
ICS Newsletter 3





 


   
       
       
   
      
       
        

      
         
          

      
        
         



I. INTRODUCTION

The multigrid method (MG) is a wellgrounded numerical
technique for solving large sparse linear systems of algebraic
equations. The method can be used as an iterative solver or as
a preconditioner for one appropriate iterative method. This
technique explores the use of some levels to eliminate the
highfrequency or oscillatory components of the error, which
are not efficiently removed by basic iterative methods, as
Jacobi or GaussSeidel [1].

In contrast to the standard geometric multigrid method, which
demands explicitly a hierarchy of meshes, the algebraic
multigrid (AMG) constructs a hierarchy of matrices and
transfer operators just based on the information from the
original matrix [2]. Thus, when the problem involves irregular
domains and unstructured meshes, or when the interest is
focused on the so called blackbox solver which requires only
information contained in the matrix of the system, or even
when the matrix is very large and illconditioned as in 3D
electromagnetic problems, the AMG method is very
appropriate. However, the use of AMG presents some
difficulties, especially regarding to the choice of the strength
threshold in the coarsening process.

The coarsening scheme, for traditional AMG, can lead to
computational complexity growth as the problem size
increases, resulting in an elevated memory use and execution
time, and in a reduced scalability [3]. Moreover, the
coarsening process is inherently sequential in nature that
makes difficult the implementation on distributed memory
machines [4]. On the other hand, classical AMG cannot
directly be applied to problems in which the coefficient matrix
violates the Mmatrix property like, for example, ungauged
edgebased finiteelement (FE) analysis. In this context,
simple approaches such as the use of a shifted coefficient
matrix have a limited efficiency [5].

The combination of wavelet and the algebraic multigrid has
been explored to overcome these difficulties. The similarities

between the multigrid methods and wavelets arising from
multiresolution analysis were first brought out by Briggs and
Henson [6]. They observed that the space of fine grid vectors
in multigrid scheme and the space of highest resolution in
multiresolution are correlated.

Over the last few years, several works are exploiting these
similarities [7–14]. In [7], it is made an exploration of the idea
of Briggs to develop wavelet based interpolation and
restriction operators in the geometric multigrid context. It
compares the results with the geometric multigrid schemes
using the conventional intergrid operators, and obtains results
similar to the ones obtained with the standard procedure.

The use of the discrete wavelet transform (DWT) in the
construction of the matrices hierarchy and the transfer
operators in the AMG method was proposed by these authors
in [11], producing a new method called WAMG. In that
approach a modified DWT, using only lowpass filter bank,
was applied to produce an approximation of the original
matrix in each level of the multiresolution process, eliminating
the standard coarsening process.

The WAMG has revealed to be a very efficient and promising
method for several problems related to the computation of
electromagnetic fields, in both serial and parallel computation
[11], [13, 14]. The method can be either used as an iterative
solver or as a preconditioning technique, presenting in many
cases a better performance than some of the most advanced
and current AMG algorithms [14].

Due to the WAMG efficiency and potentiality, further
researches have been carried out for its improvement [15],
[16]. This paper is part of this effort.

In order to accomplish this task this work build a modified
discrete wavelet transform using the tool called the lifting
scheme [17]. The lifting technique is a method introduced by
W. Sweldens [18], which allows some improvements on the
properties of existing wavelet transforms. The technique has
some numerical advantages as a reduced number of floating
point operations which are fundamental in the context of the
iterative solvers.

II. THE ALGEBRAIC MULTIGRID METHOD

Denoting for  the space of the variables of the system in a
level , and for 1 + one subspace of  (1  + ⊂), the
algorithm of the standard AMG consists of the following
components [1, 2]:

•  : define the splitting   ω ω ω= ∪
where ω is the set of all the variables of the system in level
, ω and ω are, respectively, the set of the variables that





 


   
       
       
   
      
       
        

      
         
          

      
        
         



I. INTRODUCTION

The multigrid method (MG) is a wellgrounded numerical
technique for solving large sparse linear systems of algebraic
equations. The method can be used as an iterative solver or as
a preconditioner for one appropriate iterative method. This
technique explores the use of some levels to eliminate the
highfrequency or oscillatory components of the error, which
are not efficiently removed by basic iterative methods, as
Jacobi or GaussSeidel [1].

In contrast to the standard geometric multigrid method, which
demands explicitly a hierarchy of meshes, the algebraic
multigrid (AMG) constructs a hierarchy of matrices and
transfer operators just based on the information from the
original matrix [2]. Thus, when the problem involves irregular
domains and unstructured meshes, or when the interest is
focused on the so called blackbox solver which requires only
information contained in the matrix of the system, or even
when the matrix is very large and illconditioned as in 3D
electromagnetic problems, the AMG method is very
appropriate. However, the use of AMG presents some
difficulties, especially regarding to the choice of the strength
threshold in the coarsening process.

The coarsening scheme, for traditional AMG, can lead to
computational complexity growth as the problem size
increases, resulting in an elevated memory use and execution
time, and in a reduced scalability [3]. Moreover, the
coarsening process is inherently sequential in nature that
makes difficult the implementation on distributed memory
machines [4]. On the other hand, classical AMG cannot
directly be applied to problems in which the coefficient matrix
violates the Mmatrix property like, for example, ungauged
edgebased finiteelement (FE) analysis. In this context,
simple approaches such as the use of a shifted coefficient
matrix have a limited efficiency [5].

The combination of wavelet and the algebraic multigrid has
been explored to overcome these difficulties. The similarities

between the multigrid methods and wavelets arising from
multiresolution analysis were first brought out by Briggs and
Henson [6]. They observed that the space of fine grid vectors
in multigrid scheme and the space of highest resolution in
multiresolution are correlated.

Over the last few years, several works are exploiting these
similarities [7–14]. In [7], it is made an exploration of the idea
of Briggs to develop wavelet based interpolation and
restriction operators in the geometric multigrid context. It
compares the results with the geometric multigrid schemes
using the conventional intergrid operators, and obtains results
similar to the ones obtained with the standard procedure.

The use of the discrete wavelet transform (DWT) in the
construction of the matrices hierarchy and the transfer
operators in the AMG method was proposed by these authors
in [11], producing a new method called WAMG. In that
approach a modified DWT, using only lowpass filter bank,
was applied to produce an approximation of the original
matrix in each level of the multiresolution process, eliminating
the standard coarsening process.

The WAMG has revealed to be a very efficient and promising
method for several problems related to the computation of
electromagnetic fields, in both serial and parallel computation
[11], [13, 14]. The method can be either used as an iterative
solver or as a preconditioning technique, presenting in many
cases a better performance than some of the most advanced
and current AMG algorithms [14].

Due to the WAMG efficiency and potentiality, further
researches have been carried out for its improvement [15],
[16]. This paper is part of this effort.

In order to accomplish this task this work build a modified
discrete wavelet transform using the tool called the lifting
scheme [17]. The lifting technique is a method introduced by
W. Sweldens [18], which allows some improvements on the
properties of existing wavelet transforms. The technique has
some numerical advantages as a reduced number of floating
point operations which are fundamental in the context of the
iterative solvers.

II. THE ALGEBRAIC MULTIGRID METHOD

Denoting for  the space of the variables of the system in a
level , and for 1 + one subspace of  (1  + ⊂), the
algorithm of the standard AMG consists of the following
components [1, 2]:

•  : define the splitting   ω ω ω= ∪
where ω is the set of all the variables of the system in level
, ω and ω are, respectively, the set of the variables that





 


   
       
       
   
      
       
        

      
         
          

      
        
         



I. INTRODUCTION

The multigrid method (MG) is a wellgrounded numerical
technique for solving large sparse linear systems of algebraic
equations. The method can be used as an iterative solver or as
a preconditioner for one appropriate iterative method. This
technique explores the use of some levels to eliminate the
highfrequency or oscillatory components of the error, which
are not efficiently removed by basic iterative methods, as
Jacobi or GaussSeidel [1].

In contrast to the standard geometric multigrid method, which
demands explicitly a hierarchy of meshes, the algebraic
multigrid (AMG) constructs a hierarchy of matrices and
transfer operators just based on the information from the
original matrix [2]. Thus, when the problem involves irregular
domains and unstructured meshes, or when the interest is
focused on the so called blackbox solver which requires only
information contained in the matrix of the system, or even
when the matrix is very large and illconditioned as in 3D
electromagnetic problems, the AMG method is very
appropriate. However, the use of AMG presents some
difficulties, especially regarding to the choice of the strength
threshold in the coarsening process.

The coarsening scheme, for traditional AMG, can lead to
computational complexity growth as the problem size
increases, resulting in an elevated memory use and execution
time, and in a reduced scalability [3]. Moreover, the
coarsening process is inherently sequential in nature that
makes difficult the implementation on distributed memory
machines [4]. On the other hand, classical AMG cannot
directly be applied to problems in which the coefficient matrix
violates the Mmatrix property like, for example, ungauged
edgebased finiteelement (FE) analysis. In this context,
simple approaches such as the use of a shifted coefficient
matrix have a limited efficiency [5].

The combination of wavelet and the algebraic multigrid has
been explored to overcome these difficulties. The similarities

between the multigrid methods and wavelets arising from
multiresolution analysis were first brought out by Briggs and
Henson [6]. They observed that the space of fine grid vectors
in multigrid scheme and the space of highest resolution in
multiresolution are correlated.

Over the last few years, several works are exploiting these
similarities [7–14]. In [7], it is made an exploration of the idea
of Briggs to develop wavelet based interpolation and
restriction operators in the geometric multigrid context. It
compares the results with the geometric multigrid schemes
using the conventional intergrid operators, and obtains results
similar to the ones obtained with the standard procedure.

The use of the discrete wavelet transform (DWT) in the
construction of the matrices hierarchy and the transfer
operators in the AMG method was proposed by these authors
in [11], producing a new method called WAMG. In that
approach a modified DWT, using only lowpass filter bank,
was applied to produce an approximation of the original
matrix in each level of the multiresolution process, eliminating
the standard coarsening process.

The WAMG has revealed to be a very efficient and promising
method for several problems related to the computation of
electromagnetic fields, in both serial and parallel computation
[11], [13, 14]. The method can be either used as an iterative
solver or as a preconditioning technique, presenting in many
cases a better performance than some of the most advanced
and current AMG algorithms [14].

Due to the WAMG efficiency and potentiality, further
researches have been carried out for its improvement [15],
[16]. This paper is part of this effort.

In order to accomplish this task this work build a modified
discrete wavelet transform using the tool called the lifting
scheme [17]. The lifting technique is a method introduced by
W. Sweldens [18], which allows some improvements on the
properties of existing wavelet transforms. The technique has
some numerical advantages as a reduced number of floating
point operations which are fundamental in the context of the
iterative solvers.

II. THE ALGEBRAIC MULTIGRID METHOD

Denoting for  the space of the variables of the system in a
level , and for 1 + one subspace of  (1  + ⊂), the
algorithm of the standard AMG consists of the following
components [1, 2]:

•  : define the splitting   ω ω ω= ∪
where ω is the set of all the variables of the system in level
, ω and ω are, respectively, the set of the variables that

ICS Newsletter 4

will and will not form the subspace 1 + , all represented by
their respective indexes;

• :

prolongation 1 1P :
   + + → (1)

restriction 1 T
1P [P] 

 
+

+= (2)

• :

1 1
1A P A P   

 
+ +

+= (3)

• : basic iterative Jacobitype method
that eliminates the oscillatory components of the error.

Overall, the first two components described above, are the
most important of the AMG setup phase [1, 2]. These stages
determine the subspace dimension, and, consequently, the
matrix dimension in the corresponding level.

The splitting defined in the coarsening process is based on a
concept of influence and dependence, formalized in the
following definitions [1]:

Given a threshold value 0 1α< < , the variable
(point)   on the variable (point)  if

max  
 α

≠
≥ ⋅ (4)

that is, the grid point  strongly depends on grid point  if the
coefficient  is comparable in magnitude to the largest off
diagonal coefficient in the th equation.

  If the variable  strongly depends on the
variable  , then the variable    the
variable  .

This standard procedure of the AMG presents two great
difficulties in relation to the coarsening process, that is, the
stage of selection of the subsystem variables. The first great
difficulty is the choice of the parameter α , present in the
equation (4). The value of this parameter strongly influences
the quality of the process. Usually, this parameter is fixed in
0.25, but this choice not always produces the best results. The
definition of adaptive value to the strength threshold α , as
done in [19], can overcome this difficulty in some cases.

The second difficulty is related to the parallelization of the
AMG method in distributed memory computers. The
coarsening process is included in the core of the AMG setup
phase and is inherently sequential in nature. Moreover, The
coarsening scheme can lead to computational complexity
growth as the problem size increases, resulting in an elevated
memory use and execution time, and in a reduced scalability
Some works have exclusively been looking for the solution of
this important problem [2022].

III. THE WAVELETBASED ALGEBRAIC MULTIGRID

The key point of the WAMG is the application of a modified
(incomplete) DWT, as a filter bank with only lowpass filters,
to generate the hierarchy of matrices in the AMG method.

The standard DWT corresponds to the application of low
pass and highpass filters, followed by the elimination of one

out of two samples (decimation or sub sampling). The discrete
signal, which in one dimension is represented by a vector of
values, is filtered by a set of digital filters that are associated
to the wavelet adopted in the analysis. Then, starting from a
vector ()  at level 0, two sets of coefficients are generated
in each level  of the process: a set  of wavelets coefficients
(detail coefficients) and a set  of coefficients called
“approximation coefficients.” This procedure can be applied
again, now using  as an input vector to create new
coefficients 1 + and 1 + , and successively. This procedure is

illustrated in Fig. 1. The symbol 2↓ represents the operation
of decimation by 2. This operation keeps unaltered the vector
dimension at the end of the process. Blocks H and G represent,
respectively, the lowpass and highpass filters.

Fig. 1. Three levels of the onedimensional discrete wavelet transform

In the 2D case, in which the discrete signal is represented by
a matrix, the DWT is obtained through the application of
successive steps of 1D transform into the rows and columns
of the matrix. This process generates a matrix formed by four
types of coefficients: the approximation coefficients and the
detail coefficients (horizontal, vertical, and diagonal), as
illustrated in Fig. 2.

Fig. 2. The twodimensional DWT: onedimensional transform in the rows
and columns of the matrix

will and will not form the subspace 1 + , all represented by
their respective indexes;

• :

prolongation 1 1P :
   + + → (1)

restriction 1 T
1P [P] 

 
+

+= (2)

• :

1 1
1A P A P   

 
+ +

+= (3)

• : basic iterative Jacobitype method
that eliminates the oscillatory components of the error.

Overall, the first two components described above, are the
most important of the AMG setup phase [1, 2]. These stages
determine the subspace dimension, and, consequently, the
matrix dimension in the corresponding level.

The splitting defined in the coarsening process is based on a
concept of influence and dependence, formalized in the
following definitions [1]:

Given a threshold value 0 1α< < , the variable
(point)   on the variable (point)  if

max  
 α

≠
≥ ⋅ (4)

that is, the grid point  strongly depends on grid point  if the
coefficient  is comparable in magnitude to the largest off
diagonal coefficient in the th equation.

  If the variable  strongly depends on the
variable  , then the variable    the
variable  .

This standard procedure of the AMG presents two great
difficulties in relation to the coarsening process, that is, the
stage of selection of the subsystem variables. The first great
difficulty is the choice of the parameter α , present in the
equation (4). The value of this parameter strongly influences
the quality of the process. Usually, this parameter is fixed in
0.25, but this choice not always produces the best results. The
definition of adaptive value to the strength threshold α , as
done in [19], can overcome this difficulty in some cases.

The second difficulty is related to the parallelization of the
AMG method in distributed memory computers. The
coarsening process is included in the core of the AMG setup
phase and is inherently sequential in nature. Moreover, The
coarsening scheme can lead to computational complexity
growth as the problem size increases, resulting in an elevated
memory use and execution time, and in a reduced scalability
Some works have exclusively been looking for the solution of
this important problem [2022].

III. THE WAVELETBASED ALGEBRAIC MULTIGRID

The key point of the WAMG is the application of a modified
(incomplete) DWT, as a filter bank with only lowpass filters,
to generate the hierarchy of matrices in the AMG method.

The standard DWT corresponds to the application of low
pass and highpass filters, followed by the elimination of one

out of two samples (decimation or sub sampling). The discrete
signal, which in one dimension is represented by a vector of
values, is filtered by a set of digital filters that are associated
to the wavelet adopted in the analysis. Then, starting from a
vector ()  at level 0, two sets of coefficients are generated
in each level  of the process: a set  of wavelets coefficients
(detail coefficients) and a set  of coefficients called
“approximation coefficients.” This procedure can be applied
again, now using  as an input vector to create new
coefficients 1 + and 1 + , and successively. This procedure is

illustrated in Fig. 1. The symbol 2↓ represents the operation
of decimation by 2. This operation keeps unaltered the vector
dimension at the end of the process. Blocks H and G represent,
respectively, the lowpass and highpass filters.

Fig. 1. Three levels of the onedimensional discrete wavelet transform

In the 2D case, in which the discrete signal is represented by
a matrix, the DWT is obtained through the application of
successive steps of 1D transform into the rows and columns
of the matrix. This process generates a matrix formed by four
types of coefficients: the approximation coefficients and the
detail coefficients (horizontal, vertical, and diagonal), as
illustrated in Fig. 2.

Fig. 2. The twodimensional DWT: onedimensional transform in the rows
and columns of the matrix

ICS Newsletter 5

In both cases, one and two dimensions, the approximation
coefficients keep the most important information of the
discrete signal, whereas the detail coefficients possess very
small values, next to zero. These approximation coefficients
will contain lowpass information, which is essentially a low
resolution version of the signal and represent a coarse version
of the original data.

This wavelet property is explored by WAMG for creating the
hierarchy of matrices. In this approach the lowpass filters
coefficients  are used in the construction of a matrix ,
which is used as a restriction operator for the WAMG. If third
order filters are used, for example, the restriction operator 
from level  to level +1 takes the following form:

3 2 1 0

3 2 1 01

1 0 3 2

0 0
0 0 0 0

0 0




   
   

   

+

 
 
 
 
  
 

=

⋯ ⋯ ⋯
⋯

⋮ ⋮ ⋮
⋯ ⋯ ⋯

 (1)

The prolongation operator , in the corresponding level, is
defined in the usual form [5],

1 T
1 () 

   +
+ = . (2)

Therefore, the WAMG setup phase depends only of the choice
of the filters coefficients. This approach is very interesting
mainly because it avoids the coarsening process and the
heuristic parameters present in the standard AMG, simplifying
the use of the method as well as its parallel implementation in
distributed memory computers [11, 14]. Moreover, the
WAMG setup time is strongly reduced, since it is not
necessary to compute the full wavelet transform in each level
and the DWT is limited to the computation of a sequence of
approximation coefficients.

A. The choice of the wavelet filters

Very important classes of filters are those of Finite Impulse
Response (FIR). The main characteristic of these filters is the
convenient timelocalization properties. These filters are
originated from wavelets with compact support and are such
that,

0 for 0 and .   = < > (3)

in which  is the length of the filter.

Minimal requirements for these compact FIR filters are:

1. The length of the scaling filter  must be even.
2. 2


 =∑

3. 2() ()  


  δ−⋅ =∑ ,

in which ()δ is the Kronecker delta, such that is equal to 1
when =0 or 0 when =1.

These filters are calculated analytically and some of them are
described as follows:

i. Length 2 scaling filter: Haar or Daubechies2

coefficients

D2 0 1
1 1[,] ,
2 2

  
 

= =  
 

 (4)

ii. Length 4 scaling filters: Daubechies4 coefficients








 −−++
=

24
31,

24
33,

24
33,

24
31

D4 (5)

For more details about compact FIR filters see [19].

A common problem on the choice of the filters is to decide
between the fillin control and the wavelet compression
properties. As the WAMG often deals with sparse matrices,
the control of the nonzero number is a very important task. In
this case, if the WAMG level  matrix  is sparse, then the
number of nonzero elements in the next level matrix

1 1
1

   
    + +

+= will depend on the order of the filter used in
the restriction and prolongation operators. In fact, the longer
the used filter, the larger will be the number of nonzero entries
in the next computed matrix. Consequently, most of the
wavelet based multigrid methods use shorter filters such as
Haar or Daubechies2 coefficients in its approaches [1114].
This is also the case in this paper.

IV. THE IMPLEMENTATION USING THE LIFTING TECHNIQUE

In [24] Daubechies and Sweldens have shown that every
wavelet filter can be decomposed into lifting steps. Therefore,
all discrete wavelet transforms used for WAMG can be
implemented with the lifting scheme. The main advantages of
this technique over the classical wavelet transform are:

a) Smaller memory requirement – the calculations can
be performed inplace;

b) Efficiency: reduced number of floating point
operations;

c) Parallelism –inherently parallel feature;
d) Easier to understand  not introduced using the

Fourier transform;
e) Easier to implement;
f) The inverse transform is easier to find – it has exactly

the same complexity as the forward transform;
g) Transforms signals with an arbitrary length (need not

be 2) – very appropriate in the WAMG context;
h) Transforms signals with a finite length (without

extension of the signal).

More details about these advantages as well as other important
structural advantages of the lifting can be found in [17, 18].

In fact, there are basically three forms for representing a
wavelet transform: equation form (lifting), filter form (filter
bank) and matrix form. However, only the first two are
appropriate in the multigrid implementation.

The representations of the Daubechies 2 and Daubechies 4
wavelets in the lifting form are presented, respectively, in
equations (6) and (7). These representations were extracted
from [17], which shows the details for converting between
lifting and filters forms (one can also see [24]).

In both cases, one and two dimensions, the approximation
coefficients keep the most important information of the
discrete signal, whereas the detail coefficients possess very
small values, next to zero. These approximation coefficients
will contain lowpass information, which is essentially a low
resolution version of the signal and represent a coarse version
of the original data.

This wavelet property is explored by WAMG for creating the
hierarchy of matrices. In this approach the lowpass filters
coefficients  are used in the construction of a matrix ,
which is used as a restriction operator for the WAMG. If third
order filters are used, for example, the restriction operator 
from level  to level +1 takes the following form:

3 2 1 0

3 2 1 01

1 0 3 2

0 0
0 0 0 0

0 0




   
   

   

+

 
 
 
 
  
 

=

⋯ ⋯ ⋯
⋯

⋮ ⋮ ⋮
⋯ ⋯ ⋯

 (1)

The prolongation operator , in the corresponding level, is
defined in the usual form [5],

1 T
1 () 

   +
+ = . (2)

Therefore, the WAMG setup phase depends only of the choice
of the filters coefficients. This approach is very interesting
mainly because it avoids the coarsening process and the
heuristic parameters present in the standard AMG, simplifying
the use of the method as well as its parallel implementation in
distributed memory computers [11, 14]. Moreover, the
WAMG setup time is strongly reduced, since it is not
necessary to compute the full wavelet transform in each level
and the DWT is limited to the computation of a sequence of
approximation coefficients.

A. The choice of the wavelet filters

Very important classes of filters are those of Finite Impulse
Response (FIR). The main characteristic of these filters is the
convenient timelocalization properties. These filters are
originated from wavelets with compact support and are such
that,

0 for 0 and .   = < > (3)

in which  is the length of the filter.

Minimal requirements for these compact FIR filters are:

1. The length of the scaling filter  must be even.
2. 2


 =∑

3. 2() ()  


  δ−⋅ =∑ ,

in which ()δ is the Kronecker delta, such that is equal to 1
when =0 or 0 when =1.

These filters are calculated analytically and some of them are
described as follows:

i. Length 2 scaling filter: Haar or Daubechies2

coefficients

D2 0 1
1 1[,] ,
2 2

  
 

= =  
 

 (4)

ii. Length 4 scaling filters: Daubechies4 coefficients








 −−++
=

24
31,

24
33,

24
33,

24
31

D4 (5)

For more details about compact FIR filters see [19].

A common problem on the choice of the filters is to decide
between the fillin control and the wavelet compression
properties. As the WAMG often deals with sparse matrices,
the control of the nonzero number is a very important task. In
this case, if the WAMG level  matrix  is sparse, then the
number of nonzero elements in the next level matrix

1 1
1

   
    + +

+= will depend on the order of the filter used in
the restriction and prolongation operators. In fact, the longer
the used filter, the larger will be the number of nonzero entries
in the next computed matrix. Consequently, most of the
wavelet based multigrid methods use shorter filters such as
Haar or Daubechies2 coefficients in its approaches [1114].
This is also the case in this paper.

IV. THE IMPLEMENTATION USING THE LIFTING TECHNIQUE

In [24] Daubechies and Sweldens have shown that every
wavelet filter can be decomposed into lifting steps. Therefore,
all discrete wavelet transforms used for WAMG can be
implemented with the lifting scheme. The main advantages of
this technique over the classical wavelet transform are:

a) Smaller memory requirement – the calculations can
be performed inplace;

b) Efficiency: reduced number of floating point
operations;

c) Parallelism –inherently parallel feature;
d) Easier to understand  not introduced using the

Fourier transform;
e) Easier to implement;
f) The inverse transform is easier to find – it has exactly

the same complexity as the forward transform;
g) Transforms signals with an arbitrary length (need not

be 2) – very appropriate in the WAMG context;
h) Transforms signals with a finite length (without

extension of the signal).

More details about these advantages as well as other important
structural advantages of the lifting can be found in [17, 18].

In fact, there are basically three forms for representing a
wavelet transform: equation form (lifting), filter form (filter
bank) and matrix form. However, only the first two are
appropriate in the multigrid implementation.

The representations of the Daubechies 2 and Daubechies 4
wavelets in the lifting form are presented, respectively, in
equations (6) and (7). These representations were extracted
from [17], which shows the details for converting between
lifting and filters forms (one can also see [24]).

ICS Newsletter 6

1

1 1

1

1

(1)

(1) (1)

(1)
1

(1)
1

[] [2 1] [2],

1[] [2] [],
2

[] 2 [],

1[] [].
2



 





 







     

     

   

   

+

+ +

+

+

+

+

= + −

= + ⋅

= ⋅

= ⋅

 (6)

1

1 1 1

1 1 1

1

1

(1)

(1) (1) (1)

(2) (1) (1)

(2)
1

(1)
1

[] [2] 3 [2 1],

1 1[] [2 1] 3 [] (3 2) [1],
4 4

[] [] [1],

3 1[] [],
2

3 1[] [].
2



  

  





 







     

       

     

   

   

+

+ + +

+ + +

+

+

+

+

= + +

= + − − − −

= − +

−
=

+
=



 (7)

The coefficients +1[] and +1 [] in (6) and (7) are,
respectively, the approximation and the detail coefficients, at
level +1, of the input signal. Therefore, for the multigrid
implementation the last equations in (6) and (7) are not
necessary.

In this work, the WAMG method was implemented using the
lifting technique, with length 2 Daubechies filters, producing a
method called LAMG. The new approach was tested in some
numerical problems and the results are shown in sections 5
and 6.

A. The cost of the lifting algorithm

The use of the lifting technique for the waveletbased
multigrid allows creating an algorithm with a reduced number
of floating point operations. It is known that the lifting
algorithm is asymptotically twice as fast as the standard
algorithm for long filters [17]. A comparison between the cost
of the lifting algorithm () and the cost of the standard
algorithm () and the relative speedup (1) for the
Daubechies filters are presented in Table I.

TABLE I. LIFTING () VERSUS THE STANDARD ALGORITHM ()

   
Daubechies 2 3 3 0 %
Daubechies 4 14 9 56 %
Daubechies 6 22 14 57 %

The values of the cost presented in Table I are measured in
number of performed multiplications and additions.

V. BENCHMARK

The performance of the proposed approach is verified by
solving two different numerical test problems. In the first test,
the LAMG is applied as a preconditioner for the iterative
methods BiConjugate Gradient Stabilized (BiCGStab) and
Generalized Minimum Residual method with restart parameter
 = 20 (GMRes20) to solve two sparse linear systems issued
from University of Florida Sparse Matrix Collection,
FEMLAB group [25]. These test problems arise in real 3D
computational fluid dynamics problems and its matrix
properties are presented in Table II.

The results in Table III give us the setup and solver times (in

seconds) spent by the methods and number of iterations
necessary to reduce the Euclidean norm of the residual vector
to the order of 106. The Incomplete LU (ILU) preconditioner
was used for comparison.

TABLE II. MATRIX PROPERTIES FOR THE FIRST TEST

  
number of rows 13514 85623
number of columns 13514 85623
nonzeros 352762 2374949
Type real

unsymmetric
real
unsymmetric

Cholesky
candidate?

No No

positive definite? No No

TABLE III. RESULTS FOR THE FIRST TEST PROBLEM

       
ILU
BiCGStab 9.60 31 133.04 59

ILU
GMRes

1.22
8.06 49

9.28
163.70 140

LAMG
BiCGStab 7.00 24 83.54 32

LAMG
GMRes

2.73
5.49 35

34.35
77.72 56

The convergence history for this first case is presented in Fig.
3.

(a)

(b)

Fig. 3. Convergence history for first test problem – poisson3Da (a) and

poisson3Db (b).

1

1 1

1

1

(1)

(1) (1)

(1)
1

(1)
1

[] [2 1] [2],

1[] [2] [],
2

[] 2 [],

1[] [].
2



 





 







     

     

   

   

+

+ +

+

+

+

+

= + −

= + ⋅

= ⋅

= ⋅

 (6)

1

1 1 1

1 1 1

1

1

(1)

(1) (1) (1)

(2) (1) (1)

(2)
1

(1)
1

[] [2] 3 [2 1],

1 1[] [2 1] 3 [] (3 2) [1],
4 4

[] [] [1],

3 1[] [],
2

3 1[] [].
2



  

  





 







     

       

     

   

   

+

+ + +

+ + +

+

+

+

+

= + +

= + − − − −

= − +

−
=

+
=



 (7)

The coefficients +1[] and +1 [] in (6) and (7) are,
respectively, the approximation and the detail coefficients, at
level +1, of the input signal. Therefore, for the multigrid
implementation the last equations in (6) and (7) are not
necessary.

In this work, the WAMG method was implemented using the
lifting technique, with length 2 Daubechies filters, producing a
method called LAMG. The new approach was tested in some
numerical problems and the results are shown in sections 5
and 6.

A. The cost of the lifting algorithm

The use of the lifting technique for the waveletbased
multigrid allows creating an algorithm with a reduced number
of floating point operations. It is known that the lifting
algorithm is asymptotically twice as fast as the standard
algorithm for long filters [17]. A comparison between the cost
of the lifting algorithm () and the cost of the standard
algorithm () and the relative speedup (1) for the
Daubechies filters are presented in Table I.

TABLE I. LIFTING () VERSUS THE STANDARD ALGORITHM ()

   
Daubechies 2 3 3 0 %
Daubechies 4 14 9 56 %
Daubechies 6 22 14 57 %

The values of the cost presented in Table I are measured in
number of performed multiplications and additions.

V. BENCHMARK

The performance of the proposed approach is verified by
solving two different numerical test problems. In the first test,
the LAMG is applied as a preconditioner for the iterative
methods BiConjugate Gradient Stabilized (BiCGStab) and
Generalized Minimum Residual method with restart parameter
 = 20 (GMRes20) to solve two sparse linear systems issued
from University of Florida Sparse Matrix Collection,
FEMLAB group [25]. These test problems arise in real 3D
computational fluid dynamics problems and its matrix
properties are presented in Table II.

The results in Table III give us the setup and solver times (in

seconds) spent by the methods and number of iterations
necessary to reduce the Euclidean norm of the residual vector
to the order of 106. The Incomplete LU (ILU) preconditioner
was used for comparison.

TABLE II. MATRIX PROPERTIES FOR THE FIRST TEST

  
number of rows 13514 85623
number of columns 13514 85623
nonzeros 352762 2374949
Type real

unsymmetric
real
unsymmetric

Cholesky
candidate?

No No

positive definite? No No

TABLE III. RESULTS FOR THE FIRST TEST PROBLEM

       
ILU
BiCGStab 9.60 31 133.04 59

ILU
GMRes

1.22
8.06 49

9.28
163.70 140

LAMG
BiCGStab 7.00 24 83.54 32

LAMG
GMRes

2.73
5.49 35

34.35
77.72 56

The convergence history for this first case is presented in Fig.
3.

(a)

(b)

Fig. 3. Convergence history for first test problem – poisson3Da (a) and

poisson3Db (b).

ICS Newsletter 7

The second test problem in related to the threedimensional
Poisson equation defined in a uniform grid on the cube [1,1]3.
The spatial discretization of the Poisson equation uses
Lagrange finiteelement functions and second order elements,
both implemented in the C++ Finite Element Library 
LibMesh [26]. The resulting symmetric positive definite
matrix has 29791 rows and 1771561 nonzero entries.

In this case, the Algebraic Multigrid method with the lifting
implementation was used as a standalone solver and as a
preconditioner for the iterative Conjugate Gradient (CG)
method and for BiCGStab. The results are shown in Table IV.
For comparison, the standard Incomplete Cholesky (IC)
preconditioner was used in this case.

TABLE IV. NUMERICAL RESULTS FOR THE SECOND TEST PROBLEM


 

   
LAMG 5 3.85 7.50
LAMG
BiCGStab 3 4.58 8.23

LAMGCG 3

3.65

4.04 7.69
ICCG 10 2.59 9.37
ICBiCGStab 5 6.78 2.08 8.86

VI. APPLICATION IN THE TEAM 28 PROBLEM

The performance of the proposed approach is also verified in
the steadystate analysis of Compumag TEAM 28 Problem
[27]. This problem relates to the modeling of an
electrodynamic device which consists of two stationary
concentric exciting coils interacting with a moveable round
conducting plate. The used model, which was created using
the Finite Element Method Magnetic (FEMM) [28], applies
the Kelvin transformation [29] for investigating the steady
state levitation height of the plate. The resulting complex
symmetric matrix has 54723 rows and 380957 nonzero entries.

The LAMG method was used as a preconditioner for
BiCGStab. Again, the results were compared with those
obtained by the incomplete decompositions preconditioners IC
and ILU. The results are shown in Table V.

The magnetic flux density B (module) for this problem and the
convergence history of the iterative methods are presented in
Fig. 4 and 5, respectively. The stopping criterion for this case
was to reduce the residual norm by 4 orders of magnitude.

Fig. 4. Magnetic flux density B (module)

TABLE V. NUMERICAL RESULTS FOR TEAM 28 PROBLEM.

  
   

LAMG
BiCGStab 42 1.11 15.92 17.03

ILUBiCGStab 244 0.36 81.17 81.53
ICBiCGStab 223 0.58 33.99 34.57

Fig. 5. Convergence performance for TEAM 28 Problem

VII. A PARALLEL WAVELETBASED ALGEBRAIC MULTIGRID

Especially in the context of large scale problems and
massively parallel computing, the most desirable property of
the multigrid approaches is its potential for algorithmic
scalability: in the ideal case, for a matrix problem with 
unknowns, the number of iterative Vcycles required for
convergence is independent of the problem size  and the
work in the setup phase and in each Vcycle is linearly
proportional to the problem size [3, 4]. For all this, the need to
solve linear systems arising from problems posed on
extremely large, unstructured grids has been generating great
interest in parallelizing algebraic multigrid.

This section presents a parallel algorithm for Waveletbased
algebraic multigrid (PWAMG) using a variation of the parallel
implementation of discrete wavelet transforms. As stated, this
approach eliminates the grid coarsening process present at
standard setup phase, simplifying significantly the
implementation on distributed memory machines and allowing
the use of PWAMG as a parallel “black box” solver and
preconditioner.

The first stage of the multiresolution process is calculated
using a parallel multiple 1D DWT. It means that rows of the
matrix are distributed among the processors in such a way that
the 1D DWT may be calculated efficiently in the directions of
the columns. Thus the resulting matrix will be assembled in a
way that the second stage is calculated entirely locally [30].

In order to ensure no communication among processors in the
setup phase, we distributed the rows of the matrix in blocks of
2 ,  ∈ℤ .

In the solver phase the communications among processors are
necessary only for operations involving matrices. In a matrix
vector product   ⋅ = , for example, the matrix  is
distributed by rows, the vector  is shared by all processors
and the vector  is calculated in parallel as illustrated in Fig. 6,
for 4 processors. Then the resulting vector  is updated by the

The second test problem in related to the threedimensional
Poisson equation defined in a uniform grid on the cube [1,1]3.
The spatial discretization of the Poisson equation uses
Lagrange finiteelement functions and second order elements,
both implemented in the C++ Finite Element Library 
LibMesh [26]. The resulting symmetric positive definite
matrix has 29791 rows and 1771561 nonzero entries.

In this case, the Algebraic Multigrid method with the lifting
implementation was used as a standalone solver and as a
preconditioner for the iterative Conjugate Gradient (CG)
method and for BiCGStab. The results are shown in Table IV.
For comparison, the standard Incomplete Cholesky (IC)
preconditioner was used in this case.

TABLE IV. NUMERICAL RESULTS FOR THE SECOND TEST PROBLEM


 

   
LAMG 5 3.85 7.50
LAMG
BiCGStab 3 4.58 8.23

LAMGCG 3

3.65

4.04 7.69
ICCG 10 2.59 9.37
ICBiCGStab 5 6.78 2.08 8.86

VI. APPLICATION IN THE TEAM 28 PROBLEM

The performance of the proposed approach is also verified in
the steadystate analysis of Compumag TEAM 28 Problem
[27]. This problem relates to the modeling of an
electrodynamic device which consists of two stationary
concentric exciting coils interacting with a moveable round
conducting plate. The used model, which was created using
the Finite Element Method Magnetic (FEMM) [28], applies
the Kelvin transformation [29] for investigating the steady
state levitation height of the plate. The resulting complex
symmetric matrix has 54723 rows and 380957 nonzero entries.

The LAMG method was used as a preconditioner for
BiCGStab. Again, the results were compared with those
obtained by the incomplete decompositions preconditioners IC
and ILU. The results are shown in Table V.

The magnetic flux density B (module) for this problem and the
convergence history of the iterative methods are presented in
Fig. 4 and 5, respectively. The stopping criterion for this case
was to reduce the residual norm by 4 orders of magnitude.

Fig. 4. Magnetic flux density B (module)

TABLE V. NUMERICAL RESULTS FOR TEAM 28 PROBLEM.

  
   

LAMG
BiCGStab 42 1.11 15.92 17.03

ILUBiCGStab 244 0.36 81.17 81.53
ICBiCGStab 223 0.58 33.99 34.57

Fig. 5. Convergence performance for TEAM 28 Problem

VII. A PARALLEL WAVELETBASED ALGEBRAIC MULTIGRID

Especially in the context of large scale problems and
massively parallel computing, the most desirable property of
the multigrid approaches is its potential for algorithmic
scalability: in the ideal case, for a matrix problem with 
unknowns, the number of iterative Vcycles required for
convergence is independent of the problem size  and the
work in the setup phase and in each Vcycle is linearly
proportional to the problem size [3, 4]. For all this, the need to
solve linear systems arising from problems posed on
extremely large, unstructured grids has been generating great
interest in parallelizing algebraic multigrid.

This section presents a parallel algorithm for Waveletbased
algebraic multigrid (PWAMG) using a variation of the parallel
implementation of discrete wavelet transforms. As stated, this
approach eliminates the grid coarsening process present at
standard setup phase, simplifying significantly the
implementation on distributed memory machines and allowing
the use of PWAMG as a parallel “black box” solver and
preconditioner.

The first stage of the multiresolution process is calculated
using a parallel multiple 1D DWT. It means that rows of the
matrix are distributed among the processors in such a way that
the 1D DWT may be calculated efficiently in the directions of
the columns. Thus the resulting matrix will be assembled in a
way that the second stage is calculated entirely locally [30].

In order to ensure no communication among processors in the
setup phase, we distributed the rows of the matrix in blocks of
2 ,  ∈ℤ .

In the solver phase the communications among processors are
necessary only for operations involving matrices. In a matrix
vector product   ⋅ = , for example, the matrix  is
distributed by rows, the vector  is shared by all processors
and the vector  is calculated in parallel as illustrated in Fig. 6,
for 4 processors. Then the resulting vector  is updated by the

ICS Newsletter 8

processors through MPI message passing. This task is
accomplished by using the MPI collective communication
function MPI_Allgather [31]. The MPI_Allgather function
effect is show in Fig. 7.

Fig. 6. The proposed parallel matrixvector product

Fig. 7. The effect of the  function

VIII. DESCRIPTION OF THE PARALLEL TEST PROBLEMS

In this section, we present some numerical examples
concerning the solution of the Poisson equation in two
dimensions (2D). Owing to its scientific importance and
challenge, the development of new and efficient methods to
solve the Poisson equation is always welcome.

The Poisson equation describes the electrostatic potential
caused by a fixed charge distribution and plays a fundamental
role in many physical processes.

In the first test problem, we consider the Poisson equation on a
unit square with Dirichlet boundary conditions. In this case,
the Poisson operator is discretized by the standard 5point
difference stencil (8)

2

1
1 1 4 1

1







− 
 = − − 
 − 

 (8)

where  is the internodal spacing.

In the next test, the same Poisson problem is solved with the
highorder 9point difference stencil (9)

(9)

1 4 1
1 4 20 4 .

6
1 4 1

 






− − − 
 = − − 
 − − − 

 (9)

Finally, we solved the anisotropic equation (10) in the same
unit square domain with Dirichlet boundary conditions. This is
an important test because many physical problems are strongly
anisotropic.

   ε− − = (10)

The discrete operator for this problem was obtained by the
following standard 5Point difference stencil

(5)
2

1
1() 2(1)

1



ε ε ε ε

− 
 = − + − 
 − 

 (11)

with 0.01.ε = This same operator in (11) can be gotten using
the standard 5point stencil for the pure Poisson operator on a
stretched grid with    ε= , where  and  are
respectively the internodal spacing in  and  directions.

All these problems were presented by Chang e Huang in [32].
The authors proposed several new approaches for improving
the AMG method and they used these problems to evaluate the
performances of their AMG algorithms. The numerical results
presented by them will be literally transcribed here for
comparison.

IX. PARALLEL NUMERICAL RESULTS

The parallel algorithm uses the version two of the Message
Passing Interface (MPI2) that provides a standard for message
passing for parallel computers and workstation clusters.

The parallel implementation is based on the Discrete Wavelet
Transform with filters of Daubechies of length 2, avoiding any
communication among processors in the setup phase. A hybrid
JacobiGauss method was used as smoother and the Vcycle
for the resolution scheme.

The PWAMG has been implemented using in C++ and tested
in a homogeneous Beowulf cluster with 4 machine nodes
connected to the switch with Gigabit network, as illustrated in
Fig. 8. The characteristics of the machines are detailed in
Table VI.

Fig. 8. The Beowulf LINUX Cluster architecture

processors through MPI message passing. This task is
accomplished by using the MPI collective communication
function MPI_Allgather [31]. The MPI_Allgather function
effect is show in Fig. 7.

Fig. 6. The proposed parallel matrixvector product

Fig. 7. The effect of the  function

VIII. DESCRIPTION OF THE PARALLEL TEST PROBLEMS

In this section, we present some numerical examples
concerning the solution of the Poisson equation in two
dimensions (2D). Owing to its scientific importance and
challenge, the development of new and efficient methods to
solve the Poisson equation is always welcome.

The Poisson equation describes the electrostatic potential
caused by a fixed charge distribution and plays a fundamental
role in many physical processes.

In the first test problem, we consider the Poisson equation on a
unit square with Dirichlet boundary conditions. In this case,
the Poisson operator is discretized by the standard 5point
difference stencil (8)

2

1
1 1 4 1

1







− 
 = − − 
 − 

 (8)

where  is the internodal spacing.

In the next test, the same Poisson problem is solved with the
highorder 9point difference stencil (9)

(9)

1 4 1
1 4 20 4 .

6
1 4 1

 






− − − 
 = − − 
 − − − 

 (9)

Finally, we solved the anisotropic equation (10) in the same
unit square domain with Dirichlet boundary conditions. This is
an important test because many physical problems are strongly
anisotropic.

   ε− − = (10)

The discrete operator for this problem was obtained by the
following standard 5Point difference stencil

(5)
2

1
1() 2(1)

1



ε ε ε ε

− 
 = − + − 
 − 

 (11)

with 0.01.ε = This same operator in (11) can be gotten using
the standard 5point stencil for the pure Poisson operator on a
stretched grid with    ε= , where  and  are
respectively the internodal spacing in  and  directions.

All these problems were presented by Chang e Huang in [32].
The authors proposed several new approaches for improving
the AMG method and they used these problems to evaluate the
performances of their AMG algorithms. The numerical results
presented by them will be literally transcribed here for
comparison.

IX. PARALLEL NUMERICAL RESULTS

The parallel algorithm uses the version two of the Message
Passing Interface (MPI2) that provides a standard for message
passing for parallel computers and workstation clusters.

The parallel implementation is based on the Discrete Wavelet
Transform with filters of Daubechies of length 2, avoiding any
communication among processors in the setup phase. A hybrid
JacobiGauss method was used as smoother and the Vcycle
for the resolution scheme.

The PWAMG has been implemented using in C++ and tested
in a homogeneous Beowulf cluster with 4 machine nodes
connected to the switch with Gigabit network, as illustrated in
Fig. 8. The characteristics of the machines are detailed in
Table VI.

Fig. 8. The Beowulf LINUX Cluster architecture

ICS Newsletter 9

TABLE VI. CLUSTER MACHINES CHARACTERISTICS
 

1 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

2 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

3 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

4 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

The PWAMG method has been tested in the problems
described in the last section, for different numbers of finite
difference mesh nodes. Comparisons are made with the
sequential version of this method and with some of the most
advanced and current AMG algorithms presented in [32]. So,
the results reported here use the following notation that is the
same notation used in that work:

ρ  asymptotic convergence factor
 number of processors

  computing time for the solution phase

  computing time for the setup phase

 number of iterations for convergence
 total number of matrix equations

In all cases, the convergence is defined by 6|| || || || 10  −≤ ,
where  is the residual vector at the th iteration and the right
hand side vector  is chosen so that the solution is a vector
with all the elements equal to 1.0.

Like in [32], only one smoothing step is applied before and
after coarsegrid correction steps.

Table VII gives the numerical results for the first test problem.
In this case, finite difference meshes with 4096 and 16384
nodes have been used and the resulting linear systems solved
with a sequential version of PWAMG method. The results are
compared with those achieved by the single processor
algorithms presented in [32] (methods IVIII).

TABLE VII. NUMERICAL RESULTS FOR 

  ρ      
I 0.021 4 0.17 0.12
II 0.017 4 0.16 0.10
III 0.062 5 0.05 0.16
IV 0.078 6 0.06 0.16
V 0.020 4 0.11 0.11
VI 0.017 4 0.11 0.17
VII 0.018 4 0.11 0.11
VIII 0.018 4 0.11 0.11

WAMG

4096

0.010 3 0.04 0.16
I 0.022 4 0.61 0.61
II 0.017 4 0.71 0.40
III 0.079 6 0.28 0.50
IV 0.087 6 0.45 0.55
V 0.020 4 0.44 0.43
VI 0.017 4 0.61 0.50
VII 0.017 4 0.44 0.49
VIII 0.017 4 0.44 0.54

WAMG

16384

0.010 3 0.15 0.65

The computational results obtained by PWAMG for this same
problem in meshes with larger number of nodes are given in
Table VIII.

The results for time presented in all tables are given separately
for setup phase and solver phase. These times are in seconds
and have been presented for PWAMG, in tables III, IV and V,
in the form 1 2  , where 1 is the processing time returned by
the C  function and 2 is the total time spent in the
corresponding phase, which includes the MPI communication
time and is measured using the MPI function .
Of course, for single processor algorithms the times 1 and 2
are the same.

Table VIII shows that the setup time results from
 and  functions are very similar.
This indicates the absence of communication in the setup
phase that represents a great advantage of the approach
proposed here.

TABLE VIII. PWAMG METHOD FOR THE FIRST TEST PROBLEM (8)

      
1 3 0.04 0.15

0.02/0.03 0.06/0.14 2 3 0.02/0.02 0.02/0.14
0.01/0.01 0.04/0.17
0.01/0.01 0.01/0.17
0.01/0.01 0.02/0.17

4096

4 3

0.01/0.01 0.01/0.17
1 3 0.15 0.65

0.08/0.11 0.23/0.35 2 3 0.08/0.08 0.14/0.35
0.04/0.09 0.20/0.33
0.03/0.03 0.11/0.32
0.03/0.03 0.10/0.32

16384

4 3

0.03/0.03 0.08/0.32
1 3 0.63 2.70

0.32/0.36 1.09/1.46 2 3 0.30/0.30 0.77/1.45
0.17/0.24 0.90/1.36
0.16/0.16 0.49/1.36
0.14/0.14 0.55/1.36

65536

4 3

0.13/0.14 0.52/1.35
1 3 2.57 10.76

1.32/1.46 4.58/5.17 2 3
1.25/1.25 3.61/5.13
0.73/0.88 3.42/5.07
0.69/0.69 2.28/5.01
0.59/0.59 2.36/4.99

262144

4 3

0.60/0.60 2.27/4.98
1 3 10.54 43.68

5.38/5.70 18.05/20.71 2 3 5.12/5.12 13.76/20.56
2.95/3.22 13.23/19.83
2.83/2.83 9.60/19.73
2.40/2.40 8.34/19.65

1048576

4 3

2.40/2.40 9.24/19.73

The PWAMG method was also applied to the other two
problems. A finite difference mesh with 16384 nodes was used
for the Poisson equation discretized with the 9point stencil (9)
and another mesh with 4096 nodes for the anisotropic

TABLE VI. CLUSTER MACHINES CHARACTERISTICS
 

1 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

2 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

3 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

4 AMD Athlon(tm) XP 2400+ 1.99 GHz
1 GB RAM

The PWAMG method has been tested in the problems
described in the last section, for different numbers of finite
difference mesh nodes. Comparisons are made with the
sequential version of this method and with some of the most
advanced and current AMG algorithms presented in [32]. So,
the results reported here use the following notation that is the
same notation used in that work:

ρ  asymptotic convergence factor
 number of processors

  computing time for the solution phase

  computing time for the setup phase

 number of iterations for convergence
 total number of matrix equations

In all cases, the convergence is defined by 6|| || || || 10  −≤ ,
where  is the residual vector at the th iteration and the right
hand side vector  is chosen so that the solution is a vector
with all the elements equal to 1.0.

Like in [32], only one smoothing step is applied before and
after coarsegrid correction steps.

Table VII gives the numerical results for the first test problem.
In this case, finite difference meshes with 4096 and 16384
nodes have been used and the resulting linear systems solved
with a sequential version of PWAMG method. The results are
compared with those achieved by the single processor
algorithms presented in [32] (methods IVIII).

TABLE VII. NUMERICAL RESULTS FOR 

  ρ      
I 0.021 4 0.17 0.12
II 0.017 4 0.16 0.10
III 0.062 5 0.05 0.16
IV 0.078 6 0.06 0.16
V 0.020 4 0.11 0.11
VI 0.017 4 0.11 0.17
VII 0.018 4 0.11 0.11
VIII 0.018 4 0.11 0.11

WAMG

4096

0.010 3 0.04 0.16
I 0.022 4 0.61 0.61
II 0.017 4 0.71 0.40
III 0.079 6 0.28 0.50
IV 0.087 6 0.45 0.55
V 0.020 4 0.44 0.43
VI 0.017 4 0.61 0.50
VII 0.017 4 0.44 0.49
VIII 0.017 4 0.44 0.54

WAMG

16384

0.010 3 0.15 0.65

The computational results obtained by PWAMG for this same
problem in meshes with larger number of nodes are given in
Table VIII.

The results for time presented in all tables are given separately
for setup phase and solver phase. These times are in seconds
and have been presented for PWAMG, in tables III, IV and V,
in the form 1 2  , where 1 is the processing time returned by
the C  function and 2 is the total time spent in the
corresponding phase, which includes the MPI communication
time and is measured using the MPI function .
Of course, for single processor algorithms the times 1 and 2
are the same.

Table VIII shows that the setup time results from
 and  functions are very similar.
This indicates the absence of communication in the setup
phase that represents a great advantage of the approach
proposed here.

TABLE VIII. PWAMG METHOD FOR THE FIRST TEST PROBLEM (8)

      
1 3 0.04 0.15

0.02/0.03 0.06/0.14 2 3 0.02/0.02 0.02/0.14
0.01/0.01 0.04/0.17
0.01/0.01 0.01/0.17
0.01/0.01 0.02/0.17

4096

4 3

0.01/0.01 0.01/0.17
1 3 0.15 0.65

0.08/0.11 0.23/0.35 2 3 0.08/0.08 0.14/0.35
0.04/0.09 0.20/0.33
0.03/0.03 0.11/0.32
0.03/0.03 0.10/0.32

16384

4 3

0.03/0.03 0.08/0.32
1 3 0.63 2.70

0.32/0.36 1.09/1.46 2 3 0.30/0.30 0.77/1.45
0.17/0.24 0.90/1.36
0.16/0.16 0.49/1.36
0.14/0.14 0.55/1.36

65536

4 3

0.13/0.14 0.52/1.35
1 3 2.57 10.76

1.32/1.46 4.58/5.17 2 3
1.25/1.25 3.61/5.13
0.73/0.88 3.42/5.07
0.69/0.69 2.28/5.01
0.59/0.59 2.36/4.99

262144

4 3

0.60/0.60 2.27/4.98
1 3 10.54 43.68

5.38/5.70 18.05/20.71 2 3 5.12/5.12 13.76/20.56
2.95/3.22 13.23/19.83
2.83/2.83 9.60/19.73
2.40/2.40 8.34/19.65

1048576

4 3

2.40/2.40 9.24/19.73

The PWAMG method was also applied to the other two
problems. A finite difference mesh with 16384 nodes was used
for the Poisson equation discretized with the 9point stencil (9)
and another mesh with 4096 nodes for the anisotropic

ICS Newsletter 10

problem. In both cases, the results obtained are compared
again with those results of the methods in [32] and with the
WAMG. These results are given in Tables IX and X.

From the numerical results, we can observe the efficiency of
the PWAMG to solve the Poisson equation. It is interesting
because the solution of the Poisson equation is a nontrivial
task, since it involves large linear matrix equations.

TABLE IX. NUMERICAL RESULTS FOR THE SECOND TEST PROBLEM
      

I 1 6 0.55 0.60
II 1 5 0.66 0.44
III 1 6 0.44 .055
IV 1 6 0.50 0.52
V 1 5 0.60 0.51
VI 1 5 0.72 0.51
VII 1 5 0.60 0.50
VIII 1 5 0.52 0.50

1 3 0.16 0.72
0.08/0.12 0.24/0.38 2 3 0.09/0.09 0.16/0.38
0.05/0.06 0.22/0.35
0.04/0.04 0.14/0.34
0.04/0.04 0.12/0.34

PWAMG

4 3

0.04/0.04 0.10/0.34

TABLE X. NUMERICAL RESULTS FOR ANISOTROPIC PROBLEM
      

I 1 4 0.16 0.16
II 1 4 0.16 0.11
III 1 4 0.06 0.11
IV 1 5 0.11 0.05
V 1 4 0.11 0.16
VI 1 3 0.11 0.10
VII 1 3 0.11 0.13
VIII 1 3 0.11 0.16

1 3 0.05 0.23
0.02/0.03 0.09/0.22 2 3 0.02/0.02 0.03/0.22
0.01/0.01 0.06/0.26
0.01/0.01 0.01/0.26
0.01/0.01 0.02/0.26

PWAMG

4 3

0.01/0.01 0.01/0.26

As usual, the parallel performance analysis for the results
presented in tables above was characterized using the absolute
speedup which is defined as

S = speedup() = (1)/() (11)

in which (1) is the time spent by the best sequential
WAMG algorithm and () is the time required by the
parallel method executing on  processors [33].

The speedup for setup and solver times and the speedup total
are illustrated in Fig. 9 for the results presented in Table VIII.
The efficiency of the parallel method for these cases is
reported in Table XI. Efficiency is a performance metric
which estimates how wellutilized the processors are in
solving the problem and it is defined as follow [33]:

E = S/   (10)

Fig. 9. Parallel speedup for first test problem

TABLE XI. EFFICIENCY OF THE PARALLEL METHOD FOR THE FIRST
PROBLEM

 16384 65536 262144 1048576
2 0,87 0,91 1,00 1,03
4 0,48 0,55 0,56 0,59

According to Table XI, the parallel method was more efficient
for bigger problems, as is characteristic of the multilevel
approaches. For these bigger problems the parallel efficiency
was about 60%. When 2 processors were used the method
reached a little more than the linear speedup. However, for 4
processors, the speedup was less than the linear as can be seen
in Fig. 9.

X. CONCLUSIONS

The proposed approach seems to be very promising. The use
of the lifting technique allows creating an efficient
preconditioner, as can be seen from the number of LAMG
steps in Tables III, IV and V. It is important to mention that
the LAMG can be applied as a preconditioner for both
symmetric and unsymmetric systems as presented in the two
first test problems. Moreover, the method also can be used as a
standalone solver.

Overall, in spite of the relatively large setup times compared
to standard preconditioners IC and ILU, the LAMG
preconditioner accelerates the iteration process and it gave a
lower number of iterations and the smaller total time, even for
the unsymmetric systems from real 3D computational fluid
dynamics problems (Table III) and for the complex valued
symmetric system arising from the steadystate analysis of
Compumag TEAM 28 Problem (Table V), which, in general,
can be very difficult to solve by iterative methods [30]. In fact,
the approach based on a combination of the discrete wavelet
transform and the algebraic multigrid method, which has been
improved in this paper, has already proved to be efficient for
other complex and critical 3D problems as, for example, the
problem of timeharmonic electromagnetic behavior of a
substation grounding system formulated in terms of ungauged
 edge finiteelement analysis [13].

The significantly better performance of the LAMG for the
complex problem can be partially credited to the difficult of
the preconditioning techniques based on incomplete
factorizations, as ILU and IC, to solve complex valued linear
systems due to the appearance of unstable pivots during the
incomplete factorization process [34, 35]. This LAMG
performance for this kind of problem is especially interesting

problem. In both cases, the results obtained are compared
again with those results of the methods in [32] and with the
WAMG. These results are given in Tables IX and X.

From the numerical results, we can observe the efficiency of
the PWAMG to solve the Poisson equation. It is interesting
because the solution of the Poisson equation is a nontrivial
task, since it involves large linear matrix equations.

TABLE IX. NUMERICAL RESULTS FOR THE SECOND TEST PROBLEM
      

I 1 6 0.55 0.60
II 1 5 0.66 0.44
III 1 6 0.44 .055
IV 1 6 0.50 0.52
V 1 5 0.60 0.51
VI 1 5 0.72 0.51
VII 1 5 0.60 0.50
VIII 1 5 0.52 0.50

1 3 0.16 0.72
0.08/0.12 0.24/0.38 2 3 0.09/0.09 0.16/0.38
0.05/0.06 0.22/0.35
0.04/0.04 0.14/0.34
0.04/0.04 0.12/0.34

PWAMG

4 3

0.04/0.04 0.10/0.34

TABLE X. NUMERICAL RESULTS FOR ANISOTROPIC PROBLEM
      

I 1 4 0.16 0.16
II 1 4 0.16 0.11
III 1 4 0.06 0.11
IV 1 5 0.11 0.05
V 1 4 0.11 0.16
VI 1 3 0.11 0.10
VII 1 3 0.11 0.13
VIII 1 3 0.11 0.16

1 3 0.05 0.23
0.02/0.03 0.09/0.22 2 3 0.02/0.02 0.03/0.22
0.01/0.01 0.06/0.26
0.01/0.01 0.01/0.26
0.01/0.01 0.02/0.26

PWAMG

4 3

0.01/0.01 0.01/0.26

As usual, the parallel performance analysis for the results
presented in tables above was characterized using the absolute
speedup which is defined as

S = speedup() = (1)/() (11)

in which (1) is the time spent by the best sequential
WAMG algorithm and () is the time required by the
parallel method executing on  processors [33].

The speedup for setup and solver times and the speedup total
are illustrated in Fig. 9 for the results presented in Table VIII.
The efficiency of the parallel method for these cases is
reported in Table XI. Efficiency is a performance metric
which estimates how wellutilized the processors are in
solving the problem and it is defined as follow [33]:

E = S/   (10)

Fig. 9. Parallel speedup for first test problem

TABLE XI. EFFICIENCY OF THE PARALLEL METHOD FOR THE FIRST
PROBLEM

 16384 65536 262144 1048576
2 0,87 0,91 1,00 1,03
4 0,48 0,55 0,56 0,59

According to Table XI, the parallel method was more efficient
for bigger problems, as is characteristic of the multilevel
approaches. For these bigger problems the parallel efficiency
was about 60%. When 2 processors were used the method
reached a little more than the linear speedup. However, for 4
processors, the speedup was less than the linear as can be seen
in Fig. 9.

X. CONCLUSIONS

The proposed approach seems to be very promising. The use
of the lifting technique allows creating an efficient
preconditioner, as can be seen from the number of LAMG
steps in Tables III, IV and V. It is important to mention that
the LAMG can be applied as a preconditioner for both
symmetric and unsymmetric systems as presented in the two
first test problems. Moreover, the method also can be used as a
standalone solver.

Overall, in spite of the relatively large setup times compared
to standard preconditioners IC and ILU, the LAMG
preconditioner accelerates the iteration process and it gave a
lower number of iterations and the smaller total time, even for
the unsymmetric systems from real 3D computational fluid
dynamics problems (Table III) and for the complex valued
symmetric system arising from the steadystate analysis of
Compumag TEAM 28 Problem (Table V), which, in general,
can be very difficult to solve by iterative methods [30]. In fact,
the approach based on a combination of the discrete wavelet
transform and the algebraic multigrid method, which has been
improved in this paper, has already proved to be efficient for
other complex and critical 3D problems as, for example, the
problem of timeharmonic electromagnetic behavior of a
substation grounding system formulated in terms of ungauged
 edge finiteelement analysis [13].

The significantly better performance of the LAMG for the
complex problem can be partially credited to the difficult of
the preconditioning techniques based on incomplete
factorizations, as ILU and IC, to solve complex valued linear
systems due to the appearance of unstable pivots during the
incomplete factorization process [34, 35]. This LAMG
performance for this kind of problem is especially interesting

ICS Newsletter 11

because, curiously, there is not much literature available on
iterative solvers and preconditioners for complex symmetric
problems, given the number of diverse applications in which
these problems arise. However, in order to explain correctly
the differences of the convergence between the different
problems a theoretical spectral analysis should to be
accomplished, but such an analysis is out of the scope of this
paper.

It is important to highlight that as the LAMG algorithm
implemented in this work uses the Daubechies 2 filters its
efficiency is similar to the standard waveletbased algebraic
multigrid (Table I). However, the other advantages presented
in section III are kept, especially, the inherently parallel
feature and the capacity to transform signals with an arbitrary
length (need not be 2), which has allowed to develop very
appropriate algorithms in the Finite Element context.

As for the parallel method, the proposed algorithm has been
applied as a blackbox solver in some numerical Poisson
problems with good results. The obtained results for different
problem sizes are compared with those achieved by some of
the most advanced and current single processor AMG
algorithms, demonstrating the efficiency of the new approach.

Like the standard AMG, this method has the very important
scalability property that can be observed in table VIII, which
shows the number of iterations required for PWAMG
convergence for different numbers of matrix equations.

Other important characteristic of the PWAMG method is its
small demand for interprocessors communication. Actually, no
communication is required in setup phase when first order
filters are used. This characteristic is confirmed by the results
for setup time presented in table VIII, only observing that the
times measured by  and  functions
are practically the same ones.

Additionally, the results have shown that the parallel method
was more efficient for large problems, as is characteristic of
the multilevel approaches. The parallel efficiency for the
bigger Poisson problems tested was about 60%. When 2
processors were used the method reached a little more than the
linear speedup and for 4 processors the speedup was less than
the linear. In spite of this fact, it is worth pointing out some
important aspects of this application: in the context of large
sparse linear system of equations where this paper is inserted,
the problems have large memory requirements. In these cases,
as presented in [33], the speedup necessary to be costeffective
can be much less than linear. The parallel program does not
need  times memory of the unit processor, since parallelizing
a job rarely multiplies its memory requirements by .

XI. REFERENCES

[1] Briggs, W.L., Henson, V.E. and McCormick, S.F., 

, second ed., SIAM, California, 2000.

[2] Chang, Q., Wong, Y.S., and Fu, H., “On the algebraic
multigrid method”,  125, 1996, 279–292.

[3] Haase, G., Kuhn, M., and Reitzinger, S., “Parallel
Algebraic Multigrid Methods on Distributed Memory
Computers”, , 24, 2002, 410427.

[4] Henson, V.E. and Yang, U.M., “BoomerAMG: a Parallel
Algebraic Multigrid Solver and Preconditioner”, 
, 41(1), 2002, 155−177.

[5] Mifune, T., Iwashita, T. and Shimasaki, M., “New
algebraic multigrid preconditioning for iterative solvers in
electromagnetic finite edgeelement analyses,” 
, 39(3), 2003, 677–1680.

[6] Briggs, W.L. and Henson, V.E., “Wavelets and multigrid”,
, 14, 1993, 506–510.

[7] Avudainayagam, A. and Vani, C., “Wavelet based
multigrid methods for linear and nonlinear elliptic partial
differential equations”,    148, 2004,
307–320.

[8] De Leon, D.,     
, Department of Mathematics UCLA, UCLA
Mathematics Department CAM Report 0042, December
2000.

[9] Wang, G., Dutton, R.W. and Hou, J. “A fast wavelet
multigrid algorithm for solution of electromagnetic integral
equations”,     ,
24(2), 2000, 86–91.

[10] Chen, R.S., Fang, D.G., Tsang, K.F., and Yung, E.K.N.,
“Analysis of millimeter wave scattering by an electrically
large metallic grating using waveletbased algebraic
multigrid preconditioned CG method”,   
, 21(9), 2000, 1541–1560.

[11] Pereira, F.H., Verardi, S.L.L., Nabeta, S.I., “A Wavelet
based Algebraic Multigrid preconditioner for sparse linear
systems”, , 182, 2006, 10981107.

[12] Garcıa, V.M., Acevedo, L., and Vidal, A.M., “Variants of
algebraic waveletbased multigrid methods: Application to
shifted linear systems,”   , 202(1),
2008, 287–299.

[13] Pereira, F.H.  , “A Waveletbased Algebraic
Multigrid Preconditioning for Iterative Solvers in Finite
Element Analysis”.    ., 43(4), 2007,
15531556.

[14] Pereira, F.H., Palin, M.F., Verardi, S.L.L., Nabeta. S.I.,
“A Parallel Waveletbased Algebraic Multigrid blackbox
Solver and Preconditioner”, 
     , 2007,
Aachen.

[15] Pereira, F.H., Nabeta. S.I.,, “WaveletBased Algebraic
Multigrid Method Using the Lifting Technique”,  
   
, 9(1), 2010, 19.

[16] Pereira, F.H., Afonso, M.M., Vasconcelos, J.A., and
Nabeta, S.I., “An Efficient TwoLevel Preconditioner
based on Lifting for FEMBEM Equations”,  
   
 , 9(2), 2010, 7888.

[17] Jensen, A. and la CourHarbo, A., 
, Ripples in Mathematics, Springer, Berlin,
2001.

[18] Sweldens, W., “The lifting scheme: A customdesign
construction of biorthogonal wavelets”,  
, 3(2), 1996, 186200.

[19] Pereira, F.H., Verardi, S.L.L., Nabeta, S.I., “A fast
algebraic multigrid preconditioned conjugate gradient
solver”, , 179, 2006, 344351.

[20] Griebel, M., Metsch, B., Oeltz, D., Alex, M., Schweitzer,
E., “Coarse grid classification: a parallel coarsening

because, curiously, there is not much literature available on
iterative solvers and preconditioners for complex symmetric
problems, given the number of diverse applications in which
these problems arise. However, in order to explain correctly
the differences of the convergence between the different
problems a theoretical spectral analysis should to be
accomplished, but such an analysis is out of the scope of this
paper.

It is important to highlight that as the LAMG algorithm
implemented in this work uses the Daubechies 2 filters its
efficiency is similar to the standard waveletbased algebraic
multigrid (Table I). However, the other advantages presented
in section III are kept, especially, the inherently parallel
feature and the capacity to transform signals with an arbitrary
length (need not be 2), which has allowed to develop very
appropriate algorithms in the Finite Element context.

As for the parallel method, the proposed algorithm has been
applied as a blackbox solver in some numerical Poisson
problems with good results. The obtained results for different
problem sizes are compared with those achieved by some of
the most advanced and current single processor AMG
algorithms, demonstrating the efficiency of the new approach.

Like the standard AMG, this method has the very important
scalability property that can be observed in table VIII, which
shows the number of iterations required for PWAMG
convergence for different numbers of matrix equations.

Other important characteristic of the PWAMG method is its
small demand for interprocessors communication. Actually, no
communication is required in setup phase when first order
filters are used. This characteristic is confirmed by the results
for setup time presented in table VIII, only observing that the
times measured by  and  functions
are practically the same ones.

Additionally, the results have shown that the parallel method
was more efficient for large problems, as is characteristic of
the multilevel approaches. The parallel efficiency for the
bigger Poisson problems tested was about 60%. When 2
processors were used the method reached a little more than the
linear speedup and for 4 processors the speedup was less than
the linear. In spite of this fact, it is worth pointing out some
important aspects of this application: in the context of large
sparse linear system of equations where this paper is inserted,
the problems have large memory requirements. In these cases,
as presented in [33], the speedup necessary to be costeffective
can be much less than linear. The parallel program does not
need  times memory of the unit processor, since parallelizing
a job rarely multiplies its memory requirements by .

XI. REFERENCES

[1] Briggs, W.L., Henson, V.E. and McCormick, S.F., 

, second ed., SIAM, California, 2000.

[2] Chang, Q., Wong, Y.S., and Fu, H., “On the algebraic
multigrid method”,  125, 1996, 279–292.

[3] Haase, G., Kuhn, M., and Reitzinger, S., “Parallel
Algebraic Multigrid Methods on Distributed Memory
Computers”, , 24, 2002, 410427.

[4] Henson, V.E. and Yang, U.M., “BoomerAMG: a Parallel
Algebraic Multigrid Solver and Preconditioner”, 
, 41(1), 2002, 155−177.

[5] Mifune, T., Iwashita, T. and Shimasaki, M., “New
algebraic multigrid preconditioning for iterative solvers in
electromagnetic finite edgeelement analyses,” 
, 39(3), 2003, 677–1680.

[6] Briggs, W.L. and Henson, V.E., “Wavelets and multigrid”,
, 14, 1993, 506–510.

[7] Avudainayagam, A. and Vani, C., “Wavelet based
multigrid methods for linear and nonlinear elliptic partial
differential equations”,    148, 2004,
307–320.

[8] De Leon, D.,     
, Department of Mathematics UCLA, UCLA
Mathematics Department CAM Report 0042, December
2000.

[9] Wang, G., Dutton, R.W. and Hou, J. “A fast wavelet
multigrid algorithm for solution of electromagnetic integral
equations”,     ,
24(2), 2000, 86–91.

[10] Chen, R.S., Fang, D.G., Tsang, K.F., and Yung, E.K.N.,
“Analysis of millimeter wave scattering by an electrically
large metallic grating using waveletbased algebraic
multigrid preconditioned CG method”,   
, 21(9), 2000, 1541–1560.

[11] Pereira, F.H., Verardi, S.L.L., Nabeta, S.I., “A Wavelet
based Algebraic Multigrid preconditioner for sparse linear
systems”, , 182, 2006, 10981107.

[12] Garcıa, V.M., Acevedo, L., and Vidal, A.M., “Variants of
algebraic waveletbased multigrid methods: Application to
shifted linear systems,”   , 202(1),
2008, 287–299.

[13] Pereira, F.H.  , “A Waveletbased Algebraic
Multigrid Preconditioning for Iterative Solvers in Finite
Element Analysis”.    ., 43(4), 2007,
15531556.

[14] Pereira, F.H., Palin, M.F., Verardi, S.L.L., Nabeta. S.I.,
“A Parallel Waveletbased Algebraic Multigrid blackbox
Solver and Preconditioner”, 
     , 2007,
Aachen.

[15] Pereira, F.H., Nabeta. S.I.,, “WaveletBased Algebraic
Multigrid Method Using the Lifting Technique”,  
   
, 9(1), 2010, 19.

[16] Pereira, F.H., Afonso, M.M., Vasconcelos, J.A., and
Nabeta, S.I., “An Efficient TwoLevel Preconditioner
based on Lifting for FEMBEM Equations”,  
   
 , 9(2), 2010, 7888.

[17] Jensen, A. and la CourHarbo, A., 
, Ripples in Mathematics, Springer, Berlin,
2001.

[18] Sweldens, W., “The lifting scheme: A customdesign
construction of biorthogonal wavelets”,  
, 3(2), 1996, 186200.

[19] Pereira, F.H., Verardi, S.L.L., Nabeta, S.I., “A fast
algebraic multigrid preconditioned conjugate gradient
solver”, , 179, 2006, 344351.

[20] Griebel, M., Metsch, B., Oeltz, D., Alex, M., Schweitzer,
E., “Coarse grid classification: a parallel coarsening

ICS Newsletter 12

scheme for algebraic multigrid methods”, 
   , Vol. 13(2–3), 2006,
193214.

[21] Cleary, A.J., Falgout, R.D. Henson, V.E. Jones, J.E.,
     ,
Lawrence Livermore National Laboratory, Livermore,
2000.

[22] Sterck, H.D., Yang, U.M., and Heys, J.J. 2005.
“Reducing Complexity in Parallel Algebraic Multigrid
Preconditioners”, . 27(4), 2005,
10191039.

[23] Sarkar, T.K., Magdalena, S.P. and Michael, C.W.,
    ,
Artech House, Boston, 2002.

[24] Daubechies, I. and Sweldens, W., “Factoring Wavelet
Transforms into Lifting Steps”,    ,
4(3), 1998, 247269.

[25] Davis, T., ,
NA Digest, 1997.

[26] Kirk, B.  , LibMesh: “A C++ Library for Parallel
Adaptive Mesh Refinement/Coarsening Simulations”,
, 22(34), 2006, 237254.

[27] Karl, H., Fetzer, J., Kurz, S., Lehner, G., Rucker, W.M.,
“Description of TEAM workshop problem 28: An
electromagnetic levitation device”,   
, Rio de Janeiro, 1997,
4851.

[28] Meeker, D.,     
, Massachusetts, USA, FEMM Version 4.2, 2003.

[29] Chen, Q. and Konrad, A., “A review of finite element
open boundary techniques for static and quasistatic
electromagnetic field problems”,    .,
33(1), 1997, 663676.

[30] Ford, J.M., Chen, K., and Ford, N.J. “Parallel
implementation of fast wavelet transforms”, 
, 39, Manchester University, 2001.

[31] Sips, H.J., and Lin, H.X., 
  , Delft University of Technology
Information Technology and Systems, September 16,
2002.

[32] Chang, Q., and Huang, Z., “Efficient Algebraic Multigrid
Algorithms and their Convergence”, .,
vol. 24(2), 2002, 597618.

[33] Wood, D.A., and Hill, M.D., “Costeffective parallel
computing”, , vol. 28 (2), 1995, 6972.

[34] OseiKuffuor, D. and Saad, Y., “Preconditioning
Helmholtz linear systems”, , 60(4), 2010,
420431.

[35] Benzi, M., “Preconditioning Techniques for Large Linear
Systems: A Survey”,    , 182, 2002,
418–477.

AUTHORS NAME AND AFFILIATION

Fabio Henrique Pereira, Industrial Engineering Post
Graduation Program, Nove de Julho University
(PMEP/Uninove), Francisco Matarazzo, Av. 612, 05001100,

Água Branca, São Paulo, Brazil, Tel.: +55 11 36639355, e
mail: fabiohp@uninove.br

Silvio Ikuyo Nabeta, Electrical Machine and Drives Lab of
São Paulo University (GMAcq/USP), Luciano Gualberto Av.,
158, Cidade Universitária, São Paulo, Brazil, Tel.: +55 11
30919809, email: nabeta@pea.usp.br

scheme for algebraic multigrid methods”, 
   , Vol. 13(2–3), 2006,
193214.

[21] Cleary, A.J., Falgout, R.D. Henson, V.E. Jones, J.E.,
     ,
Lawrence Livermore National Laboratory, Livermore,
2000.

[22] Sterck, H.D., Yang, U.M., and Heys, J.J. 2005.
“Reducing Complexity in Parallel Algebraic Multigrid
Preconditioners”, . 27(4), 2005,
10191039.

[23] Sarkar, T.K., Magdalena, S.P. and Michael, C.W.,
    ,
Artech House, Boston, 2002.

[24] Daubechies, I. and Sweldens, W., “Factoring Wavelet
Transforms into Lifting Steps”,    ,
4(3), 1998, 247269.

[25] Davis, T., ,
NA Digest, 1997.

[26] Kirk, B.  , LibMesh: “A C++ Library for Parallel
Adaptive Mesh Refinement/Coarsening Simulations”,
, 22(34), 2006, 237254.

[27] Karl, H., Fetzer, J., Kurz, S., Lehner, G., Rucker, W.M.,
“Description of TEAM workshop problem 28: An
electromagnetic levitation device”,   
, Rio de Janeiro, 1997,
4851.

[28] Meeker, D.,     
, Massachusetts, USA, FEMM Version 4.2, 2003.

[29] Chen, Q. and Konrad, A., “A review of finite element
open boundary techniques for static and quasistatic
electromagnetic field problems”,    .,
33(1), 1997, 663676.

[30] Ford, J.M., Chen, K., and Ford, N.J. “Parallel
implementation of fast wavelet transforms”, 
, 39, Manchester University, 2001.

[31] Sips, H.J., and Lin, H.X., 
  , Delft University of Technology
Information Technology and Systems, September 16,
2002.

[32] Chang, Q., and Huang, Z., “Efficient Algebraic Multigrid
Algorithms and their Convergence”, .,
vol. 24(2), 2002, 597618.

[33] Wood, D.A., and Hill, M.D., “Costeffective parallel
computing”, , vol. 28 (2), 1995, 6972.

[34] OseiKuffuor, D. and Saad, Y., “Preconditioning
Helmholtz linear systems”, , 60(4), 2010,
420431.

[35] Benzi, M., “Preconditioning Techniques for Large Linear
Systems: A Survey”,    , 182, 2002,
418–477.

AUTHORS NAME AND AFFILIATION

Fabio Henrique Pereira, Industrial Engineering Post
Graduation Program, Nove de Julho University
(PMEP/Uninove), Francisco Matarazzo, Av. 612, 05001100,

Água Branca, São Paulo, Brazil, Tel.: +55 11 36639355, e
mail: fabiohp@uninove.br

Silvio Ikuyo Nabeta, Electrical Machine and Drives Lab of
São Paulo University (GMAcq/USP), Luciano Gualberto Av.,
158, Cidade Universitária, São Paulo, Brazil, Tel.: +55 11
30919809, email: nabeta@pea.usp.br

scheme for algebraic multigrid methods”, 
   , Vol. 13(2–3), 2006,
193214.

[21] Cleary, A.J., Falgout, R.D. Henson, V.E. Jones, J.E.,
     ,
Lawrence Livermore National Laboratory, Livermore,
2000.

[22] Sterck, H.D., Yang, U.M., and Heys, J.J. 2005.
“Reducing Complexity in Parallel Algebraic Multigrid
Preconditioners”, . 27(4), 2005,
10191039.

[23] Sarkar, T.K., Magdalena, S.P. and Michael, C.W.,
    ,
Artech House, Boston, 2002.

[24] Daubechies, I. and Sweldens, W., “Factoring Wavelet
Transforms into Lifting Steps”,    ,
4(3), 1998, 247269.

[25] Davis, T., ,
NA Digest, 1997.

[26] Kirk, B.  , LibMesh: “A C++ Library for Parallel
Adaptive Mesh Refinement/Coarsening Simulations”,
, 22(34), 2006, 237254.

[27] Karl, H., Fetzer, J., Kurz, S., Lehner, G., Rucker, W.M.,
“Description of TEAM workshop problem 28: An
electromagnetic levitation device”,   
, Rio de Janeiro, 1997,
4851.

[28] Meeker, D.,     
, Massachusetts, USA, FEMM Version 4.2, 2003.

[29] Chen, Q. and Konrad, A., “A review of finite element
open boundary techniques for static and quasistatic
electromagnetic field problems”,    .,
33(1), 1997, 663676.

[30] Ford, J.M., Chen, K., and Ford, N.J. “Parallel
implementation of fast wavelet transforms”, 
, 39, Manchester University, 2001.

[31] Sips, H.J., and Lin, H.X., 
  , Delft University of Technology
Information Technology and Systems, September 16,
2002.

[32] Chang, Q., and Huang, Z., “Efficient Algebraic Multigrid
Algorithms and their Convergence”, .,
vol. 24(2), 2002, 597618.

[33] Wood, D.A., and Hill, M.D., “Costeffective parallel
computing”, , vol. 28 (2), 1995, 6972.

[34] OseiKuffuor, D. and Saad, Y., “Preconditioning
Helmholtz linear systems”, , 60(4), 2010,
420431.

[35] Benzi, M., “Preconditioning Techniques for Large Linear
Systems: A Survey”,    , 182, 2002,
418–477.

AUTHORS NAME AND AFFILIATION

Fabio Henrique Pereira, Industrial Engineering Post
Graduation Program, Nove de Julho University
(PMEP/Uninove), Francisco Matarazzo, Av. 612, 05001100,

Água Branca, São Paulo, Brazil, Tel.: +55 11 36639355, e
mail: fabiohp@uninove.br

Silvio Ikuyo Nabeta, Electrical Machine and Drives Lab of
São Paulo University (GMAcq/USP), Luciano Gualberto Av.,
158, Cidade Universitária, São Paulo, Brazil, Tel.: +55 11
30919809, email: nabeta@pea.usp.br

ISEM 2011
15th International Symposium
on Applied Electromagnetics and Mechanics

7-9 September 2011, Napoli, Italy

The 15th International Symposium on Applied Electromagnetics and Mechanics (ISEM) will take place from 7 to 9
September 2011 at the Royal Continental Hotel in Naples, Italy. Previous symposia were held in Japan, Korea, the
United Kingdom, Germany, Italy, France, Austria, USA and China. As in the past, the 2011 meeting will be focused
on the application of electromagnetics and mechanics in a number of disciplines. Specifically, the symposium provi-
des a forum for exchanging ideas and discussing recent developments in such areas as Nanotechnology Applications,
Nuclear Fusion Technology, Laser and Particle Beams, Plasmas, Applied Superconductivity, Inverse Problems, Nonde-
structive Evaluation (Electromagnetic and Mechanical methods), Maintenance and Reliability Engineering, Biomedical
Engineering, Micromagnetism, Hysteresis, Electromagnetic Smart Fluids, Electromagnetic Processing of Materials,
Electromagnetic Functional Materials and Adaptive Systems, Analysis and Simulation of Electromagnetic Devices,
Micro Electro-Mechanical Systems (MEMS), Electromagnetic Sensors and Actuators, Advanced Magnetic Engineering,
Dynamics,Control.

The symposium emphasizes both basic science and early engineering developments in these interdisciplinary fields,
strongly encouraging practical application of emerging technologies to problems of direct relevance to industries.
Consequently, both theoretical and applied research topics are of interest.
A selection of papers will be published in a special issue of the International Journal of Applied Electromagnetics and
Mechanics.

G. Rubinacci, University of Naples, Italy, Conference Co-Chair
A. Tamburrino, University of Cassino, Italy, Conference Co-Chair
T. Takagi, Tohoku University, Japan, Editorial Board Co-Chair
F. Villone, University of Cassino, Italy, Editorial Board Co-Chair

SECRETARIAT: M. Vetrano, CREATE Consortium
Tel: +39 081 7683243 - Fax +39 081 7683171
isem2011@unina.it

IMPORTANT DATES
Submission of 2-page short papers: 25 February 2011
Notification od acceptance: 27 May 2011
Final contributions due: 16 September 2011

isem2011.unina.it

2011

