirements are satisfied, we will say by
definition that “(FEP) is a spurious-free approximarion of (P).”
Each of these requirements can be made precise and set in
mathematical language, but doing so would require very
cumbersome and technical statements. This has been worked
oul in [7]. Here, we will just try, by partially relying upon an
intuitive understanding, to make clear which properties we
require in order to call spurious-free an approximation.

Aswe already proposed in | 10], the most natural way 1o
make precise the [irst requirement 15 t@ ask that, as h = 0,
the operator associated to (FEP) converges 1o the operator
associated 10 (MP) in the sense of the spectral approximation
of general continuous operators developed in [11]. This Kind
of convergence is defined through four conditions that in our
simple case (we do not have any continuous spectrum, for
instance, which would be allowed, in general, by the theory
in [117) can be described as follows.

The first condition says that for any eigenvalue of (MP) we
can find a sequence of eigenvalues of (FEP) converging to it
as b — 0. Tn other words, no eigenvalue of (MP) is missed
by its approximation (FEP).

The second condition says that, by sufficiently reducing h,
we can simultaneously push all the eigenvalues of (FEP) eut
of any given closed and bounded subset of the complement
of the spectrum of (MP) to the real axis. This conditions
imeans that no bounded sequence of eigenvalues of (FEP)
can have a nonvanishing distance from the spectrum of (MP)
as’h — 0. In other words, (FEP), as an approximation of
(MP), does not introduce any eigenvalue extraneous to the
original problem.




Blasseii———————

These first two conditions together say that the set of all the
aceumulation points of the union of the spectra of (FEP)
obtained for all b > 0 is just the spectrum of (MP).

As the eigenvalues of (MP) are not necessarily simple, the
remaining two conditions do not separately coneern single
eigenvectors, but rather whole eigenspaces. Owing 1o the
first two conditions, for any given eigenvalue of (MP) and
for any h less than some sufficiently small value, the
cigenvalue(s) of (FEP) approximating this specific
cigenvalue of (MP) can be identified. The span of the
cigenvector(s) belonging to this (these) eigenvalue(s) of
(FEP) will be the “approximate eigenspace” corresponding
1o the eigenspace belonging to the given eigenvalue of (MP).
The third condition says that, for any element of any
eigenspace of (MP) we can find a sequence of elements of
the corresponding approximate eigenspace converging Lo it
s b — 0. In other words, no eigenspace of (MP) is missed
by (FEP), not even partially.

The fourth condition says that, for any eigenspace of (MP),
the greatest distance a normalized element of the
corresponding approximate eigenspace can have from the
cigenspace of (MP) itsell vanishes as h — 0. This conditions
means that no sequence that consists of normalised
eigenvectors of (FEP) corresponding to a bounded sequence
of eigenvalues can have a nonvanishing distance from the
union of all the eigenspaces of (MP) as h — 0. In other
words, (FEP). as an approximation of (MP), does not
introduce any eigenvector extrancous to the original
problem,

If we have just convergence in the sense of [11] (i.e. the
above four conditions), some approximations of (0. V), the
sole eigensolution of (MP) not satisfying (P), will appear as
sequences of positive eigenvalues of (FEP) converging (o
vero as h — 0. When (FEP) is regarded as an approximation
of (P), however, any eigensolution of (FEP) approximating
(D, V) is extrancous to the original problem. In order that
the elements of the sequences approximating (0, V) can be

casily identified and disearded on any finite mesh, the best
situation occurs when, for any h — 0, all of them are

actually exact eigensolutions of (MP) (i.e. they satisfy k, =0,

e, € V) In order to enforce this situation, we add the
following fifth condition. which rules out any sequence of
positive eigenvalues of (FEP) converging to zero, to the set
defining a spurious-free approximation of (P k=0 s an

)

isolated point of the union of all the spectra of (F
obtained for any h =0,

Now that what we mean by spurious-free approximation
should he sufficiently clear, we can state the three conditions
we alluded to at the beginning.

First of all, we need to define the irrotational subspace

Vo = Vi 0V of the finite element space V,, its orthggonal

complement Vi, = fe Vil (owy ) =0 Y, € Vnh]! in

v, and notice that, while Von = Yo we have Viw &V,

The following three independent conditions are necessary
and sufficient in order that (FEP) is a spurious-free

approximation of (P} [7].

ompleteness of the approximating subspace:

0 wveV
Sl (CAS)
Completeness of 1
tim inf v—v,[,, =0 ¥veV,
el vy W (CDK)

Discrete compactiess property:

Any sequence Wy bog such thar ¥y € Vi and [esllq €

for some constant C and any it contains a sub-sequence (suill

deroréd by .} converging in LN (e, such that

lim|lv,, =] =0 for some ve LA (DCP)

About the meaning of (CAS) and (CDK) we have already
said at the beginning. As for the third condition, (DCP) is the
diserete counterpart of (CP), but is nat a wivial consequence
of il, because ¥, V). Since (CP) is the property ensuring
that problem (P) has a discrete spectrum, it is hardly
surprising that {DCP) is essential for a well behaved
approximation of (P), In practice, (DCP) implies that any
sequence of normalized eigenvectors has an essentially
convergent behaviour and aimlessly wandering sequences
can be obtained only in artificial ways (¢.g. by alternately
picking elements out of two sequences converging to
different limits),

Let us notice also that, in general, when the operator
associated to the problem under consideration is compact,
(CAS) alone is sufficient to ensure a well-behaved spectral
approximation [12].

It is worthwhile to consider also the following condition,
hich is equivalent to the [ifth condition characterising
(FEP) as a spurious-free approximation of (P). Hence,
necessary for a spurious-free approximation,

Discrete Friedrichs Inequality:

Jo >0 such that (eurly, .curlv, )z alv, I|m_
WyyeVy, ¥h>0 (DF1)
Also (CAS). (DFT) and (DCP) constitute a set of independent
conditions necessary and sufficient in order that (FEP) is o
spurious-free approximation of (P)[7]. In spite of what
might be superficially thought, however, (DFD) and (CDK)
are nat equivalent, in general, In fact, for the sake of
preciseness, we have the following situation: (CAS) and
(DI together imply (CDK), while (DCP) and (CDK)
together imply (DFD). [7].

Let us also point out that if only (CAS) and (DCP) are
satisfied. then just the fifth condition characterising (FEP) as
a spurious-free approximation of (P) is not fulfilled, while
the other four conditions still hold true [7]. In this case,
spurious eigenvalues may oceur only in a neighbourhood of
zero that can be narrowed by mesh refinement. However, we
do not know any practical finite element showing spurious
cigenvalues that behave in this way.

ey
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Now we are in a posilion to discuss the behaviour of some
known elements in the light of the above theory.

Nodal vector element approximations, in general, satisfy
only (CAS). As it is well known, these approximations show
something like a flow of spurious eigenvalues ceaselessly
entering the spectrum from above and nonuniformly
converging to zero as h — 0. This behaviour violates both
the second and the fifth conditions characterising (FEP) as a
spurious-free approximation of (P}, Violation of the second
condition, implies that the union of the spectra of (FEP)
abtained for all h = 0 has some accumulation point which is
not in the spectrum of (MP). even though this may be
difficult 1o observe in numerical experiments. A simple
abstract example of Galerkin approximation with global
basis (not a finite element one) thart satisties only (CAS) and
has spurious eigenvalues showing this behaviour has been
built in [7] (Example 7.5)

1t has been recently found a case (2D nodal vector elements
on a so called criss-cross mesh |13, 14]) in which the
spurious modes exhibit a different behaviour: some
eigenvalues of (FEP) converge to positive values not in the
spectrum of (MP) (so violating the second condition defining
a spurious-free approximation). while the corresponding
eigenvectors do not converge. What is the reason of this
unusual behaviour? In this case. (CAS) and (DF1) are

fied [15], but (DCP) is surely not, since for this case the
existence ol spurious eigenvalues has been analytically
proved [14]. Condition (DFI), being equivalent to the fifth
condition characterising (FEP) as a spurious-free
approximation of (P), prohibits any sequence of positive
eigenvalues of (FEP) converging to zero 7). Hence, the
more usual behaviour of the spurious modes cannol take
place. On the other hand, wandering sequences of
eigenvectors are permitted, as (DCP) is not satisfied.

It is worthwhile to stress that, as (CAS) and (DFI) together
imply (CDK). this is a counterexample to the
aforementioned common opinion that (CAS) and (CDK) are
sufficient o avoid spurious modes [7, 15]. It should be clear,
however. that the unusual behaviour shown by the spurious
modes in this case is not caused by the fact that (CDK) is
satisfied, but rather by the fact that (DFI) helds true. In f:
(CDK) does not prohibit sequences of positive eigenvalues
converging o zero [7, Example 7.1, unless corroborated by
{DCP) (remember that (DCP) and (CDK) together imply
(DFD)

Edge element approximations, do satisfy (CAS), (CDK),
(DFI) and (DCP) [7. 15, 16] and are spuricus-free in the
sense of [7]. as expected.

Last, but not least, let us point out that in [7] the above
theory has been developed under more general assumptions
allowing inhomogeneous, anisotropic and discontinuous
material properties, topologically nontrivial problem
domains and mixed boundary conditions arising from
symmetry exploitation, so covering most of the situations
oceurring in real-life applications. By
have proved in [ 16]. for first time in this very general

ing, that Nedelec's edge elements of any fixed order on
tetrahedral meshes [17. 18] give rise to spurious-free
approximations of electiromagnetic eigenproblems.

€
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