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I. INTRODUCTION 
 
The multigrid method (MG) is a wellgrounded numerical 
technique for solving large sparse linear systems of algebraic 
equations. The method can be used as an iterative solver or as 
a preconditioner for one appropriate iterative method. This 
technique explores the use of some levels to eliminate the 
highfrequency or oscillatory components of the error, which 
are not efficiently removed by basic iterative methods, as 
Jacobi or GaussSeidel [1]. 
 
In contrast to the standard geometric multigrid method, which 
demands explicitly a hierarchy of meshes, the algebraic 
multigrid (AMG) constructs a hierarchy of matrices and 
transfer operators just based on the information from the 
original matrix [2]. Thus, when the problem involves irregular 
domains and unstructured meshes, or when the interest is 
focused on the so called blackbox solver which requires only 
information contained in the matrix of the system, or even 
when the matrix is very large and illconditioned as in 3D 
electromagnetic problems, the AMG method is very 
appropriate. However, the use of AMG presents some 
difficulties, especially regarding to the choice of the strength 
threshold in the coarsening process. 
 
The coarsening scheme, for traditional AMG, can lead to 
computational complexity growth as the problem size 
increases, resulting in an elevated memory use and execution 
time, and in a reduced scalability [3]. Moreover, the 
coarsening process is inherently sequential in nature that 
makes difficult the implementation on distributed memory 
machines [4]. On the other hand, classical AMG cannot 
directly be applied to problems in which the coefficient matrix 
violates the Mmatrix property like, for example, ungauged 
edgebased finiteelement (FE) analysis. In this context, 
simple approaches such as the use of a shifted coefficient 
matrix have a limited efficiency [5]. 
 
The combination of wavelet and the algebraic multigrid has 
been explored to overcome these difficulties. The similarities 

between the multigrid methods and wavelets arising from 
multiresolution analysis were first brought out by Briggs and 
Henson [6]. They observed that the space of fine grid vectors 
in multigrid scheme and the space of highest resolution in 
multiresolution are correlated.  
 
Over the last few years, several works are exploiting these 
similarities [7–14]. In [7], it is made an exploration of the idea 
of Briggs to develop wavelet based interpolation and 
restriction operators in the geometric multigrid context. It 
compares the results with the geometric multigrid schemes 
using the conventional intergrid operators, and obtains results 
similar to the ones obtained with the standard procedure.  
 
The use of the discrete wavelet transform (DWT) in the 
construction of the matrices hierarchy and the transfer 
operators in the AMG method was proposed by these authors 
in [11], producing a new method called WAMG. In that 
approach a modified DWT, using only lowpass filter bank, 
was applied to produce an approximation of the original 
matrix in each level of the multiresolution process, eliminating 
the standard coarsening process. 
 
The WAMG has revealed to be a very efficient and promising 
method for several problems related to the computation of 
electromagnetic fields, in both serial and parallel computation 
[11], [13, 14]. The method can be either used as an iterative 
solver or as a preconditioning technique, presenting in many 
cases a better performance than some of the most advanced 
and current AMG algorithms [14]. 
 
Due to the WAMG efficiency and potentiality, further 
researches have been carried out for its improvement [15], 
[16]. This paper is part of this effort.  
 
In order to accomplish this task this work build a modified 
discrete wavelet transform using the tool called the lifting 
scheme [17]. The lifting technique is a method introduced by 
W. Sweldens [18], which allows some improvements on the 
properties of existing wavelet transforms. The technique has 
some numerical advantages as a reduced number of floating 
point operations which are fundamental in the context of the 
iterative solvers. 
 

II. THE ALGEBRAIC MULTIGRID METHOD 
 
Denoting for   the space of the variables of the system in a 
level , and for 1 +  one subspace of    ( 1  + ⊂ ), the 
algorithm of the standard AMG consists of the following 
components [1, 2]: 
 
•  : define the splitting   ω ω ω= ∪  
where ω   is the set of all the variables of the system in level 
, ω  and ω  are, respectively, the set of the variables that 
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The coarsening scheme, for traditional AMG, can lead to 
computational complexity growth as the problem size 
increases, resulting in an elevated memory use and execution 
time, and in a reduced scalability [3]. Moreover, the 
coarsening process is inherently sequential in nature that 
makes difficult the implementation on distributed memory 
machines [4]. On the other hand, classical AMG cannot 
directly be applied to problems in which the coefficient matrix 
violates the Mmatrix property like, for example, ungauged 
edgebased finiteelement (FE) analysis. In this context, 
simple approaches such as the use of a shifted coefficient 
matrix have a limited efficiency [5]. 
 
The combination of wavelet and the algebraic multigrid has 
been explored to overcome these difficulties. The similarities 

between the multigrid methods and wavelets arising from 
multiresolution analysis were first brought out by Briggs and 
Henson [6]. They observed that the space of fine grid vectors 
in multigrid scheme and the space of highest resolution in 
multiresolution are correlated.  
 
Over the last few years, several works are exploiting these 
similarities [7–14]. In [7], it is made an exploration of the idea 
of Briggs to develop wavelet based interpolation and 
restriction operators in the geometric multigrid context. It 
compares the results with the geometric multigrid schemes 
using the conventional intergrid operators, and obtains results 
similar to the ones obtained with the standard procedure.  
 
The use of the discrete wavelet transform (DWT) in the 
construction of the matrices hierarchy and the transfer 
operators in the AMG method was proposed by these authors 
in [11], producing a new method called WAMG. In that 
approach a modified DWT, using only lowpass filter bank, 
was applied to produce an approximation of the original 
matrix in each level of the multiresolution process, eliminating 
the standard coarsening process. 
 
The WAMG has revealed to be a very efficient and promising 
method for several problems related to the computation of 
electromagnetic fields, in both serial and parallel computation 
[11], [13, 14]. The method can be either used as an iterative 
solver or as a preconditioning technique, presenting in many 
cases a better performance than some of the most advanced 
and current AMG algorithms [14]. 
 
Due to the WAMG efficiency and potentiality, further 
researches have been carried out for its improvement [15], 
[16]. This paper is part of this effort.  
 
In order to accomplish this task this work build a modified 
discrete wavelet transform using the tool called the lifting 
scheme [17]. The lifting technique is a method introduced by 
W. Sweldens [18], which allows some improvements on the 
properties of existing wavelet transforms. The technique has 
some numerical advantages as a reduced number of floating 
point operations which are fundamental in the context of the 
iterative solvers. 
 

II. THE ALGEBRAIC MULTIGRID METHOD 
 
Denoting for   the space of the variables of the system in a 
level , and for 1 +  one subspace of    ( 1  + ⊂ ), the 
algorithm of the standard AMG consists of the following 
components [1, 2]: 
 
•  : define the splitting   ω ω ω= ∪  
where ω   is the set of all the variables of the system in level 
, ω  and ω  are, respectively, the set of the variables that 
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


I. INTRODUCTION 
 
The multigrid method (MG) is a wellgrounded numerical 
technique for solving large sparse linear systems of algebraic 
equations. The method can be used as an iterative solver or as 
a preconditioner for one appropriate iterative method. This 
technique explores the use of some levels to eliminate the 
highfrequency or oscillatory components of the error, which 
are not efficiently removed by basic iterative methods, as 
Jacobi or GaussSeidel [1]. 
 
In contrast to the standard geometric multigrid method, which 
demands explicitly a hierarchy of meshes, the algebraic 
multigrid (AMG) constructs a hierarchy of matrices and 
transfer operators just based on the information from the 
original matrix [2]. Thus, when the problem involves irregular 
domains and unstructured meshes, or when the interest is 
focused on the so called blackbox solver which requires only 
information contained in the matrix of the system, or even 
when the matrix is very large and illconditioned as in 3D 
electromagnetic problems, the AMG method is very 
appropriate. However, the use of AMG presents some 
difficulties, especially regarding to the choice of the strength 
threshold in the coarsening process. 
 
The coarsening scheme, for traditional AMG, can lead to 
computational complexity growth as the problem size 
increases, resulting in an elevated memory use and execution 
time, and in a reduced scalability [3]. Moreover, the 
coarsening process is inherently sequential in nature that 
makes difficult the implementation on distributed memory 
machines [4]. On the other hand, classical AMG cannot 
directly be applied to problems in which the coefficient matrix 
violates the Mmatrix property like, for example, ungauged 
edgebased finiteelement (FE) analysis. In this context, 
simple approaches such as the use of a shifted coefficient 
matrix have a limited efficiency [5]. 
 
The combination of wavelet and the algebraic multigrid has 
been explored to overcome these difficulties. The similarities 

between the multigrid methods and wavelets arising from 
multiresolution analysis were first brought out by Briggs and 
Henson [6]. They observed that the space of fine grid vectors 
in multigrid scheme and the space of highest resolution in 
multiresolution are correlated.  
 
Over the last few years, several works are exploiting these 
similarities [7–14]. In [7], it is made an exploration of the idea 
of Briggs to develop wavelet based interpolation and 
restriction operators in the geometric multigrid context. It 
compares the results with the geometric multigrid schemes 
using the conventional intergrid operators, and obtains results 
similar to the ones obtained with the standard procedure.  
 
The use of the discrete wavelet transform (DWT) in the 
construction of the matrices hierarchy and the transfer 
operators in the AMG method was proposed by these authors 
in [11], producing a new method called WAMG. In that 
approach a modified DWT, using only lowpass filter bank, 
was applied to produce an approximation of the original 
matrix in each level of the multiresolution process, eliminating 
the standard coarsening process. 
 
The WAMG has revealed to be a very efficient and promising 
method for several problems related to the computation of 
electromagnetic fields, in both serial and parallel computation 
[11], [13, 14]. The method can be either used as an iterative 
solver or as a preconditioning technique, presenting in many 
cases a better performance than some of the most advanced 
and current AMG algorithms [14]. 
 
Due to the WAMG efficiency and potentiality, further 
researches have been carried out for its improvement [15], 
[16]. This paper is part of this effort.  
 
In order to accomplish this task this work build a modified 
discrete wavelet transform using the tool called the lifting 
scheme [17]. The lifting technique is a method introduced by 
W. Sweldens [18], which allows some improvements on the 
properties of existing wavelet transforms. The technique has 
some numerical advantages as a reduced number of floating 
point operations which are fundamental in the context of the 
iterative solvers. 
 

II. THE ALGEBRAIC MULTIGRID METHOD 
 
Denoting for   the space of the variables of the system in a 
level , and for 1 +  one subspace of    ( 1  + ⊂ ), the 
algorithm of the standard AMG consists of the following 
components [1, 2]: 
 
•  : define the splitting   ω ω ω= ∪  
where ω   is the set of all the variables of the system in level 
, ω  and ω  are, respectively, the set of the variables that 
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will and will not form the subspace 1 + , all represented by 
their respective indexes; 
 
• : 

prolongation                     1 1P :
   + + →                          (1) 

restriction                         1 T
1P [P ] 

 
+

+= (2) 
 

• : 
 

1 1
1A P A P   

 
+ +

+=    (3) 
 

• : basic iterative Jacobitype method 
that eliminates the oscillatory components of the error. 
 
Overall, the first two components described above, are the 
most important of the AMG setup phase [1, 2]. These stages 
determine the subspace dimension, and, consequently, the 
matrix dimension in the corresponding level. 
 
The splitting defined in the coarsening process is based on a 
concept of influence and dependence, formalized in the 
following definitions [1]: 
 
Given a threshold value 0 1α< < , the variable 
(point)    on the variable (point)   if  

max  
 α

≠
≥ ⋅    (4) 

that is, the grid point  strongly depends on grid point  if the 
coefficient   is comparable in magnitude to the largest off
diagonal coefficient in the th equation. 
 
  If the variable   strongly depends on the 
variable  , then the variable     the 
variable  . 
 
This standard procedure of the AMG presents two great 
difficulties in relation to the coarsening process, that is, the 
stage of selection of the subsystem variables. The first great 
difficulty is the choice of the parameter α , present in the 
equation (4). The value of this parameter strongly influences 
the quality of the process. Usually, this parameter is fixed in 
0.25, but this choice not always produces the best results. The 
definition of adaptive value to the strength threshold α , as 
done in [19], can overcome this difficulty in some cases. 
 
The second difficulty is related to the parallelization of the 
AMG method in distributed memory computers. The 
coarsening process is included in the core of the AMG setup 
phase and is inherently sequential in nature. Moreover, The 
coarsening scheme can lead to computational complexity 
growth as the problem size increases, resulting in an elevated 
memory use and execution time, and in a reduced scalability 
Some works have exclusively been looking for the solution of 
this important problem [2022]. 
 

III. THE WAVELETBASED ALGEBRAIC MULTIGRID 
 
The key point of the WAMG is the application of a modified 
(incomplete) DWT, as a filter bank with only lowpass filters, 
to generate the hierarchy of matrices in the AMG method. 
 

The standard DWT corresponds to the application of low
pass and highpass filters, followed by the elimination of one 

out of two samples (decimation or sub sampling). The discrete 
signal, which in one dimension is represented by a vector of 
values, is filtered by a set of digital filters that are associated 
to the wavelet adopted in the analysis. Then, starting from a 
vector ( )   at level 0, two sets of coefficients are generated 
in each level  of the process: a set   of wavelets coefficients 
(detail coefficients) and a set   of coefficients called 
“approximation coefficients.” This procedure can be applied 
again, now using   as an input vector to create new 
coefficients 1 +  and 1 + , and successively. This procedure is 

illustrated in Fig. 1. The symbol 2↓  represents the operation 
of decimation by 2. This operation keeps unaltered the vector 
dimension at the end of the process. Blocks H and G represent, 
respectively, the lowpass and highpass filters. 
 

 
 

Fig. 1. Three levels of the onedimensional discrete wavelet transform 
 
In the 2D case, in which the discrete signal is represented by 
a matrix, the DWT is obtained through the application of 
successive steps of 1D transform into the rows and columns 
of the matrix. This process generates a matrix formed by four 
types of coefficients: the approximation coefficients and the 
detail coefficients (horizontal, vertical, and diagonal), as 
illustrated in Fig. 2. 
 

 
 

Fig. 2. The twodimensional DWT: onedimensional transform in the rows 
and columns of the matrix 

will and will not form the subspace 1 + , all represented by 
their respective indexes; 
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• : basic iterative Jacobitype method 
that eliminates the oscillatory components of the error. 
 
Overall, the first two components described above, are the 
most important of the AMG setup phase [1, 2]. These stages 
determine the subspace dimension, and, consequently, the 
matrix dimension in the corresponding level. 
 
The splitting defined in the coarsening process is based on a 
concept of influence and dependence, formalized in the 
following definitions [1]: 
 
Given a threshold value 0 1α< < , the variable 
(point)    on the variable (point)   if  

max  
 α

≠
≥ ⋅    (4) 

that is, the grid point  strongly depends on grid point  if the 
coefficient   is comparable in magnitude to the largest off
diagonal coefficient in the th equation. 
 
  If the variable   strongly depends on the 
variable  , then the variable     the 
variable  . 
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Some works have exclusively been looking for the solution of 
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III. THE WAVELETBASED ALGEBRAIC MULTIGRID 
 
The key point of the WAMG is the application of a modified 
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to the wavelet adopted in the analysis. Then, starting from a 
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dimension at the end of the process. Blocks H and G represent, 
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Fig. 1. Three levels of the onedimensional discrete wavelet transform 
 
In the 2D case, in which the discrete signal is represented by 
a matrix, the DWT is obtained through the application of 
successive steps of 1D transform into the rows and columns 
of the matrix. This process generates a matrix formed by four 
types of coefficients: the approximation coefficients and the 
detail coefficients (horizontal, vertical, and diagonal), as 
illustrated in Fig. 2. 
 

 
 

Fig. 2. The twodimensional DWT: onedimensional transform in the rows 
and columns of the matrix 
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In both cases, one and two dimensions, the approximation 
coefficients keep the most important information of the 
discrete signal, whereas the detail coefficients possess very 
small values, next to zero. These approximation coefficients 
will contain lowpass information, which is essentially a low 
resolution version of the signal and represent a coarse version 
of the original data.  
 
This wavelet property is explored by WAMG for creating the 
hierarchy of matrices. In this approach the lowpass filters 
coefficients   are used in the construction of a matrix , 
which is used as a restriction operator for the WAMG. If third 
order filters are used, for example, the restriction operator  
from level  to level +1 takes the following form: 
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3 2 1 01
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=

⋯ ⋯ ⋯
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⋮ ⋮ ⋮
⋯ ⋯ ⋯

        (1) 

 
The prolongation operator , in the corresponding level, is 
defined in the usual form [5], 
 

1 T
1 ( ) 

   +
+ = .    (2) 

 
Therefore, the WAMG setup phase depends only of the choice 
of the filters coefficients. This approach is very interesting 
mainly because it avoids the coarsening process and the 
heuristic parameters present in the standard AMG, simplifying 
the use of the method as well as its parallel implementation in 
distributed memory computers [11, 14]. Moreover, the 
WAMG setup time is strongly reduced, since it is not 
necessary to compute the full wavelet transform in each level 
and the DWT is limited to the computation of a sequence of 
approximation coefficients. 
 
A. The choice of the wavelet filters 
 
Very important classes of filters are those of Finite Impulse 
Response (FIR). The main characteristic of these filters is the 
convenient timelocalization properties. These filters are 
originated from wavelets with compact support and are such 
that, 

 
0     for    0  and  .   = < >   (3) 

 
in which  is the length of the filter. 

 
Minimal requirements for these compact FIR filters are: 
 

1. The length of the scaling filter   must be even. 
2. 2


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3. 2( ) ( )  


  δ−⋅ =∑ ,  

 
in which ( )δ  is the Kronecker delta, such that is equal to 1 
when =0 or 0 when =1.
 
These filters are calculated analytically and some of them are 
described as follows: 
 

i. Length 2 scaling filter: Haar or Daubechies2 

coefficients 
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ii. Length 4 scaling filters: Daubechies4 coefficients 
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For more details about compact FIR filters see [19]. 
 
A common problem on the choice of the filters is to decide 
between the fillin control and the wavelet compression 
properties. As the WAMG often deals with sparse matrices, 
the control of the nonzero number is a very important task. In 
this case, if the WAMG level  matrix   is sparse, then the 
number of nonzero elements in the next level matrix 

1 1
1

   
    + +

+=  will depend on the order of the filter used in 
the restriction and prolongation operators. In fact, the longer 
the used filter, the larger will be the number of nonzero entries 
in the next computed matrix. Consequently, most of the 
wavelet based multigrid methods use shorter filters such as 
Haar or Daubechies2 coefficients in its approaches [1114]. 
This is also the case in this paper. 
 

IV. THE IMPLEMENTATION USING THE LIFTING TECHNIQUE 
 
In [24] Daubechies and Sweldens have shown that every 
wavelet filter can be decomposed into lifting steps. Therefore, 
all discrete wavelet transforms used for WAMG can be 
implemented with the lifting scheme. The main advantages of 
this technique over the classical wavelet transform are: 

a) Smaller memory requirement – the calculations can 
be performed inplace; 

b) Efficiency: reduced number of floating point 
operations; 

c) Parallelism –inherently parallel feature; 
d) Easier to understand  not introduced using the 

Fourier transform; 
e) Easier to implement; 
f) The inverse transform is easier to find – it has exactly 

the same complexity as the forward transform; 
g) Transforms signals with an arbitrary length (need not 

be 2) – very appropriate in the WAMG context; 
h) Transforms signals with a finite length (without 

extension of the signal). 
 
More details about these advantages as well as other important 
structural advantages of the lifting can be found in [17, 18]. 
 
In fact, there are basically three forms for representing a 
wavelet transform: equation form (lifting), filter form (filter 
bank) and matrix form. However, only the first two are 
appropriate in the multigrid implementation.  
 
The representations of the Daubechies 2 and Daubechies 4 
wavelets in the lifting form are presented, respectively, in 
equations (6) and (7). These representations were  extracted 
from [17], which shows the details for converting between 
lifting and filters forms (one can also see [24]). 
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The coefficients +1[] and +1 [] in (6) and (7) are, 
respectively, the approximation and the detail coefficients, at 
level +1, of the input signal. Therefore, for the multigrid 
implementation the last equations in (6) and (7) are not 
necessary. 
 
In this work, the WAMG method was implemented using the 
lifting technique, with length 2 Daubechies filters, producing a 
method called LAMG. The new approach was tested in some 
numerical problems and the results are shown in sections 5 
and 6. 
 
A. The cost of the lifting algorithm 
 
The use of the lifting technique for the waveletbased 
multigrid allows creating an algorithm with a reduced number 
of floating point operations. It is known that the lifting 
algorithm is asymptotically twice as fast as the standard 
algorithm for long filters [17]. A comparison between the cost 
of the lifting algorithm () and the cost of the standard 
algorithm () and the relative speedup (1) for the 
Daubechies filters are presented in Table I. 

 
TABLE I. LIFTING () VERSUS THE STANDARD ALGORITHM () 

   
Daubechies 2 3 3 0 % 
Daubechies 4 14 9 56 % 
Daubechies 6 22 14 57 % 

 
The values of the cost presented in Table I are measured in 
number of performed multiplications and additions. 
 

V. BENCHMARK 
 
The performance of the proposed approach is verified by 
solving two different numerical test problems. In the first test, 
the LAMG is applied as a preconditioner for the iterative 
methods BiConjugate Gradient Stabilized (BiCGStab) and 
Generalized Minimum Residual method with restart parameter 
 = 20 (GMRes20) to solve two sparse linear systems issued 
from University of Florida Sparse Matrix Collection, 
FEMLAB group [25]. These test problems arise in real 3D 
computational fluid dynamics problems and its matrix 
properties are presented in Table II.  
 
The results in Table III give us the setup and solver times (in 

seconds) spent by the methods and number of iterations 
necessary to reduce the Euclidean norm of the residual vector 
to the order of 106. The Incomplete LU (ILU) preconditioner 
was used for comparison. 

 
TABLE II. MATRIX PROPERTIES FOR THE FIRST TEST 

  
number of rows 13514 85623 
number of columns 13514 85623 
nonzeros 352762 2374949 
Type real 

unsymmetric 
real 
unsymmetric 

Cholesky 
candidate? 

No No 

positive definite? No No 
 

TABLE III. RESULTS FOR THE FIRST TEST PROBLEM 

       
ILU  
BiCGStab 9.60 31 133.04 59 

ILU 
GMRes 

1.22 
8.06 49 

9.28 
163.70 140 

LAMG  
BiCGStab 7.00 24 83.54 32 

LAMG  
GMRes 

2.73 
5.49 35 

34.35 
77.72 56 

 
The convergence history for this first case is presented in Fig. 
3. 
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Fig. 3. Convergence history for first test problem – poisson3Da (a) and 

poisson3Db (b). 

1

1 1

1

1

(1)

(1) (1)

(1)
1

(1)
1

[ ] [2 1] [2 ],

1[ ] [2 ] [ ],
2

[ ] 2 [ ],

1[ ] [ ].
2



 





 







     

     

   

   

+

+ +

+

+

+

+

= + −

= + ⋅

= ⋅

= ⋅

      

                                     (6) 

 
1

1 1 1

1 1 1

1

1

(1)

(1) (1) (1)

(2) (1) (1)

(2)
1

(1)
1

[ ] [2 ] 3 [2 1],

1 1[ ] [2 1] 3 [ ] ( 3 2) [ 1],
4 4

[ ] [ ] [ 1],

3 1[ ] [ ],
2

3 1[ ] [ ].
2



  

  





 







     

       

     

   

   

+

+ + +

+ + +

+

+

+

+

= + +

= + − − − −

= − +

−
=

+
=



 (7) 

 
The coefficients +1[] and +1 [] in (6) and (7) are, 
respectively, the approximation and the detail coefficients, at 
level +1, of the input signal. Therefore, for the multigrid 
implementation the last equations in (6) and (7) are not 
necessary. 
 
In this work, the WAMG method was implemented using the 
lifting technique, with length 2 Daubechies filters, producing a 
method called LAMG. The new approach was tested in some 
numerical problems and the results are shown in sections 5 
and 6. 
 
A. The cost of the lifting algorithm 
 
The use of the lifting technique for the waveletbased 
multigrid allows creating an algorithm with a reduced number 
of floating point operations. It is known that the lifting 
algorithm is asymptotically twice as fast as the standard 
algorithm for long filters [17]. A comparison between the cost 
of the lifting algorithm () and the cost of the standard 
algorithm () and the relative speedup (1) for the 
Daubechies filters are presented in Table I. 

 
TABLE I. LIFTING () VERSUS THE STANDARD ALGORITHM () 

   
Daubechies 2 3 3 0 % 
Daubechies 4 14 9 56 % 
Daubechies 6 22 14 57 % 

 
The values of the cost presented in Table I are measured in 
number of performed multiplications and additions. 
 

V. BENCHMARK 
 
The performance of the proposed approach is verified by 
solving two different numerical test problems. In the first test, 
the LAMG is applied as a preconditioner for the iterative 
methods BiConjugate Gradient Stabilized (BiCGStab) and 
Generalized Minimum Residual method with restart parameter 
 = 20 (GMRes20) to solve two sparse linear systems issued 
from University of Florida Sparse Matrix Collection, 
FEMLAB group [25]. These test problems arise in real 3D 
computational fluid dynamics problems and its matrix 
properties are presented in Table II.  
 
The results in Table III give us the setup and solver times (in 

seconds) spent by the methods and number of iterations 
necessary to reduce the Euclidean norm of the residual vector 
to the order of 106. The Incomplete LU (ILU) preconditioner 
was used for comparison. 

 
TABLE II. MATRIX PROPERTIES FOR THE FIRST TEST 

  
number of rows 13514 85623 
number of columns 13514 85623 
nonzeros 352762 2374949 
Type real 

unsymmetric 
real 
unsymmetric 

Cholesky 
candidate? 

No No 

positive definite? No No 
 

TABLE III. RESULTS FOR THE FIRST TEST PROBLEM 

       
ILU  
BiCGStab 9.60 31 133.04 59 

ILU 
GMRes 

1.22 
8.06 49 

9.28 
163.70 140 

LAMG  
BiCGStab 7.00 24 83.54 32 

LAMG  
GMRes 
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5.49 35 

34.35 
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The convergence history for this first case is presented in Fig. 
3. 

 

 
(a) 

 
(b) 

 
Fig. 3. Convergence history for first test problem – poisson3Da (a) and 

poisson3Db (b). 
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The second test problem in related to the threedimensional 
Poisson equation defined in a uniform grid on the cube [1,1]3. 
The spatial discretization of the Poisson equation uses 
Lagrange finiteelement functions and second order elements, 
both implemented in the C++ Finite Element Library  
LibMesh [26]. The resulting symmetric positive definite 
matrix has 29791 rows and 1771561 nonzero entries. 
 
In this case, the Algebraic Multigrid method with the lifting 
implementation was used as a standalone solver and as a 
preconditioner for the iterative Conjugate Gradient (CG) 
method and for BiCGStab. The results are shown in Table IV. 
For comparison, the standard Incomplete Cholesky (IC) 
preconditioner was used in this case. 

 
TABLE IV. NUMERICAL RESULTS FOR THE SECOND TEST PROBLEM 


 

   
LAMG 5 3.85 7.50 
LAMG
BiCGStab 3 4.58 8.23 

LAMGCG 3 

3.65 

4.04 7.69 
ICCG 10 2.59 9.37 
ICBiCGStab 5 6.78 2.08 8.86 

 
VI. APPLICATION IN THE TEAM 28 PROBLEM 

 
The performance of the proposed approach is also verified in 
the steadystate analysis of Compumag TEAM 28 Problem 
[27]. This problem relates to the modeling of an 
electrodynamic device which consists of two stationary 
concentric exciting coils interacting with a moveable round 
conducting plate. The used model, which was created using 
the Finite Element Method Magnetic (FEMM) [28], applies 
the Kelvin transformation [29] for investigating the steady
state levitation height of the plate. The resulting complex 
symmetric matrix has 54723 rows and 380957 nonzero entries. 
 
The LAMG method was used as a preconditioner for 
BiCGStab. Again, the results were compared with those 
obtained by the incomplete decompositions preconditioners IC 
and ILU. The results are shown in Table V. 
 
The magnetic flux density B (module) for this problem and the 
convergence history of the iterative methods are presented in 
Fig. 4 and 5, respectively. The stopping criterion for this case 
was to reduce the residual norm by 4 orders of magnitude. 
 

  
 

Fig. 4. Magnetic flux density B (module) 

 
TABLE V. NUMERICAL RESULTS FOR TEAM 28 PROBLEM. 
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   

LAMG 
BiCGStab 42 1.11 15.92 17.03 

ILUBiCGStab 244 0.36 81.17 81.53 
ICBiCGStab 223 0.58 33.99 34.57 

 

 
 

Fig. 5. Convergence performance for TEAM 28 Problem 
 

VII. A PARALLEL WAVELETBASED ALGEBRAIC MULTIGRID 
 
Especially in the context of large scale problems and 
massively parallel computing, the most desirable property of 
the multigrid approaches is its potential for algorithmic 
scalability: in the ideal case, for a matrix problem with  
unknowns, the number of iterative Vcycles required for 
convergence is independent of the problem size  and the 
work in the setup phase and in each Vcycle is linearly 
proportional to the problem size [3, 4]. For all this, the need to 
solve linear systems arising from problems posed on 
extremely large, unstructured grids has been generating great 
interest in parallelizing algebraic multigrid. 
 
This section presents a parallel algorithm for Waveletbased 
algebraic multigrid (PWAMG) using a variation of the parallel 
implementation of discrete wavelet transforms. As stated, this 
approach eliminates the grid coarsening process present at 
standard setup phase, simplifying significantly the 
implementation on distributed memory machines and allowing 
the use of PWAMG as a parallel “black box” solver and 
preconditioner.  
 
The first stage of the multiresolution process is calculated 
using a parallel multiple 1D DWT. It means that rows of the 
matrix are distributed among the processors in such a way that 
the 1D DWT may be calculated efficiently in the directions of 
the columns. Thus the resulting matrix will be assembled in a 
way that the second stage is calculated entirely locally [30]. 
 
In order to ensure no communication among processors in the 
setup phase, we distributed the rows of the matrix in blocks of 
2 ,  ∈ℤ . 
 
In the solver phase the communications among processors are 
necessary only for operations involving matrices. In a matrix 
vector product   ⋅ = , for example, the matrix  is 
distributed by rows, the vector  is shared by all processors 
and the vector  is calculated in parallel as illustrated in Fig. 6, 
for 4 processors. Then the resulting vector  is updated by the 

The second test problem in related to the threedimensional 
Poisson equation defined in a uniform grid on the cube [1,1]3. 
The spatial discretization of the Poisson equation uses 
Lagrange finiteelement functions and second order elements, 
both implemented in the C++ Finite Element Library  
LibMesh [26]. The resulting symmetric positive definite 
matrix has 29791 rows and 1771561 nonzero entries. 
 
In this case, the Algebraic Multigrid method with the lifting 
implementation was used as a standalone solver and as a 
preconditioner for the iterative Conjugate Gradient (CG) 
method and for BiCGStab. The results are shown in Table IV. 
For comparison, the standard Incomplete Cholesky (IC) 
preconditioner was used in this case. 

 
TABLE IV. NUMERICAL RESULTS FOR THE SECOND TEST PROBLEM 


 

   
LAMG 5 3.85 7.50 
LAMG
BiCGStab 3 4.58 8.23 

LAMGCG 3 

3.65 

4.04 7.69 
ICCG 10 2.59 9.37 
ICBiCGStab 5 6.78 2.08 8.86 

 
VI. APPLICATION IN THE TEAM 28 PROBLEM 

 
The performance of the proposed approach is also verified in 
the steadystate analysis of Compumag TEAM 28 Problem 
[27]. This problem relates to the modeling of an 
electrodynamic device which consists of two stationary 
concentric exciting coils interacting with a moveable round 
conducting plate. The used model, which was created using 
the Finite Element Method Magnetic (FEMM) [28], applies 
the Kelvin transformation [29] for investigating the steady
state levitation height of the plate. The resulting complex 
symmetric matrix has 54723 rows and 380957 nonzero entries. 
 
The LAMG method was used as a preconditioner for 
BiCGStab. Again, the results were compared with those 
obtained by the incomplete decompositions preconditioners IC 
and ILU. The results are shown in Table V. 
 
The magnetic flux density B (module) for this problem and the 
convergence history of the iterative methods are presented in 
Fig. 4 and 5, respectively. The stopping criterion for this case 
was to reduce the residual norm by 4 orders of magnitude. 
 

  
 

Fig. 4. Magnetic flux density B (module) 

 
TABLE V. NUMERICAL RESULTS FOR TEAM 28 PROBLEM. 

  
   

LAMG 
BiCGStab 42 1.11 15.92 17.03 

ILUBiCGStab 244 0.36 81.17 81.53 
ICBiCGStab 223 0.58 33.99 34.57 

 

 
 

Fig. 5. Convergence performance for TEAM 28 Problem 
 

VII. A PARALLEL WAVELETBASED ALGEBRAIC MULTIGRID 
 
Especially in the context of large scale problems and 
massively parallel computing, the most desirable property of 
the multigrid approaches is its potential for algorithmic 
scalability: in the ideal case, for a matrix problem with  
unknowns, the number of iterative Vcycles required for 
convergence is independent of the problem size  and the 
work in the setup phase and in each Vcycle is linearly 
proportional to the problem size [3, 4]. For all this, the need to 
solve linear systems arising from problems posed on 
extremely large, unstructured grids has been generating great 
interest in parallelizing algebraic multigrid. 
 
This section presents a parallel algorithm for Waveletbased 
algebraic multigrid (PWAMG) using a variation of the parallel 
implementation of discrete wavelet transforms. As stated, this 
approach eliminates the grid coarsening process present at 
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way that the second stage is calculated entirely locally [30]. 
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for 4 processors. Then the resulting vector  is updated by the 
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processors through MPI message passing. This task is 
accomplished by using the MPI collective communication 
function MPI_Allgather [31]. The MPI_Allgather function 
effect is show in Fig. 7. 
 

 
 

Fig. 6. The proposed parallel matrixvector product 
 

 
 

Fig. 7. The effect of the  function 
 

VIII. DESCRIPTION OF THE PARALLEL TEST PROBLEMS 
 
In this section, we present some numerical examples 
concerning the solution of the Poisson equation in two 
dimensions (2D). Owing to its scientific importance and 
challenge, the development of new and efficient methods to 
solve the Poisson equation is always welcome. 
 
The Poisson equation describes the electrostatic potential 
caused by a fixed charge distribution and plays a fundamental 
role in many physical processes. 
 
In the first test problem, we consider the Poisson equation on a 
unit square with Dirichlet boundary conditions. In this case, 
the Poisson operator is discretized by the standard 5point 
difference stencil (8) 
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where  is the internodal spacing. 
 
In the next test, the same Poisson problem is solved with the 
highorder 9point difference stencil (9) 
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Finally, we solved the anisotropic equation (10) in the same 
unit square domain with Dirichlet boundary conditions. This is 
an important test because many physical problems are strongly 
anisotropic. 
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The discrete operator for this problem was obtained by the 
following standard 5Point difference stencil 
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with 0.01.ε =  This same operator in (11) can be gotten using 
the standard 5point stencil for the pure Poisson operator on a 
stretched grid with    ε= , where  and  are 
respectively the internodal spacing in  and  directions. 
 
All these problems were presented by Chang e Huang in [32]. 
The authors proposed several new approaches for improving 
the AMG method and they used these problems to evaluate the 
performances of their AMG algorithms. The numerical results 
presented by them will be literally transcribed here for 
comparison. 
 

IX. PARALLEL NUMERICAL RESULTS 
 
The parallel algorithm uses the version two of the Message 
Passing Interface (MPI2) that provides a standard for message 
passing for parallel computers and workstation clusters.  
 
The parallel implementation is based on the Discrete Wavelet 
Transform with filters of Daubechies of length 2, avoiding any 
communication among processors in the setup phase. A hybrid 
JacobiGauss method was used as smoother and the Vcycle 
for the resolution scheme. 
 
The PWAMG has been implemented using in C++ and tested 
in a homogeneous Beowulf cluster with 4 machine nodes 
connected to the switch with Gigabit network, as illustrated in 
Fig. 8. The characteristics of the machines are detailed in 
Table VI. 
 

 
 

Fig. 8. The Beowulf LINUX Cluster architecture 
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TABLE VI. CLUSTER MACHINES CHARACTERISTICS 
 

1 AMD Athlon(tm) XP 2400+ 1.99 GHz  
1 GB RAM 

2 AMD Athlon(tm) XP 2400+ 1.99 GHz  
1 GB RAM 

3 AMD Athlon(tm) XP 2400+ 1.99 GHz  
1 GB RAM 

4 AMD Athlon(tm) XP 2400+ 1.99 GHz  
1 GB RAM 

 
The PWAMG method has been tested in the problems 
described in the last section, for different numbers of finite 
difference mesh nodes. Comparisons are made with the 
sequential version of this method and with some of the most 
advanced and current AMG algorithms presented in [32]. So, 
the results reported here use the following notation that is the 
same notation used in that work: 

 
ρ  asymptotic convergence factor 
 number of processors 

  computing time for the solution phase 

  computing time for the setup phase 

 number of iterations for convergence 
 total number of matrix equations 

 
In all cases, the convergence is defined by 6|| || || || 10  −≤ , 
where  is the residual vector at the th iteration and the right 
hand side vector  is chosen so that the solution is a vector 
with all the elements equal to 1.0. 
 
Like in [32], only one smoothing step is applied before and 
after coarsegrid correction steps.  
 
Table VII gives the numerical results for the first test problem. 
In this case, finite difference meshes with 4096 and 16384 
nodes have been used and the resulting linear systems solved 
with a sequential version of PWAMG method. The results are 
compared with those achieved by the single processor 
algorithms presented in [32] (methods IVIII). 
 

TABLE VII. NUMERICAL RESULTS FOR 

  ρ      
I 0.021 4 0.17 0.12 
II 0.017 4 0.16 0.10 
III 0.062 5 0.05 0.16 
IV 0.078 6 0.06 0.16 
V 0.020 4 0.11 0.11 
VI 0.017 4 0.11 0.17 
VII 0.018 4 0.11 0.11 
VIII 0.018 4 0.11 0.11 

WAMG 

4096 

0.010 3 0.04 0.16 
I 0.022 4 0.61 0.61 
II 0.017 4 0.71 0.40 
III 0.079 6 0.28 0.50 
IV 0.087 6 0.45 0.55 
V 0.020 4 0.44 0.43 
VI 0.017 4 0.61 0.50 
VII 0.017 4 0.44 0.49 
VIII 0.017 4 0.44 0.54 

WAMG 

16384 

0.010 3 0.15 0.65 
 

The computational results obtained by PWAMG for this same 
problem in meshes with larger number of nodes are given in 
Table VIII.  
 
The results for time presented in all tables are given separately 
for setup phase and solver phase. These times are in seconds 
and have been presented for PWAMG, in tables III, IV and V, 
in the form 1 2  , where 1 is the processing time returned by 
the C  function and 2 is the total time spent in the 
corresponding phase, which includes the MPI communication 
time and is measured using the MPI function . 
Of course, for single processor algorithms the times 1 and 2 
are the same. 
 
Table VIII shows that the setup time results from 
 and  functions are very similar. 
This indicates the absence of communication in the setup 
phase that represents a great advantage of the approach 
proposed here. 
 

TABLE VIII. PWAMG METHOD FOR THE FIRST TEST PROBLEM (8) 

      
1 3 0.04 0.15 

0.02/0.03 0.06/0.14 2 3 0.02/0.02 0.02/0.14 
0.01/0.01 0.04/0.17 
0.01/0.01 0.01/0.17 
0.01/0.01 0.02/0.17 

4096 

4 3 

0.01/0.01 0.01/0.17 
1 3 0.15 0.65 

0.08/0.11 0.23/0.35 2 3 0.08/0.08 0.14/0.35 
0.04/0.09 0.20/0.33 
0.03/0.03 0.11/0.32 
0.03/0.03 0.10/0.32 

16384 

4 3 

0.03/0.03 0.08/0.32 
1 3 0.63 2.70 

0.32/0.36 1.09/1.46 2 3 0.30/0.30 0.77/1.45 
0.17/0.24 0.90/1.36 
0.16/0.16 0.49/1.36 
0.14/0.14 0.55/1.36 

65536 

4 3 

0.13/0.14 0.52/1.35 
1 3 2.57 10.76 

1.32/1.46 4.58/5.17 2 3 
1.25/1.25 3.61/5.13 
0.73/0.88 3.42/5.07 
0.69/0.69 2.28/5.01 
0.59/0.59 2.36/4.99 

262144 

4 3 

0.60/0.60 2.27/4.98 
1 3 10.54 43.68 

5.38/5.70 18.05/20.71 2 3 5.12/5.12 13.76/20.56 
2.95/3.22 13.23/19.83 
2.83/2.83 9.60/19.73 
2.40/2.40 8.34/19.65 

1048576 

4 3 

2.40/2.40 9.24/19.73 
 

The PWAMG method was also applied to the other two 
problems. A finite difference mesh with 16384 nodes was used 
for the Poisson equation discretized with the 9point stencil (9) 
and another mesh with 4096 nodes for the anisotropic 
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compared with those achieved by the single processor 
algorithms presented in [32] (methods IVIII). 
 

TABLE VII. NUMERICAL RESULTS FOR 

  ρ      
I 0.021 4 0.17 0.12 
II 0.017 4 0.16 0.10 
III 0.062 5 0.05 0.16 
IV 0.078 6 0.06 0.16 
V 0.020 4 0.11 0.11 
VI 0.017 4 0.11 0.17 
VII 0.018 4 0.11 0.11 
VIII 0.018 4 0.11 0.11 

WAMG 

4096 

0.010 3 0.04 0.16 
I 0.022 4 0.61 0.61 
II 0.017 4 0.71 0.40 
III 0.079 6 0.28 0.50 
IV 0.087 6 0.45 0.55 
V 0.020 4 0.44 0.43 
VI 0.017 4 0.61 0.50 
VII 0.017 4 0.44 0.49 
VIII 0.017 4 0.44 0.54 

WAMG 

16384 

0.010 3 0.15 0.65 
 

The computational results obtained by PWAMG for this same 
problem in meshes with larger number of nodes are given in 
Table VIII.  
 
The results for time presented in all tables are given separately 
for setup phase and solver phase. These times are in seconds 
and have been presented for PWAMG, in tables III, IV and V, 
in the form 1 2  , where 1 is the processing time returned by 
the C  function and 2 is the total time spent in the 
corresponding phase, which includes the MPI communication 
time and is measured using the MPI function . 
Of course, for single processor algorithms the times 1 and 2 
are the same. 
 
Table VIII shows that the setup time results from 
 and  functions are very similar. 
This indicates the absence of communication in the setup 
phase that represents a great advantage of the approach 
proposed here. 
 

TABLE VIII. PWAMG METHOD FOR THE FIRST TEST PROBLEM (8) 

      
1 3 0.04 0.15 

0.02/0.03 0.06/0.14 2 3 0.02/0.02 0.02/0.14 
0.01/0.01 0.04/0.17 
0.01/0.01 0.01/0.17 
0.01/0.01 0.02/0.17 

4096 

4 3 

0.01/0.01 0.01/0.17 
1 3 0.15 0.65 

0.08/0.11 0.23/0.35 2 3 0.08/0.08 0.14/0.35 
0.04/0.09 0.20/0.33 
0.03/0.03 0.11/0.32 
0.03/0.03 0.10/0.32 

16384 

4 3 

0.03/0.03 0.08/0.32 
1 3 0.63 2.70 

0.32/0.36 1.09/1.46 2 3 0.30/0.30 0.77/1.45 
0.17/0.24 0.90/1.36 
0.16/0.16 0.49/1.36 
0.14/0.14 0.55/1.36 

65536 

4 3 

0.13/0.14 0.52/1.35 
1 3 2.57 10.76 

1.32/1.46 4.58/5.17 2 3 
1.25/1.25 3.61/5.13 
0.73/0.88 3.42/5.07 
0.69/0.69 2.28/5.01 
0.59/0.59 2.36/4.99 

262144 

4 3 

0.60/0.60 2.27/4.98 
1 3 10.54 43.68 

5.38/5.70 18.05/20.71 2 3 5.12/5.12 13.76/20.56 
2.95/3.22 13.23/19.83 
2.83/2.83 9.60/19.73 
2.40/2.40 8.34/19.65 

1048576 

4 3 

2.40/2.40 9.24/19.73 
 

The PWAMG method was also applied to the other two 
problems. A finite difference mesh with 16384 nodes was used 
for the Poisson equation discretized with the 9point stencil (9) 
and another mesh with 4096 nodes for the anisotropic 
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problem. In both cases, the results obtained are compared 
again with those results of the methods in [32] and with the 
WAMG. These results are given in Tables IX and X. 
 
From the numerical results, we can observe the efficiency of 
the PWAMG to solve the Poisson equation. It is interesting 
because the solution of the Poisson equation is a nontrivial 
task, since it involves large linear matrix equations. 
 

TABLE IX. NUMERICAL RESULTS FOR THE SECOND TEST PROBLEM 
      

I 1 6 0.55 0.60 
II 1 5 0.66 0.44 
III 1 6 0.44 .055 
IV 1 6 0.50 0.52 
V 1 5 0.60 0.51 
VI 1 5 0.72 0.51 
VII 1 5 0.60 0.50 
VIII 1 5 0.52 0.50 

1 3 0.16 0.72 
0.08/0.12 0.24/0.38 2 3 0.09/0.09 0.16/0.38 
0.05/0.06 0.22/0.35 
0.04/0.04 0.14/0.34 
0.04/0.04 0.12/0.34 

PWAMG 

4 3 

0.04/0.04 0.10/0.34 
 

TABLE X. NUMERICAL RESULTS FOR ANISOTROPIC PROBLEM 
      

I 1 4 0.16 0.16 
II 1 4 0.16 0.11 
III 1 4 0.06 0.11 
IV 1 5 0.11 0.05 
V 1 4 0.11 0.16 
VI 1 3 0.11 0.10 
VII 1 3 0.11 0.13 
VIII 1 3 0.11 0.16 

1 3 0.05 0.23 
0.02/0.03 0.09/0.22 2 3 0.02/0.02 0.03/0.22 
0.01/0.01 0.06/0.26 
0.01/0.01 0.01/0.26 
0.01/0.01 0.02/0.26 

PWAMG 

4 3 

0.01/0.01 0.01/0.26 
 
As usual, the parallel performance analysis for the results 
presented in tables above was characterized using the absolute 
speedup which is defined as 
 

S = speedup() = (1)/()  (11) 
 

in which (1) is the time spent by the best sequential 
WAMG algorithm and () is the time required by the 
parallel method executing on  processors [33].  
 
The speedup for setup and solver times and the speedup total 
are illustrated in Fig. 9 for the results presented in Table VIII. 
The efficiency of the parallel method for these cases is 
reported in Table XI. Efficiency is a performance metric 
which estimates how wellutilized the processors are in 
solving the problem and it is defined as follow [33]: 
 

E = S/   (10) 
 

 
 

Fig. 9. Parallel speedup for first test problem 
 

TABLE XI. EFFICIENCY OF THE PARALLEL METHOD FOR THE FIRST 
PROBLEM 

 16384 65536 262144 1048576 
2 0,87 0,91 1,00 1,03 
4 0,48 0,55 0,56 0,59 

 
According to Table XI, the parallel method was more efficient 
for bigger problems, as is characteristic of the multilevel 
approaches. For these bigger problems the parallel efficiency 
was about 60%. When 2 processors were used the method 
reached a little more than the linear speedup. However, for 4 
processors, the speedup was less than the linear as can be seen 
in Fig. 9. 
 

X. CONCLUSIONS 
 
The proposed approach seems to be very promising. The use 
of the lifting technique allows creating an efficient 
preconditioner, as can be seen from the number of LAMG 
steps in Tables III, IV and V. It is important to mention that 
the LAMG can be applied as a preconditioner for both 
symmetric and unsymmetric systems as presented in the two 
first test problems. Moreover, the method also can be used as a 
standalone solver.  
 
Overall, in spite of the relatively large setup times compared 
to standard preconditioners IC and ILU, the LAMG 
preconditioner accelerates the iteration process and it gave a 
lower number of iterations and the smaller total time, even for 
the unsymmetric systems from real 3D computational fluid 
dynamics problems (Table III) and for the complex valued 
symmetric system arising from the steadystate analysis of 
Compumag TEAM 28 Problem (Table V), which, in general, 
can be very difficult to solve by iterative methods [30]. In fact, 
the approach based on a combination of the discrete wavelet 
transform and the algebraic multigrid method, which has been 
improved in this paper, has already proved to be efficient for 
other complex and critical 3D problems as, for example, the 
problem of timeharmonic electromagnetic behavior of a 
substation grounding system formulated in terms of ungauged 
 edge finiteelement analysis [13]. 
 
The significantly better performance of the LAMG for the 
complex problem can be partially credited to the difficult of 
the preconditioning techniques based on incomplete 
factorizations, as ILU and IC, to solve complex valued linear 
systems due to the appearance of unstable pivots during the 
incomplete factorization process [34, 35]. This LAMG 
performance for this kind of problem is especially interesting 
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substation grounding system formulated in terms of ungauged 
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factorizations, as ILU and IC, to solve complex valued linear 
systems due to the appearance of unstable pivots during the 
incomplete factorization process [34, 35]. This LAMG 
performance for this kind of problem is especially interesting 
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because, curiously, there is not much literature available on 
iterative solvers and preconditioners for complex symmetric 
problems, given the number of diverse applications in which 
these problems arise. However, in order to explain correctly 
the differences of the convergence between the different 
problems a theoretical spectral analysis should to be 
accomplished, but such an analysis is out of the scope of this 
paper. 
 
It is important to highlight that as the LAMG algorithm 
implemented in this work uses the Daubechies 2 filters its 
efficiency is similar to the standard waveletbased algebraic 
multigrid (Table I). However, the other advantages presented 
in section III are kept, especially, the inherently parallel 
feature and the capacity to transform signals with an arbitrary 
length (need not be 2), which has allowed to develop very 
appropriate algorithms in the Finite Element context. 
 
As for the parallel method, the proposed algorithm has been 
applied as a blackbox solver in some numerical Poisson 
problems with good results. The obtained results for different 
problem sizes are compared with those achieved by some of 
the most advanced and current single processor AMG 
algorithms, demonstrating the efficiency of the new approach. 

 
Like the standard AMG, this method has the very important 
scalability property that can be observed in table VIII, which 
shows the number of iterations required for PWAMG 
convergence for different numbers of matrix equations. 
 
Other important characteristic of the PWAMG method is its 
small demand for interprocessors communication. Actually, no 
communication is required in setup phase when first order 
filters are used. This characteristic is confirmed by the results 
for setup time presented in table VIII, only observing that the 
times measured by  and  functions 
are practically the same ones. 
 
Additionally, the results have shown that the parallel method 
was more efficient for large problems, as is characteristic of 
the multilevel approaches. The parallel efficiency for the 
bigger Poisson problems tested was about 60%. When 2 
processors were used the method reached a little more than the 
linear speedup and for 4 processors the speedup was less than 
the linear. In spite of this fact, it is worth pointing out some 
important aspects of this application: in the context of large 
sparse linear system of equations where this paper is inserted, 
the problems have large memory requirements. In these cases, 
as presented in [33], the speedup necessary to be costeffective 
can be much less than linear. The parallel program does not 
need  times memory of the unit processor, since parallelizing 
a job rarely multiplies its memory requirements by . 
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because, curiously, there is not much literature available on 
iterative solvers and preconditioners for complex symmetric 
problems, given the number of diverse applications in which 
these problems arise. However, in order to explain correctly 
the differences of the convergence between the different 
problems a theoretical spectral analysis should to be 
accomplished, but such an analysis is out of the scope of this 
paper. 
 
It is important to highlight that as the LAMG algorithm 
implemented in this work uses the Daubechies 2 filters its 
efficiency is similar to the standard waveletbased algebraic 
multigrid (Table I). However, the other advantages presented 
in section III are kept, especially, the inherently parallel 
feature and the capacity to transform signals with an arbitrary 
length (need not be 2), which has allowed to develop very 
appropriate algorithms in the Finite Element context. 
 
As for the parallel method, the proposed algorithm has been 
applied as a blackbox solver in some numerical Poisson 
problems with good results. The obtained results for different 
problem sizes are compared with those achieved by some of 
the most advanced and current single processor AMG 
algorithms, demonstrating the efficiency of the new approach. 

 
Like the standard AMG, this method has the very important 
scalability property that can be observed in table VIII, which 
shows the number of iterations required for PWAMG 
convergence for different numbers of matrix equations. 
 
Other important characteristic of the PWAMG method is its 
small demand for interprocessors communication. Actually, no 
communication is required in setup phase when first order 
filters are used. This characteristic is confirmed by the results 
for setup time presented in table VIII, only observing that the 
times measured by  and  functions 
are practically the same ones. 
 
Additionally, the results have shown that the parallel method 
was more efficient for large problems, as is characteristic of 
the multilevel approaches. The parallel efficiency for the 
bigger Poisson problems tested was about 60%. When 2 
processors were used the method reached a little more than the 
linear speedup and for 4 processors the speedup was less than 
the linear. In spite of this fact, it is worth pointing out some 
important aspects of this application: in the context of large 
sparse linear system of equations where this paper is inserted, 
the problems have large memory requirements. In these cases, 
as presented in [33], the speedup necessary to be costeffective 
can be much less than linear. The parallel program does not 
need  times memory of the unit processor, since parallelizing 
a job rarely multiplies its memory requirements by . 
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