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Technical Article 

State of the Art in the Simulation of Electromagnetic Fields 
based on Large Scale Finite Element Eigenanalysis 

Abstract — In particle accelerator physics, charged particles are 
accelerated within highly resonating structures with the help of 
high frequency electromagnetic fields. The precise knowledge of 
the field distribution in the devices is of paramount importance 
for accurate beam dynamics simulations. Because of the request 
to consider even small field deviations attributed to fine three-
dimensional geometry details, the necessary accurate numerical 
modeling results in a demanding computation task. This 
challenging problem can be addressed on the basis of accurate 
curvilinear finite elements which are able to capture the non-flat 
shape of typically applied superconducting resonator structures 
in combination with a fine computational mesh. The resulting 
large electromagnetic models are simulated on a distributed 
memory architecture using the MPI parallelization strategy. 

I. INTRODUCTION

In particle accelerator physics, the determination of the radio 
frequency electromagnetic fields excited on purpose in highly 
resonating cavities is preferably performed in the frequency 
domain using an appropriate eigenmode analysis [1]-[3]. The 
corresponding continuous vector valued equations can be 
solved exactly only for a limited number of problems with 
reasonable complexity. Problems of practical importance can 
only be solved approximately on a discretized level. 

A popular discretization scheme is given with the finite 
element method (FEM) in the frequency domain employing a 
plain tetrahedral mesh which enables an approximation of the 
field distribution with high accuracy [4]-[6]. The ever 
increasing demand for high precision modeling can further be 
supported by introducing a higher order geometry 
approximation in case curved material interfaces have to be 
considered. The usage of the curvilinear finite elements is 
particular advantageous when local planar approximations are 
not accurate enough to handle sensitive material interfaces or 
boundary conditions [7]-[18]. The precise modeling of 
realistic electromagnetic problems is naturally accompanied 
by the necessity to employ huge memory resources and 
requires long simulation times. Extremely high computational 
resources prohibit the usage of classical implementations 
while a proper parallelization strategy on a distributed memory 
architecture enables a reliable execution and simultaneously 
keeps the solution times on an acceptable level [20]-[23]. 

To address carefully the challenging issues mentioned above, 
the article is organized as follows: in Section II, a short review 
of the fundamental continuous equations is given and the 
description on the calculation of the FEM stiffness and mass 
matrices for the numerical evaluation using curvilinear 
geometry transformation is presented in Section III. 
Programming details are highlighted in Section IV and a 
convergence analysis applied to verify a proper 
implementation of the underlying algorithms is given in 
Section V. Finally, in Section VI, the described algorithm is 
used to perform high precision eigenvalue calculations for the 
three-dimensional (3D) TESLA ‘Third Harmonic’ (3rd)
structure.

II. FUNDAMENTAL CONTINUOUS EQUATIONS

The fundamental properties of the applied high frequency 
electromagnetic fields are described by the Maxwell’s 
equations. In the context of highly resonating structures, they 
are preferably formulated in the frequency domain following 
the notation 
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Assuming isotropic material distributions inside the 
resonators, the underlying material relations are stated as 
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employing the scalar permittivity ε  and the scalar 
permeability μ . In the absence of any sources, the problem 
can naturally be reduced to an eigenvalue formulation. The 
fundamental equation is obtained by inserting the material 
relations (2) into the set of Maxwell’s equations (1) and stating 
the description for the electric field strength while eliminating 
the magnetic field strength. Combining the two curl equations 
into a single double curl variant results in 
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which can be further modified using relative material 
parameters according to r 0ε ε ε= and r 0μ μ μ= with the free 

space material parameters 0ε and 0μ . Additionally, the speed 

of light in free space, 0 0 01/c μ ε= , is used to normalize 
the eigenvalue. According to the Maxwell’s equations, the 
resulting continuous eigenvalue formulation 
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has to be accompanied by the indispensable divergence 
constraint

( )r 0div (r) (r) 0
r
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∈Ω

= r

rr r
 (5) 

which also has to be hold for all points rr  within the 
computational domain Ω . In the presence of superconducting 
cavities, the perfect electric conducting boundary condition 
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can readily be applied for all points on the boundary∂Ω ,
where the symbol nr  represents a vector normal to the surface 
at the specified position rr . In particular, if dedicated 
structural elements are introduced into the device to excite on 
purpose the electromagnetic fields, the simplified condition (6) 
has to be replaced accordingly at least on those parts of the 
surface which will identify the port regions. 

III. FINITE ELEMENT METHOD

During the last decades, various discretization techniques have 
been developed with individual advantages depending on the 
aspired applications. In the current work, the focus is put on 
the classical finite element method with vector valued basis 
functions on tetrahedral elements in a hierarchical setup [7]-
[13]. A proper approximation of the continuous distribution of 
the electric field strength specified in (4) is given by the local 
Ritz approach according to 
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with scalar weighting coefficients ic and vector valued basis 

functions iwr  with local support. Insertion of the 
approximation (7) into the continuous eigenvalue formulation 
(4) and application of a Galerkin test for the resulting 
expression leads to the discrete eigenvalue formulation 
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are further modified with the help of integration by parts and 
applying Gauß-Ostrogradski’s theorem. 

This procedure results in an additional surface integral term 
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which vanishes if only perfect magnetic or perfect electric 
boundary conditions are applied. 
In the first case, the scalar triple product evaluates to zero 
because the magnetic flux density is parallel to the normal 
vector per definition whereas in the latter case only test 
functions jwr with normal components on the surface have to 
be considered. Following the specified conditions, the matrix 
elements 
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have to be evaluated within the computational domain Ω .
Due to the compact support of the applied basis functions, the 
populations of the matrices A and B are very sparse. The 
integration in (11) has to be performed for each element 
independent of the neighbors and is followed by a subsequent 
summation of the individual contributions. This naturally 
allows assembling the entire sparse matrix in an efficient 
parallel strategy. Each individual contribution from an element 
indicated by superscript e can be summarized to 
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where the material distribution is approximated for simplicity 
reasons with constant values for each element. The integration 
in (12) is accomplished on a unit tetrahedron 0Ω . The symbol 

J  denotes the Jacobian matrix of the applied geometrical 
transformations and | |J  is used to identify its determinant. 

In the simplest approach, the geometry transformation follows 
the form 
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In case of the widespread linear transformation, the Jacobian is 
constant which simplifies the integration process in (12). In 
order to improve the accuracy of the spatial approximation in 
those cases where non-flat material interfaces are involved, the 
linear mapping of a unit tetrahedron to any element of the 
mesh is replaced by a nonlinear variant. 

For this purpose, according to the transformation (13), the set 
of lowest order scalar basis functions is extended by higher 
order polynomials. On the one hand, increasing the desired 
order for the interpolation leads to the more geometrically 
flexible transformation; on the other hand, it simultaneously 
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increases the numerical effort since more control points have 
to be involved in the calculation process. 

Fig. 1.  Linear versus curvilinear (here: quadratic polynomial) transformation 
of a unit tetrahedron conforming to a sphere of radius 2 touching the element 
in tree corner points. 

Quadratic polynomial interpolation as the simplest nonlinear 
representative requires the knowledge of ten control points per 
tetrahedron, where four of them are typically allocated on the 
corners of the element and the remaining six are usually 
placed in the center of the corresponding edges. Thus, each 
face is represented by a function of second order behavior and 
can smoothly fit to curvilinear interfaces. In case of 
hierarchical scalar basis functions, the control vectors are 
represented by difference vectors from the edge centers to the 
surface points instead of the surface vectors itself. In Fig. 1, 
the two specified approaches are visualized. The vector valued 
basis functions iwr  and their rotations curl iwr  can be 
expressed within a certain element by the fixed local basis 
functions '

iwr  defined on a unit tetrahedron [7]-[13] via the 
transformations 

1 T ' 'and
1( ) curl curl .

| |i i i iw J w w J w
J

−= =
r r r r
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The calculations of the element matrices contributions 
according to (12) and (15) can be carried out analytically for 
linear geometry transformations. The resulting simple 
expressions enable then fast and accurate assembly of the 
whole system matrices. In case of higher order spatial 
transformations with curvilinear elements, the exact evaluation 
is expensive and a numerical integration technique with 
sufficient accuracy is employed instead. As soon as the 
element matrices are calculated, the assembly of the entire 
system of equations can be performed by means of inserting 
the local values into the global system. 

IV. IMPLEMENTATION

The geometric modeling of the structure is performed within 
the CST Studio Suite® which is also used for the tetrahedral 
meshing [19]. The necessary information is passed to the FEM 
program by means of ASCII or binary file transfer. The entire 
FEM algorithm is implemented in C++ thus enabling high 
performance evaluation and a clear code layout [20]. The 
external mesh information is used in a first step to set up a 
graph representing the population pattern of the sparse 
stiffness and mass matrices in a way that only the degrees of 
freedom (DoFs) are considered. Constraints placed due to 
boundary conditions are incorporated in the matrix setup. 

Firstly, the entire graph is arbitrarily distributed among all the 
contributing processes but it has to be partitioned in proper 
clusters of contiguous elements to keep the communication 
overhead during the computations low. An example is 

displayed in Fig.2, where the formation of the desired domains 
with the help of the segmentation process can be seen. 

Fig. 2.  Distribution of the computational grid among various processes. Two 
selected regions are shown in (a) for the iris region of a resonator model. The 
DoFs located in the interface plane between different regions (b) have to be 
assigned properly in order to keep the communication overhead small. 

The final distribution of the various DoFs among the processes 
is determined with the help of the graph partitioning library 
ParMeTiS [21]. The knowledge of an advantageous 
numbering for the various DoFs is essential for the allocation 
of the required memory and setting up the matrices in the 
preferred communication-optimized way. Once the mesh and 
material information are properly distributed among all the 
processes, an efficient assembly of the global matrices 
according to the procedure described in Section III can be 
performed. A suitable handling of the matrices can be 
achieved by means of the software package PETSc [22], 
which provides different linear solvers and various 
preconditioners. 

Instead of direct distribution of the DoFs among the various 
processes and the following selection of the appropriate local 
mesh cells afterwards, it is more convenient for the graph 
partitioner to distribute the mesh cells first and to split then the 
DoFs using for example a heuristic approach for values 
located within the interface planes. This is true at least for the 
higher order approximation schemes where the number of 
elements is much smaller compared to the number of DoFs, 
and the underlying graph is considerably smaller and is 
therefore easier to split up.  

In this sense, one can even further simplify the partitioning 
process and set up a graph representing the distribution of only 
the grid nodes which further reduces the graph size. In a 
subsequent step, one has to find a local distribution of 
elements and DoFs such that these quantities are equally 
distributed among the various processes as good as possible. 
In Table I, two different variants enabling the decomposition 
procedure are evaluated and compared to each other taking 
into account a representative mesh of a practical application. 
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partitioning. However, this achievement is accompanied by 

curvilinear
element 

(a) (b) 

linear
element 

(a) (b) 

domain A

domain B

has to be accompanied by the indispensable divergence 
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which also has to be hold for all points rr  within the 
computational domain Ω . In the presence of superconducting 
cavities, the perfect electric conducting boundary condition 
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r
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× = r

r rr
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can readily be applied for all points on the boundary∂Ω ,
where the symbol nr  represents a vector normal to the surface 
at the specified position rr . In particular, if dedicated 
structural elements are introduced into the device to excite on 
purpose the electromagnetic fields, the simplified condition (6) 
has to be replaced accordingly at least on those parts of the 
surface which will identify the port regions. 

III. FINITE ELEMENT METHOD

During the last decades, various discretization techniques have 
been developed with individual advantages depending on the 
aspired applications. In the current work, the focus is put on 
the classical finite element method with vector valued basis 
functions on tetrahedral elements in a hierarchical setup [7]-
[13]. A proper approximation of the continuous distribution of 
the electric field strength specified in (4) is given by the local 
Ritz approach according to 
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with scalar weighting coefficients ic and vector valued basis 

functions iwr  with local support. Insertion of the 
approximation (7) into the continuous eigenvalue formulation 
(4) and application of a Galerkin test for the resulting 
expression leads to the discrete eigenvalue formulation 
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stiffness matrix and ( ), , 1,...,ijB B i j n= =  as the FEM 

mass matrix. The parameter 2
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are further modified with the help of integration by parts and 
applying Gauß-Ostrogradski’s theorem. 

This procedure results in an additional surface integral term 
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which vanishes if only perfect magnetic or perfect electric 
boundary conditions are applied. 
In the first case, the scalar triple product evaluates to zero 
because the magnetic flux density is parallel to the normal 
vector per definition whereas in the latter case only test 
functions jwr with normal components on the surface have to 
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have to be evaluated within the computational domain Ω .
Due to the compact support of the applied basis functions, the 
populations of the matrices A and B are very sparse. The 
integration in (11) has to be performed for each element 
independent of the neighbors and is followed by a subsequent 
summation of the individual contributions. This naturally 
allows assembling the entire sparse matrix in an efficient 
parallel strategy. Each individual contribution from an element 
indicated by superscript e can be summarized to 
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where the material distribution is approximated for simplicity 
reasons with constant values for each element. The integration 
in (12) is accomplished on a unit tetrahedron 0Ω . The symbol 

J  denotes the Jacobian matrix of the applied geometrical 
transformations and | |J  is used to identify its determinant. 

In the simplest approach, the geometry transformation follows 
the form 

1
( ) ( )

p

i i
i

r u r uϕ
=

=∑r r r r
 (13) 

utilizing the control parameters ir
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 together with the scalar 

basis functions ( )i uϕ r
 which span the FEM scalar spaces. 
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the Jacobian can be easily evaluated according to the 
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In case of the widespread linear transformation, the Jacobian is 
constant which simplifies the integration process in (12). In 
order to improve the accuracy of the spatial approximation in 
those cases where non-flat material interfaces are involved, the 
linear mapping of a unit tetrahedron to any element of the 
mesh is replaced by a nonlinear variant. 

For this purpose, according to the transformation (13), the set 
of lowest order scalar basis functions is extended by higher 
order polynomials. On the one hand, increasing the desired 
order for the interpolation leads to the more geometrically 
flexible transformation; on the other hand, it simultaneously 

increases the numerical effort since more control points have 
to be involved in the calculation process. 

Fig. 1.  Linear versus curvilinear (here: quadratic polynomial) transformation 
of a unit tetrahedron conforming to a sphere of radius 2 touching the element 
in tree corner points. 

Quadratic polynomial interpolation as the simplest nonlinear 
representative requires the knowledge of ten control points per 
tetrahedron, where four of them are typically allocated on the 
corners of the element and the remaining six are usually 
placed in the center of the corresponding edges. Thus, each 
face is represented by a function of second order behavior and 
can smoothly fit to curvilinear interfaces. In case of 
hierarchical scalar basis functions, the control vectors are 
represented by difference vectors from the edge centers to the 
surface points instead of the surface vectors itself. In Fig. 1, 
the two specified approaches are visualized. The vector valued 
basis functions iwr  and their rotations curl iwr  can be 
expressed within a certain element by the fixed local basis 
functions '

iwr  defined on a unit tetrahedron [7]-[13] via the 
transformations 
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The calculations of the element matrices contributions 
according to (12) and (15) can be carried out analytically for 
linear geometry transformations. The resulting simple 
expressions enable then fast and accurate assembly of the 
whole system matrices. In case of higher order spatial 
transformations with curvilinear elements, the exact evaluation 
is expensive and a numerical integration technique with 
sufficient accuracy is employed instead. As soon as the 
element matrices are calculated, the assembly of the entire 
system of equations can be performed by means of inserting 
the local values into the global system. 

IV. IMPLEMENTATION

The geometric modeling of the structure is performed within 
the CST Studio Suite® which is also used for the tetrahedral 
meshing [19]. The necessary information is passed to the FEM 
program by means of ASCII or binary file transfer. The entire 
FEM algorithm is implemented in C++ thus enabling high 
performance evaluation and a clear code layout [20]. The 
external mesh information is used in a first step to set up a 
graph representing the population pattern of the sparse 
stiffness and mass matrices in a way that only the degrees of 
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boundary conditions are incorporated in the matrix setup. 

Firstly, the entire graph is arbitrarily distributed among all the 
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clusters of contiguous elements to keep the communication 
overhead during the computations low. An example is 

displayed in Fig.2, where the formation of the desired domains 
with the help of the segmentation process can be seen. 

Fig. 2.  Distribution of the computational grid among various processes. Two 
selected regions are shown in (a) for the iris region of a resonator model. The 
DoFs located in the interface plane between different regions (b) have to be 
assigned properly in order to keep the communication overhead small. 

The final distribution of the various DoFs among the processes 
is determined with the help of the graph partitioning library 
ParMeTiS [21]. The knowledge of an advantageous 
numbering for the various DoFs is essential for the allocation 
of the required memory and setting up the matrices in the 
preferred communication-optimized way. Once the mesh and 
material information are properly distributed among all the 
processes, an efficient assembly of the global matrices 
according to the procedure described in Section III can be 
performed. A suitable handling of the matrices can be 
achieved by means of the software package PETSc [22], 
which provides different linear solvers and various 
preconditioners. 

Instead of direct distribution of the DoFs among the various 
processes and the following selection of the appropriate local 
mesh cells afterwards, it is more convenient for the graph 
partitioner to distribute the mesh cells first and to split then the 
DoFs using for example a heuristic approach for values 
located within the interface planes. This is true at least for the 
higher order approximation schemes where the number of 
elements is much smaller compared to the number of DoFs, 
and the underlying graph is considerably smaller and is 
therefore easier to split up.  

In this sense, one can even further simplify the partitioning 
process and set up a graph representing the distribution of only 
the grid nodes which further reduces the graph size. In a 
subsequent step, one has to find a local distribution of 
elements and DoFs such that these quantities are equally 
distributed among the various processes as good as possible. 
In Table I, two different variants enabling the decomposition 
procedure are evaluated and compared to each other taking 
into account a representative mesh of a practical application. 

 Following the data specified in Table I and II, one can clearly 
see that the subdivision of a given volume into multiple non-
overlapping parts consistently increases the communication 
expenses because less information is available in the local 
matrices. This general law is based on geometric reasons due 
to the increasing overall surface and is therefore independent 
of the realized partitioning scheme. However, special care has 
to be taken to separate those values which are located in the 
interface plane between different regions. This is especially 
true for higher order approximation schemes where multiple 
DoFs are located on those boundary layers. As expected, the 
subdivision according to the DoFs leads to the most efficient 
partitioning. However, this achievement is accompanied by 
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high computational costs arising from the necessity to set up 
and split a huge connectivity graph. On the other hand, the 
simplest procedure to decompose the computational domain is 
to cluster the mesh nodes according to the element topology 
and to apply a heuristic approach to separate the DoFs. 
According to the data specified in Table I and II, this 
procedure also enables the decomposition in an acceptable 
manner. This simplified approach can be further refined in a 
second stage if it is combined with the DoFs separation 
technique when the input is limited to the results of the first 
stage.

TABLE I. PARTITIONING OF A MESH CONSISTING OF 1.904.470 TETRAHEDRA 
AMONG VARIOUS PROCESSES USING LINEAR FIELD APPROXIMATION. THE

NUMBER OF NONZERO (NNZ) ENTRIES PER MATRIX IS DISTRIBUTED SUCH THAT 
MOST OF THE VALUES ARE STORED LOCALLY.

FEM 06, linear field approximation 
2.137.087 DoFs, 34.095.837 nnz 

processes
scheme: nodes 

4.607.450 branches 
scheme: DoFs 

31.958.750 branches 

2 2.466 cuts (0,054 %) 
99,928 % local 

4.879 cuts (0,015 %) 
99,971 % 

4 5.599 cuts (0,122 %) 
99,824 % local 

17.571 cuts (0,055 %) 
99,897 % local 

8 16.307 cuts (0,354 %) 
99,477 % local 

57.624 cuts (0,180 %) 
99,662 % local 

16 31.509 cuts (0,684 %) 
99,002 % local 

136.820 cuts (0,428 %) 
99,197 % local 

32 72.311 cuts (1,569 %) 
97,692 % local 

278.485 cuts (0,871 %) 
98,366 % local 

64 122.295 cuts (2,654 %) 
96,045 % local 

482.078 cuts (1,508 %) 
97,172 % local 

TABLE II. PARTITIONING OF A MESH CONSISTING OF 1.904.470 TETRAHEDRA 
AMONG VARIOUS PROCESSES USING QUADRATIC FIELD APPROXIMATION.

THE NUMBER OF NONZERO (NNZ) ENTRIES PER MATRIX IS DISTRIBUTED SUCH 
THAT MOST OF THE VALUES ARE STORED LOCALLY.

FEM 20, quadratic field approximation 
11.780.962 DoFs, 501.102.308 nnz 

processes
scheme: nodes 

4.607.450 branches 
scheme: DoFs 

489.321.346 branches 

2 2.466 cuts (0,054 %) 
99,923 % local memory error 

4 5.599 cuts (0,122 %) 
99,821 % local memory error 

8 16.307 cuts (0,354 %) 
99,466 % local 

650.286 cuts (0,133 %) 
99,740 % local 

16 31.509 cuts (0,684 %) 
98,976 % local 

1.587.394 cuts (0,324 %) 
99,366 % local 

32 72.311 cuts (1,569 %) 
97,627 % local 

3.228.226 cuts (0,660 %) 
98,712 % local 

64 122.295 cuts (2,654 %) 
95,943 % local 

5.646.508 cuts (1,154 %) 
97,746 % local 

V. CONVERGENCE ANALYSIS

In the following, we refer to the solution of Maxwell’s 
equations within closed perfect conductive structures to verify 
the correctness of a proposed implementation of all involved 
algorithms. The usage of the mass and stiffness matrix 
description introduced in Section III allows setting up the 
discrete generalized eigenvalue problem (8) which is further 
solved numerically using our own implementation of the 
Jacobi-Davidson [24] algorithm. The knowledge of all 
components of the eigenvector cr  enables then to evaluate the 
expansion (7) of the electric field intensity in terms of the 

specified global basis functions. From the knowledge of the 
electric field strength distribution one can determine the 
magnetic flux density applying the curl operator. A 
convergence analysis is performed on the example of a 
spherical cavity embedded in a perfect electric conductive 
material where analytical solutions for all emerging modes can 
be derived. The degeneration of the examined modes in the 
symmetric resonator is not retained in a numerical study when 
the calculations are performed on an asymmetric tetrahedral 
grid. For a number of selected approximation schemes the 
obtained relative frequency error as a function of mesh cells 
utilizing an average over the degenerated modes is illustrated 
in Fig. 3 to Fig. 5. Additionally, the obtained convergence 
order based on this error definition is given for each scheme. 
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Fig. 3.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the fundamental mode (TM 011) in a spherical cavity 
with perfect electric conductive boundary conditions. 
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Fig. 4.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the first higher order modes (TM 021, TM 121) in a 
spherical cavity with perfect electric conductive boundary conditions. 
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Fig. 5.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the second higher order mode (TE 011) in a spherical 
cavity with perfect electric conductive boundary conditions. 
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high computational costs arising from the necessity to set up 
and split a huge connectivity graph. On the other hand, the 
simplest procedure to decompose the computational domain is 
to cluster the mesh nodes according to the element topology 
and to apply a heuristic approach to separate the DoFs. 
According to the data specified in Table I and II, this 
procedure also enables the decomposition in an acceptable 
manner. This simplified approach can be further refined in a 
second stage if it is combined with the DoFs separation 
technique when the input is limited to the results of the first 
stage.

TABLE I. PARTITIONING OF A MESH CONSISTING OF 1.904.470 TETRAHEDRA 
AMONG VARIOUS PROCESSES USING LINEAR FIELD APPROXIMATION. THE

NUMBER OF NONZERO (NNZ) ENTRIES PER MATRIX IS DISTRIBUTED SUCH THAT 
MOST OF THE VALUES ARE STORED LOCALLY.

FEM 06, linear field approximation 
2.137.087 DoFs, 34.095.837 nnz 

processes
scheme: nodes 

4.607.450 branches 
scheme: DoFs 

31.958.750 branches 

2 2.466 cuts (0,054 %) 
99,928 % local 

4.879 cuts (0,015 %) 
99,971 % 

4 5.599 cuts (0,122 %) 
99,824 % local 

17.571 cuts (0,055 %) 
99,897 % local 

8 16.307 cuts (0,354 %) 
99,477 % local 

57.624 cuts (0,180 %) 
99,662 % local 

16 31.509 cuts (0,684 %) 
99,002 % local 

136.820 cuts (0,428 %) 
99,197 % local 

32 72.311 cuts (1,569 %) 
97,692 % local 

278.485 cuts (0,871 %) 
98,366 % local 

64 122.295 cuts (2,654 %) 
96,045 % local 

482.078 cuts (1,508 %) 
97,172 % local 

TABLE II. PARTITIONING OF A MESH CONSISTING OF 1.904.470 TETRAHEDRA 
AMONG VARIOUS PROCESSES USING QUADRATIC FIELD APPROXIMATION.

THE NUMBER OF NONZERO (NNZ) ENTRIES PER MATRIX IS DISTRIBUTED SUCH 
THAT MOST OF THE VALUES ARE STORED LOCALLY.

FEM 20, quadratic field approximation 
11.780.962 DoFs, 501.102.308 nnz 

processes
scheme: nodes 

4.607.450 branches 
scheme: DoFs 

489.321.346 branches 

2 2.466 cuts (0,054 %) 
99,923 % local memory error 

4 5.599 cuts (0,122 %) 
99,821 % local memory error 

8 16.307 cuts (0,354 %) 
99,466 % local 

650.286 cuts (0,133 %) 
99,740 % local 

16 31.509 cuts (0,684 %) 
98,976 % local 

1.587.394 cuts (0,324 %) 
99,366 % local 

32 72.311 cuts (1,569 %) 
97,627 % local 

3.228.226 cuts (0,660 %) 
98,712 % local 

64 122.295 cuts (2,654 %) 
95,943 % local 

5.646.508 cuts (1,154 %) 
97,746 % local 

V. CONVERGENCE ANALYSIS

In the following, we refer to the solution of Maxwell’s 
equations within closed perfect conductive structures to verify 
the correctness of a proposed implementation of all involved 
algorithms. The usage of the mass and stiffness matrix 
description introduced in Section III allows setting up the 
discrete generalized eigenvalue problem (8) which is further 
solved numerically using our own implementation of the 
Jacobi-Davidson [24] algorithm. The knowledge of all 
components of the eigenvector cr  enables then to evaluate the 
expansion (7) of the electric field intensity in terms of the 

specified global basis functions. From the knowledge of the 
electric field strength distribution one can determine the 
magnetic flux density applying the curl operator. A 
convergence analysis is performed on the example of a 
spherical cavity embedded in a perfect electric conductive 
material where analytical solutions for all emerging modes can 
be derived. The degeneration of the examined modes in the 
symmetric resonator is not retained in a numerical study when 
the calculations are performed on an asymmetric tetrahedral 
grid. For a number of selected approximation schemes the 
obtained relative frequency error as a function of mesh cells 
utilizing an average over the degenerated modes is illustrated 
in Fig. 3 to Fig. 5. Additionally, the obtained convergence 
order based on this error definition is given for each scheme. 
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Fig. 3.  Convergence analysis of various FEM approximations based on the 
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From these results one can clearly see that under linear 
geometry transformation, a second order field approximation 
(20 DoFs/cell) leads to nearly the same frequency deviation as 
the one obtained with the computationally cheaper first order 
scheme (6 DoFs/cell). 
 
In contrast to what has been observed in [18], introducing a 
curvilinear geometry approximation even on the simple 
second order polynomial geometry transformation not only 
increases the overall accuracy here but additionally retains the 
higher order convergence of the quadratic field approximation 
scheme compared to the linear variant. We conclude that for 
the presented study all examined methods enabling linear 
geometric modeling suffer from an inexact boundary 
representation whereas the curvilinear geometric modeling 
overcomes this difficulty. 
 
The presented convergence study is based on approximation 
functions of mixed order only. They are introduced to 
efficiently represent the field distribution in each 
computational element without the necessity of modeling all 
components. To extend the examination also to the complete 
field representations, a brick resonator of dimensions (2,e,π) is 
analyzed where geometry errors and a degeneration of modes 
can be avoided. In Fig. 6, the results of the convergence study 
are displayed. As expected, the numerical formulation based 
on the complete linear space approximation (12 DoFs/cell) 
exhibits the same convergence behavior as its reduced 
functional space variant (6 DoFs/cell) but in contrary to it the 
former is less accurate in terms of frequency modeling. 

�

� �
�

�

�
�

�

�

�

�

�

1 2 5 10 20 50 100
7.0

6.0

5.0

4.0

3.0

2.0

1.0

Number of elements, k Cells

F
r
e
q
u
e
n
c
y
e
r
r
o
r
,
l
o
g
��f �f0�

 
 
Fig. 6.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the TE/TM 110 mode in a brick shaped resonator with 
perfect electric conductive boundary conditions. The specified frequency error 
Δf is given with respect to the analytical solution f0. 
 

VI. APPLICATION 
In particle accelerators, charged particles are used for photon 
science and particle physics research. The actual acceleration 
of the particles can be effectively performed for example with 
the superconducting TESLA cavities which have been 
developed at DESY in the framework of an international 
collaboration [25]. Additionally to the accelerating structures 
which are designed to operate at a frequency of 1.3 GHz, a 
supplementary type of resonator working at 3.9 GHz is 
installed to reduce the nonlinear distortions in the longitudinal 
phase space of the charged particle distribution [26]. A 
geometrical model of the so called 3rd harmonic cavity is 
shown in Fig. 7, where additionally to the essential input 
power coupler the indispensable higher order mode (HOM) 
couplers are included to extract undesired modes. 

 
 

 
 
Fig. 7.  Geometrical model of the TESLA 3rd harmonic cavity including the 
nine-cell resonator with long beam tubes as well as the input coupler and two 
attached higher order mode (HOM) couplers. 
 
For detailed beam dynamics studies it is of fundamental 
importance to determine the field distribution within the 
superconducting resonators as well as the corresponding 
resonance frequency with a high precision. Apart from an 
accurate description of the cavity shape, the computational 
model also has to include fine geometric details representing 
the structure of the input and HOM couplers [26]-[28]. The 
challenging demand for a high precision calculation entails a 
proper amount of degrees of freedom which can be handled 
efficiently in a parallel programming environment. In Fig. 8, 
one of the possible decompositions of the computational 
domain employing the strategy described in Section IV is 
shown. 

 

 
 
Fig. 8.  Partitioning of the computational domain among 64 processes. A 
unique color is assigned to each of the sub domains. Their quantity can be 
adjusted according to the problem size and available computational resources. 
 
According to the proposed field of application, the 3rd 
harmonic cavity is not operated with the fundamental but 
rather with the last of those modes composing the lowest pass 
band. Due to the design of the resonator with nine elementary 
cells connected in series, the desired mode is located inside the 
spectrum and efficient algorithms have to be applied to extract 
the desired value. One of the possible approaches is given with 
our parallel implementation of the Jacobi-Davidson eigenvalue 
solver which is capable to select modes within the spectrum 
without the numerically expensive procedure to repeatedly 
solve linear systems with high accuracy [24]. The clustered 
distribution of the eigenvalues allows a specification of the 
target frequency such that together with a proper search 
direction a robust extraction of the desired mode can be 
enabled. In Fig. 9, the location of the lowest eigenvalues is 
visualized and the selection process is illustrated. 
 
 

 
 
Fig. 9.  Lowest part of the frequency spectrum determined for the TESLA 3rd 
harmonic cavity including the location of the desired eigenvalue within the 
distribution. Efficient calculation of the underlying eigenvalue problem can be 
performed with the help of the Jacobi-Davidson method in combination with a 
properly chosen target frequency and search direction. 
 
On account of a large computational grid which is necessary to 
resolve fine geometrical details, the solution of the linear 
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high computational costs arising from the necessity to set up 
and split a huge connectivity graph. On the other hand, the 
simplest procedure to decompose the computational domain is 
to cluster the mesh nodes according to the element topology 
and to apply a heuristic approach to separate the DoFs. 
According to the data specified in Table I and II, this 
procedure also enables the decomposition in an acceptable 
manner. This simplified approach can be further refined in a 
second stage if it is combined with the DoFs separation 
technique when the input is limited to the results of the first 
stage.

TABLE I. PARTITIONING OF A MESH CONSISTING OF 1.904.470 TETRAHEDRA 
AMONG VARIOUS PROCESSES USING LINEAR FIELD APPROXIMATION. THE

NUMBER OF NONZERO (NNZ) ENTRIES PER MATRIX IS DISTRIBUTED SUCH THAT 
MOST OF THE VALUES ARE STORED LOCALLY.

FEM 06, linear field approximation 
2.137.087 DoFs, 34.095.837 nnz 

processes
scheme: nodes 

4.607.450 branches 
scheme: DoFs 

31.958.750 branches 

2 2.466 cuts (0,054 %) 
99,928 % local 

4.879 cuts (0,015 %) 
99,971 % 

4 5.599 cuts (0,122 %) 
99,824 % local 

17.571 cuts (0,055 %) 
99,897 % local 

8 16.307 cuts (0,354 %) 
99,477 % local 

57.624 cuts (0,180 %) 
99,662 % local 

16 31.509 cuts (0,684 %) 
99,002 % local 

136.820 cuts (0,428 %) 
99,197 % local 

32 72.311 cuts (1,569 %) 
97,692 % local 

278.485 cuts (0,871 %) 
98,366 % local 

64 122.295 cuts (2,654 %) 
96,045 % local 

482.078 cuts (1,508 %) 
97,172 % local 

TABLE II. PARTITIONING OF A MESH CONSISTING OF 1.904.470 TETRAHEDRA 
AMONG VARIOUS PROCESSES USING QUADRATIC FIELD APPROXIMATION.

THE NUMBER OF NONZERO (NNZ) ENTRIES PER MATRIX IS DISTRIBUTED SUCH 
THAT MOST OF THE VALUES ARE STORED LOCALLY.

FEM 20, quadratic field approximation 
11.780.962 DoFs, 501.102.308 nnz 

processes
scheme: nodes 

4.607.450 branches 
scheme: DoFs 

489.321.346 branches 

2 2.466 cuts (0,054 %) 
99,923 % local memory error 

4 5.599 cuts (0,122 %) 
99,821 % local memory error 

8 16.307 cuts (0,354 %) 
99,466 % local 

650.286 cuts (0,133 %) 
99,740 % local 

16 31.509 cuts (0,684 %) 
98,976 % local 

1.587.394 cuts (0,324 %) 
99,366 % local 

32 72.311 cuts (1,569 %) 
97,627 % local 

3.228.226 cuts (0,660 %) 
98,712 % local 

64 122.295 cuts (2,654 %) 
95,943 % local 

5.646.508 cuts (1,154 %) 
97,746 % local 

V. CONVERGENCE ANALYSIS

In the following, we refer to the solution of Maxwell’s 
equations within closed perfect conductive structures to verify 
the correctness of a proposed implementation of all involved 
algorithms. The usage of the mass and stiffness matrix 
description introduced in Section III allows setting up the 
discrete generalized eigenvalue problem (8) which is further 
solved numerically using our own implementation of the 
Jacobi-Davidson [24] algorithm. The knowledge of all 
components of the eigenvector cr  enables then to evaluate the 
expansion (7) of the electric field intensity in terms of the 

specified global basis functions. From the knowledge of the 
electric field strength distribution one can determine the 
magnetic flux density applying the curl operator. A 
convergence analysis is performed on the example of a 
spherical cavity embedded in a perfect electric conductive 
material where analytical solutions for all emerging modes can 
be derived. The degeneration of the examined modes in the 
symmetric resonator is not retained in a numerical study when 
the calculations are performed on an asymmetric tetrahedral 
grid. For a number of selected approximation schemes the 
obtained relative frequency error as a function of mesh cells 
utilizing an average over the degenerated modes is illustrated 
in Fig. 3 to Fig. 5. Additionally, the obtained convergence 
order based on this error definition is given for each scheme. 
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Fig. 3.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the fundamental mode (TM 011) in a spherical cavity 
with perfect electric conductive boundary conditions. 
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Fig. 4.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the first higher order modes (TM 021, TM 121) in a 
spherical cavity with perfect electric conductive boundary conditions. 
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Fig. 5.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the second higher order mode (TE 011) in a spherical 
cavity with perfect electric conductive boundary conditions. 

20 DoFs/cell, curvilinear (6.0) 

6 DoFs/cell, curvilinear (1.8)

20 DoFs/cell, linear (2.0)

6 DoFs/cell, linear (2.0) 

20 DoFs/cell, curvilinear (4.0) 

6 DoFs/cell, curvilinear (2.0)

20 DoFs/cell, linear (2.0)
6 DoFs/cell, linear (1.9) 

20 DoFs/cell, curvilinear (4.0) 

6 DoFs/cell, curvilinear (2.3) 

20 DoFs/cell, linear (2.0)

6 DoFs/cell, linear (1.8)

From these results one can clearly see that under linear 
geometry transformation, a second order field approximation 
(20 DoFs/cell) leads to nearly the same frequency deviation as 
the one obtained with the computationally cheaper first order 
scheme (6 DoFs/cell). 
 
In contrast to what has been observed in [18], introducing a 
curvilinear geometry approximation even on the simple 
second order polynomial geometry transformation not only 
increases the overall accuracy here but additionally retains the 
higher order convergence of the quadratic field approximation 
scheme compared to the linear variant. We conclude that for 
the presented study all examined methods enabling linear 
geometric modeling suffer from an inexact boundary 
representation whereas the curvilinear geometric modeling 
overcomes this difficulty. 
 
The presented convergence study is based on approximation 
functions of mixed order only. They are introduced to 
efficiently represent the field distribution in each 
computational element without the necessity of modeling all 
components. To extend the examination also to the complete 
field representations, a brick resonator of dimensions (2,e,π) is 
analyzed where geometry errors and a degeneration of modes 
can be avoided. In Fig. 6, the results of the convergence study 
are displayed. As expected, the numerical formulation based 
on the complete linear space approximation (12 DoFs/cell) 
exhibits the same convergence behavior as its reduced 
functional space variant (6 DoFs/cell) but in contrary to it the 
former is less accurate in terms of frequency modeling. 
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Fig. 6.  Convergence analysis of various FEM approximations based on the 
resonance frequency of the TE/TM 110 mode in a brick shaped resonator with 
perfect electric conductive boundary conditions. The specified frequency error 
Δf is given with respect to the analytical solution f0. 
 

VI. APPLICATION 
In particle accelerators, charged particles are used for photon 
science and particle physics research. The actual acceleration 
of the particles can be effectively performed for example with 
the superconducting TESLA cavities which have been 
developed at DESY in the framework of an international 
collaboration [25]. Additionally to the accelerating structures 
which are designed to operate at a frequency of 1.3 GHz, a 
supplementary type of resonator working at 3.9 GHz is 
installed to reduce the nonlinear distortions in the longitudinal 
phase space of the charged particle distribution [26]. A 
geometrical model of the so called 3rd harmonic cavity is 
shown in Fig. 7, where additionally to the essential input 
power coupler the indispensable higher order mode (HOM) 
couplers are included to extract undesired modes. 

 
 

 
 
Fig. 7.  Geometrical model of the TESLA 3rd harmonic cavity including the 
nine-cell resonator with long beam tubes as well as the input coupler and two 
attached higher order mode (HOM) couplers. 
 
For detailed beam dynamics studies it is of fundamental 
importance to determine the field distribution within the 
superconducting resonators as well as the corresponding 
resonance frequency with a high precision. Apart from an 
accurate description of the cavity shape, the computational 
model also has to include fine geometric details representing 
the structure of the input and HOM couplers [26]-[28]. The 
challenging demand for a high precision calculation entails a 
proper amount of degrees of freedom which can be handled 
efficiently in a parallel programming environment. In Fig. 8, 
one of the possible decompositions of the computational 
domain employing the strategy described in Section IV is 
shown. 

 

 
 
Fig. 8.  Partitioning of the computational domain among 64 processes. A 
unique color is assigned to each of the sub domains. Their quantity can be 
adjusted according to the problem size and available computational resources. 
 
According to the proposed field of application, the 3rd 
harmonic cavity is not operated with the fundamental but 
rather with the last of those modes composing the lowest pass 
band. Due to the design of the resonator with nine elementary 
cells connected in series, the desired mode is located inside the 
spectrum and efficient algorithms have to be applied to extract 
the desired value. One of the possible approaches is given with 
our parallel implementation of the Jacobi-Davidson eigenvalue 
solver which is capable to select modes within the spectrum 
without the numerically expensive procedure to repeatedly 
solve linear systems with high accuracy [24]. The clustered 
distribution of the eigenvalues allows a specification of the 
target frequency such that together with a proper search 
direction a robust extraction of the desired mode can be 
enabled. In Fig. 9, the location of the lowest eigenvalues is 
visualized and the selection process is illustrated. 
 
 

 
 
Fig. 9.  Lowest part of the frequency spectrum determined for the TESLA 3rd 
harmonic cavity including the location of the desired eigenvalue within the 
distribution. Efficient calculation of the underlying eigenvalue problem can be 
performed with the help of the Jacobi-Davidson method in combination with a 
properly chosen target frequency and search direction. 
 
On account of a large computational grid which is necessary to 
resolve fine geometrical details, the solution of the linear 
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system within the Jacobi-Davidson method turns out to 
become a crucial point of the algorithm even for moderate 
accuracy requests. Starting from a given search space 
V which is supposed to be expanded in the direction vΔr , the 
system 

T T( )P A B P v P rλ− Δ = −
r r

 (16) 

with the residuum ( )r A B xλ= −
r r

 belonging to the current 
approximation of the aspired eigenvector xr  in combination 
with the projector TP I VV B= −  has to be solved. 

A dedicated preconditioner of the form 

( ) 11 1 T 1 T 1
JD B B B BM M M V V M V V M

−− − − −= −  (17) 

is used to enable the application of any preconditioner 1M − to 
the system A Bλ−  even for the projected version (16). The 
abbreviation BV BV= is introduced here to simplify the 
notation. On the basis of the geometrical model displayed in 
Fig. 7, together with a fine computational grid and a 
decomposition of the domain according to Fig. 8, the 
eigenvalue problem can be solved with a high precision. The 
iterative procedure has to be stopped if the residual error meets 
the required accuracy requirement. In Fig. 10, the convergence 
history for various discretization levels is visualized. 
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Fig. 10.  Convergence history of the iterative eigenvalue solver showing 
accurate results for increasing number of vectors in the search space. A proper 
preconditioner enables the calculation of the aspired eigenvalues almost 
independent of the underlying problem size. 

Apart from the specified eigenvalue formulation also the field 
representation has to cope with the high precision demands. 
Compared to the strongly dominating longitudinal components 
of the electric field strength in the vicinity of the geometrical 
axis, the existing transverse components arising due to the 
asymmetrical main input coupler as well as the higher order 
modes couplers are up to three orders of magnitude smaller. 

Because of the general inability to model the analytical field 
distribution of the specified resonator precisely on the discrete 
level, the projection of the strong longitudinally oriented field 
on the set of applied basis functions results in artificial 
transverse field components for those elements which are 
located near the geometrical axis. This observation is true for 
all kinds of basis functions which are not able to represent the 
analytical field distribution but can be realized most easily for 
the lowest order polynomial representations. In Fig. 14 and 15, 

the mentioned coupling can be observed on the coarse as well 
as on the fine mesh resolution for various FEM approximation 
functions in terms of artificial noise. 

This undesired behavior cannot be completely avoided but it 
can be reduced dramatically during the evaluation process in 
case the undesired transversal components cancel each other. 
This cancellation effect happens if local symmetric mesh cells 
are involved in the field evaluation process. In Fig. 11, the 
possible approaches are presented. 

(a)                             (b)                                     (c)

Fig. 11.  Cross section of a tetrahedral mesh in a plane normal to the 
longitudinal axis of the resonator for an arbitrary unstructured mesh (a), a 
mesh aligned at the coordinate planes (b) and a true symmetric mesh (c). 

A symmetric mesh at least in the region where strong 
longitudinal electric field components are expected can be 
established according to a procedure visualized in Fig. 12. An 
initial mesh is set up for ¼ of the model and has to be 
completed in a subsequent processing step. 

Fig. 12.  Geometrical model of the TESLA 3rd harmonic cavity used to set up 
a partially symmetric mesh. Initially, in the resonator region, only ¼ of the 
model is used for meshing. In a subsequent step, the obtained tetrahedral 
elements are mirrored into the missing quadrants. Special care has to be taken 
in the interface planes. 

On the basis of a properly constructed computational mesh, 
the eigenvalue calculation can be initiated. An overview of the 
distribution of the absolute value of the electric field strength 
together with the appropriate absolute value of the magnetic 
flux density is given in Fig. 13 for the desired mode. 

(a) | |E
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r

Fig. 13.  Distribution of the absolute value of the electric field strength in (a) 
and the absolute value of the magnetic flux density in (b) for the operating 
mode. The upper part of the geometry is suppressed for visualization reasons. 

A detailed analysis of the beam dynamics in the cavity region 
requires the precise knowledge of the electromagnetic field 
components preferably in the vicinity of the reference path 
near the cavity axis. The required components are specified 
according to a Cartesian coordinate system with x identifying 
the horizontal, y the vertical and z the longitudinal direction. In 
Fig. 14 to Fig. 17, the calculated field components Ex, Ey and 
Ez normalized to the maximum longitudinal value Ez0 for 
different approximation schemes and varying mesh resolutions 
are plotted.
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system within the Jacobi-Davidson method turns out to 
become a crucial point of the algorithm even for moderate 
accuracy requests. Starting from a given search space 
V which is supposed to be expanded in the direction vΔr , the 
system 

T T( )P A B P v P rλ− Δ = −
r r

 (16) 

with the residuum ( )r A B xλ= −
r r

 belonging to the current 
approximation of the aspired eigenvector xr  in combination 
with the projector TP I VV B= −  has to be solved. 

A dedicated preconditioner of the form 

( ) 11 1 T 1 T 1
JD B B B BM M M V V M V V M

−− − − −= −  (17) 

is used to enable the application of any preconditioner 1M − to 
the system A Bλ−  even for the projected version (16). The 
abbreviation BV BV= is introduced here to simplify the 
notation. On the basis of the geometrical model displayed in 
Fig. 7, together with a fine computational grid and a 
decomposition of the domain according to Fig. 8, the 
eigenvalue problem can be solved with a high precision. The 
iterative procedure has to be stopped if the residual error meets 
the required accuracy requirement. In Fig. 10, the convergence 
history for various discretization levels is visualized. 
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Fig. 10.  Convergence history of the iterative eigenvalue solver showing 
accurate results for increasing number of vectors in the search space. A proper 
preconditioner enables the calculation of the aspired eigenvalues almost 
independent of the underlying problem size. 

Apart from the specified eigenvalue formulation also the field 
representation has to cope with the high precision demands. 
Compared to the strongly dominating longitudinal components 
of the electric field strength in the vicinity of the geometrical 
axis, the existing transverse components arising due to the 
asymmetrical main input coupler as well as the higher order 
modes couplers are up to three orders of magnitude smaller. 

Because of the general inability to model the analytical field 
distribution of the specified resonator precisely on the discrete 
level, the projection of the strong longitudinally oriented field 
on the set of applied basis functions results in artificial 
transverse field components for those elements which are 
located near the geometrical axis. This observation is true for 
all kinds of basis functions which are not able to represent the 
analytical field distribution but can be realized most easily for 
the lowest order polynomial representations. In Fig. 14 and 15, 

the mentioned coupling can be observed on the coarse as well 
as on the fine mesh resolution for various FEM approximation 
functions in terms of artificial noise. 

This undesired behavior cannot be completely avoided but it 
can be reduced dramatically during the evaluation process in 
case the undesired transversal components cancel each other. 
This cancellation effect happens if local symmetric mesh cells 
are involved in the field evaluation process. In Fig. 11, the 
possible approaches are presented. 
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Fig. 11.  Cross section of a tetrahedral mesh in a plane normal to the 
longitudinal axis of the resonator for an arbitrary unstructured mesh (a), a 
mesh aligned at the coordinate planes (b) and a true symmetric mesh (c). 

A symmetric mesh at least in the region where strong 
longitudinal electric field components are expected can be 
established according to a procedure visualized in Fig. 12. An 
initial mesh is set up for ¼ of the model and has to be 
completed in a subsequent processing step. 

Fig. 12.  Geometrical model of the TESLA 3rd harmonic cavity used to set up 
a partially symmetric mesh. Initially, in the resonator region, only ¼ of the 
model is used for meshing. In a subsequent step, the obtained tetrahedral 
elements are mirrored into the missing quadrants. Special care has to be taken 
in the interface planes. 

On the basis of a properly constructed computational mesh, 
the eigenvalue calculation can be initiated. An overview of the 
distribution of the absolute value of the electric field strength 
together with the appropriate absolute value of the magnetic 
flux density is given in Fig. 13 for the desired mode. 
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Fig. 13.  Distribution of the absolute value of the electric field strength in (a) 
and the absolute value of the magnetic flux density in (b) for the operating 
mode. The upper part of the geometry is suppressed for visualization reasons. 

A detailed analysis of the beam dynamics in the cavity region 
requires the precise knowledge of the electromagnetic field 
components preferably in the vicinity of the reference path 
near the cavity axis. The required components are specified 
according to a Cartesian coordinate system with x identifying 
the horizontal, y the vertical and z the longitudinal direction. In 
Fig. 14 to Fig. 17, the calculated field components Ex, Ey and 
Ez normalized to the maximum longitudinal value Ez0 for 
different approximation schemes and varying mesh resolutions 
are plotted.

652.742  elements
3.984.082 DoFs 

1.904.470 elements
11.780.962 DoFs 

3.282.467 elements
20.370.322 DoFs 



ICS Newsletter 9

0.5 0.4 0.3 0.2 0.1 0.0 0.1
0.015

0.010

0.005

0.000

0.005

0.010

0.015

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t
,
E
x
�Ez0

0.5 0.4 0.3 0.2 0.1 0.0 0.1
0.015

0.010

0.005

0.000

0.005

0.010

0.015

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t
,
E
y
�Ez0

0.5 0.4 0.3 0.2 0.1 0.0 0.1
1.0

0.5

0.0

0.5

1.0

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t
,
E
z
�Ez0

0.5 0.4 0.3 0.2 0.1 0.0 0.1
0.0

0.2

0.4

0.6

0.8

1.0

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t
,

�Ez��Ez
0

Fig. 14.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The computational mesh consists of 607.576 tetrahedral elements where 
no symmetry in the mesh structure is used. All calculations are performed 
using the reduced linear (FEM 06), the full linear (FEM 12) as well as the 
reduced quadratic (FEM 20) functional spaces on linear or curvilinear 
geometry transformation. 
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Fig. 15.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The computational mesh consists of 2.064.944 tetrahedral elements
where no symmetry in the mesh structure is used. All calculations are 
performed using the reduced linear (FEM 06), the full linear (FEM 12) as well 
as the reduced quadratic (FEM 20) functional spaces on linear or curvilinear 
geometry transformation. 
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system within the Jacobi-Davidson method turns out to 
become a crucial point of the algorithm even for moderate 
accuracy requests. Starting from a given search space 
V which is supposed to be expanded in the direction vΔr , the 
system 

T T( )P A B P v P rλ− Δ = −
r r

 (16) 

with the residuum ( )r A B xλ= −
r r

 belonging to the current 
approximation of the aspired eigenvector xr  in combination 
with the projector TP I VV B= −  has to be solved. 

A dedicated preconditioner of the form 

( ) 11 1 T 1 T 1
JD B B B BM M M V V M V V M

−− − − −= −  (17) 

is used to enable the application of any preconditioner 1M − to 
the system A Bλ−  even for the projected version (16). The 
abbreviation BV BV= is introduced here to simplify the 
notation. On the basis of the geometrical model displayed in 
Fig. 7, together with a fine computational grid and a 
decomposition of the domain according to Fig. 8, the 
eigenvalue problem can be solved with a high precision. The 
iterative procedure has to be stopped if the residual error meets 
the required accuracy requirement. In Fig. 10, the convergence 
history for various discretization levels is visualized. 
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Fig. 10.  Convergence history of the iterative eigenvalue solver showing 
accurate results for increasing number of vectors in the search space. A proper 
preconditioner enables the calculation of the aspired eigenvalues almost 
independent of the underlying problem size. 

Apart from the specified eigenvalue formulation also the field 
representation has to cope with the high precision demands. 
Compared to the strongly dominating longitudinal components 
of the electric field strength in the vicinity of the geometrical 
axis, the existing transverse components arising due to the 
asymmetrical main input coupler as well as the higher order 
modes couplers are up to three orders of magnitude smaller. 

Because of the general inability to model the analytical field 
distribution of the specified resonator precisely on the discrete 
level, the projection of the strong longitudinally oriented field 
on the set of applied basis functions results in artificial 
transverse field components for those elements which are 
located near the geometrical axis. This observation is true for 
all kinds of basis functions which are not able to represent the 
analytical field distribution but can be realized most easily for 
the lowest order polynomial representations. In Fig. 14 and 15, 

the mentioned coupling can be observed on the coarse as well 
as on the fine mesh resolution for various FEM approximation 
functions in terms of artificial noise. 

This undesired behavior cannot be completely avoided but it 
can be reduced dramatically during the evaluation process in 
case the undesired transversal components cancel each other. 
This cancellation effect happens if local symmetric mesh cells 
are involved in the field evaluation process. In Fig. 11, the 
possible approaches are presented. 

(a)                             (b)                                     (c)

Fig. 11.  Cross section of a tetrahedral mesh in a plane normal to the 
longitudinal axis of the resonator for an arbitrary unstructured mesh (a), a 
mesh aligned at the coordinate planes (b) and a true symmetric mesh (c). 

A symmetric mesh at least in the region where strong 
longitudinal electric field components are expected can be 
established according to a procedure visualized in Fig. 12. An 
initial mesh is set up for ¼ of the model and has to be 
completed in a subsequent processing step. 

Fig. 12.  Geometrical model of the TESLA 3rd harmonic cavity used to set up 
a partially symmetric mesh. Initially, in the resonator region, only ¼ of the 
model is used for meshing. In a subsequent step, the obtained tetrahedral 
elements are mirrored into the missing quadrants. Special care has to be taken 
in the interface planes. 

On the basis of a properly constructed computational mesh, 
the eigenvalue calculation can be initiated. An overview of the 
distribution of the absolute value of the electric field strength 
together with the appropriate absolute value of the magnetic 
flux density is given in Fig. 13 for the desired mode. 

(a) | |E
r

(b) | |B
r

Fig. 13.  Distribution of the absolute value of the electric field strength in (a) 
and the absolute value of the magnetic flux density in (b) for the operating 
mode. The upper part of the geometry is suppressed for visualization reasons. 

A detailed analysis of the beam dynamics in the cavity region 
requires the precise knowledge of the electromagnetic field 
components preferably in the vicinity of the reference path 
near the cavity axis. The required components are specified 
according to a Cartesian coordinate system with x identifying 
the horizontal, y the vertical and z the longitudinal direction. In 
Fig. 14 to Fig. 17, the calculated field components Ex, Ey and 
Ez normalized to the maximum longitudinal value Ez0 for 
different approximation schemes and varying mesh resolutions 
are plotted.
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Fig. 14.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The computational mesh consists of 607.576 tetrahedral elements where 
no symmetry in the mesh structure is used. All calculations are performed 
using the reduced linear (FEM 06), the full linear (FEM 12) as well as the 
reduced quadratic (FEM 20) functional spaces on linear or curvilinear 
geometry transformation. 
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Fig. 15.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The computational mesh consists of 2.064.944 tetrahedral elements
where no symmetry in the mesh structure is used. All calculations are 
performed using the reduced linear (FEM 06), the full linear (FEM 12) as well 
as the reduced quadratic (FEM 20) functional spaces on linear or curvilinear 
geometry transformation. 
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Fig. 16.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The underlying functional space is given by the reduced linear 
polynomial approach (FEM 06) where a symmetric tetrahedral mesh within 
the cavity region is constructed automatically. A linear geometry 
transformation is used for the specified elements throughout the calculations. 
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Fig. 17.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The underlying functional space is given by the reduced quadratic 
polynomial approach (FEM 20) where a symmetric tetrahedral mesh within 
the cavity region is constructed automatically. A curvilinear geometry 
transformation is used for the specified elements throughout the calculations. 

652.742 elements
1.904.470 elements

3.282.467 elements

652.742 elements
1.904.470 elements
3.282.467 elements

1.904.470 elements

3.282.467 elements

652.742 elements

1.904.470 elements

3.282.467 elements

652.742 elements

3.282.467 elements 652.742 elements

1.904.470 elements 

3.282.467 elements 652.742 elements

1.904.470 elements

3.282.467 elements

652.742 elements

1.904.470 elements

3.282.467 elements

652.742 elements1.904.470 elements

0.5 0.4 0.3 0.2 0.1 0.0 0.1

0.010

0.008

0.006

0.004

0.002

0.000

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t,

E
x
�Ez0

0.5 0.4 0.3 0.2 0.1 0.0 0.1

0.0010

0.0005

0.0000

0.0005

0.0010

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t
,
E
y
�Ez0

0.5 0.4 0.3 0.2 0.1 0.0 0.1
1.0

0.5

0.0

0.5

1.0

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t
,
E
z
�Ez0

0.5 0.4 0.3 0.2 0.1 0.0 0.1
0.0

0.2

0.4

0.6

0.8

1.0

Longitudinal coordinate, z�mF
i
e
l
d
c
o
m
p
o
n
e
n
t
,

�Ez��Ez
0

Fig. 16.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The underlying functional space is given by the reduced linear 
polynomial approach (FEM 06) where a symmetric tetrahedral mesh within 
the cavity region is constructed automatically. A linear geometry 
transformation is used for the specified elements throughout the calculations. 
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Fig. 17.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The underlying functional space is given by the reduced quadratic 
polynomial approach (FEM 20) where a symmetric tetrahedral mesh within 
the cavity region is constructed automatically. A curvilinear geometry 
transformation is used for the specified elements throughout the calculations. 
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Fig. 16.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The underlying functional space is given by the reduced linear 
polynomial approach (FEM 06) where a symmetric tetrahedral mesh within 
the cavity region is constructed automatically. A linear geometry 
transformation is used for the specified elements throughout the calculations. 
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Fig. 17.  Evaluation of the electric field strength along the cavity axis. All 
Cartesian components are normalized to the maximum longitudinal field value 
Ez0. The underlying functional space is given by the reduced quadratic 
polynomial approach (FEM 20) where a symmetric tetrahedral mesh within 
the cavity region is constructed automatically. A curvilinear geometry 
transformation is used for the specified elements throughout the calculations. 

652.742 elements
1.904.470 elements

3.282.467 elements

652.742 elements
1.904.470 elements
3.282.467 elements

1.904.470 elements

3.282.467 elements

652.742 elements

1.904.470 elements

3.282.467 elements

652.742 elements

3.282.467 elements 652.742 elements

1.904.470 elements 

3.282.467 elements 652.742 elements

1.904.470 elements

3.282.467 elements

652.742 elements

1.904.470 elements

3.282.467 elements

652.742 elements1.904.470 elements

According to the results visualized in Fig. 14 and 15, the 
calculated transverse field components based on the reduced 
linear polynomial approximation exhibit an enormous amount 
of parasitic oscillation when they are evaluated on an 
asymmetric mesh. On the specified computational grids, the 
observed fluctuations are multiple times higher than the 
expected field quantity itself which prohibits in this stage the 
field data usage for beam dynamics studies. Further 
refinements of the mesh reduce this effect at the expense that 
extremely fine mesh cells have to be provided. 

The situation changes dramatically if at least the complete 
linear function space is considered in the numerical analysis. 
While on a coarse mesh still a considerable amount of noisy 
oscillations is present, the calculations on a refined mesh show 
noticeable improvements. A careful inspection of the data 
reveals that another type of error remains which can be 
attributed to the mismatch of the electrical and the geometrical 
axis of the resonator due to the introduction of an asymmetric 
computational grid. Similar oscillations occur in case of a truly 
symmetric field which is evaluated off the axis. The worse 
approximation capability of the complete linear function 
spaces with respect to the frequency compared to the reduced 
variants, as gathered in Fig. 6, is indicated here by the poor 
representation of the longitudinal field profile |Ez| according to 
Fig. 14 and 15. Even though the calculated field components 
are much smoother, they are still unsuited for detailed beam 
dynamics studies. 

An alternative calculation can be obtained when the known 
formulations are evaluated on a truly symmetric mesh. On the 
one hand, the high frequency oscillations are completely 
eliminated due to cancellation in pairs of the local field 
approximation errors. On the other hand, the mesh symmetry 
enforces the coincidence of the electrical and the mechanical 
axes and prevents therefore oscillations with respect to 
numerically misaligned cavity cells. From Fig. 16 it can be 
noticed that even for the reduced linear approximation 
approach (FEM 06), no artificial oscillations in the field 
distribution emerge. According to the data no convergence of 
the field components is yet achieved for the specified meshes. 
Application of the computationally more expensive reduced 
quadratic polynomial approach (FEM 20) on the same set of 
meshes consistently results in the more accurate simulation 
data specified in Fig. 17. Even for the sensitive horizontal 
electric field component Ey, no apparent differences can be 
observed. 

Apart from the field components, a further important 
parameter within the eigenvalue calculation is the resonance 
frequency of the cavity for the specified mode. In Table I, a 
comparative study of the numerical solution process on the 
basis of the FEM with first (6 DoFs/cell) and second (20 
DoFs/cell) order field approximation is performed for different 
meshes each with respect to linear and curvilinear geometry 
transformation. Here, the number of DoFs for each 
computational task is given as an indication for the underlying 
numerical effort. Contrary to what has been observed in case 
of the spherical resonator, the advantage of the curvilinear 
transformation cannot always be realized in this practical 
application. While the more accurate geometry transformation 
does not help to increase the accuracy under first order field 
approximation, a clear improvement can be observed in 
connection with the second order field approximation. 

TABLE III. DETERMINATION OF THE RESONANCE FREQUENCY OF THE 
OPERATIONAL MODE OF THE TESLA 3RD HARMONIC CAVITY FOR FIRST AND 

SECOND ORDER FINITE ELEMENT APPROXIMATIONS USING LINEAR AND 
CURVILINEAR GEOMETRICAL TRANSFORMATION.

FEM 06, first order FEM 20, second order Mesh 
linear curvilinear linear curvilinear 

716.476 DoFs 3.984.082 DoFs 652.742
cells 3,8930

GHz
3,8896
GHz

3,9026
GHz

3,8998
GHz

2.137.087 DoFs 11.780.962 DoFs 1.904.470 
cells 3,8981

GHz
3,8961
GHz

3,9021
GHz

3,9001
GHz

3.702.748 DoFs 20.370.322 DoFs 3.282.467 
cells 3,8992

GHz
3,8974
GHz

3,9019
GHz

3,9001
GHz

In addition to the presented Cartesian components of the 
electric field strength, also the transverse components of the 
magnetic flux density are required to initiate detailed beam 
dynamic simulations. According to the Lorentz force equation 

( )F q E v B= + ×
r r rr

 (18) 

and the assumption that a particle of charge q travels along the 
cavity axis with speed of light, the remaining components c0Bx
and c0By have to be determined. Applying the curl operator on 
the electric field strength as specified in (1) and scaling the 
resulting field with the inverse of the angular frequency result 
in the missing components. On the basis of a quadratic field 
approximation, the results are displayed in Fig. 18. 
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Fig. 18.  Horizontal and vertical component of the magnetic flux density 
relative to the absolute maximum of the longitudinal electric field strength 
evaluated along the geometrical axis of the cavity. A reduced quadratic field 
approximation (FEM 20) together with a curvilinear geometry representation 
is used on symmetrical and unsymmetrical meshes. 
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According to the results visualized in Fig. 14 and 15, the 
calculated transverse field components based on the reduced 
linear polynomial approximation exhibit an enormous amount 
of parasitic oscillation when they are evaluated on an 
asymmetric mesh. On the specified computational grids, the 
observed fluctuations are multiple times higher than the 
expected field quantity itself which prohibits in this stage the 
field data usage for beam dynamics studies. Further 
refinements of the mesh reduce this effect at the expense that 
extremely fine mesh cells have to be provided. 

The situation changes dramatically if at least the complete 
linear function space is considered in the numerical analysis. 
While on a coarse mesh still a considerable amount of noisy 
oscillations is present, the calculations on a refined mesh show 
noticeable improvements. A careful inspection of the data 
reveals that another type of error remains which can be 
attributed to the mismatch of the electrical and the geometrical 
axis of the resonator due to the introduction of an asymmetric 
computational grid. Similar oscillations occur in case of a truly 
symmetric field which is evaluated off the axis. The worse 
approximation capability of the complete linear function 
spaces with respect to the frequency compared to the reduced 
variants, as gathered in Fig. 6, is indicated here by the poor 
representation of the longitudinal field profile |Ez| according to 
Fig. 14 and 15. Even though the calculated field components 
are much smoother, they are still unsuited for detailed beam 
dynamics studies. 

An alternative calculation can be obtained when the known 
formulations are evaluated on a truly symmetric mesh. On the 
one hand, the high frequency oscillations are completely 
eliminated due to cancellation in pairs of the local field 
approximation errors. On the other hand, the mesh symmetry 
enforces the coincidence of the electrical and the mechanical 
axes and prevents therefore oscillations with respect to 
numerically misaligned cavity cells. From Fig. 16 it can be 
noticed that even for the reduced linear approximation 
approach (FEM 06), no artificial oscillations in the field 
distribution emerge. According to the data no convergence of 
the field components is yet achieved for the specified meshes. 
Application of the computationally more expensive reduced 
quadratic polynomial approach (FEM 20) on the same set of 
meshes consistently results in the more accurate simulation 
data specified in Fig. 17. Even for the sensitive horizontal 
electric field component Ey, no apparent differences can be 
observed. 

Apart from the field components, a further important 
parameter within the eigenvalue calculation is the resonance 
frequency of the cavity for the specified mode. In Table I, a 
comparative study of the numerical solution process on the 
basis of the FEM with first (6 DoFs/cell) and second (20 
DoFs/cell) order field approximation is performed for different 
meshes each with respect to linear and curvilinear geometry 
transformation. Here, the number of DoFs for each 
computational task is given as an indication for the underlying 
numerical effort. Contrary to what has been observed in case 
of the spherical resonator, the advantage of the curvilinear 
transformation cannot always be realized in this practical 
application. While the more accurate geometry transformation 
does not help to increase the accuracy under first order field 
approximation, a clear improvement can be observed in 
connection with the second order field approximation. 

TABLE III. DETERMINATION OF THE RESONANCE FREQUENCY OF THE 
OPERATIONAL MODE OF THE TESLA 3RD HARMONIC CAVITY FOR FIRST AND 

SECOND ORDER FINITE ELEMENT APPROXIMATIONS USING LINEAR AND 
CURVILINEAR GEOMETRICAL TRANSFORMATION.
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3,9001
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In addition to the presented Cartesian components of the 
electric field strength, also the transverse components of the 
magnetic flux density are required to initiate detailed beam 
dynamic simulations. According to the Lorentz force equation 

( )F q E v B= + ×
r r rr

 (18) 

and the assumption that a particle of charge q travels along the 
cavity axis with speed of light, the remaining components c0Bx
and c0By have to be determined. Applying the curl operator on 
the electric field strength as specified in (1) and scaling the 
resulting field with the inverse of the angular frequency result 
in the missing components. On the basis of a quadratic field 
approximation, the results are displayed in Fig. 18. 
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Fig. 18.  Horizontal and vertical component of the magnetic flux density 
relative to the absolute maximum of the longitudinal electric field strength 
evaluated along the geometrical axis of the cavity. A reduced quadratic field 
approximation (FEM 20) together with a curvilinear geometry representation 
is used on symmetrical and unsymmetrical meshes. 
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VII. CONCLUSION

In this article the successive application of a parallel FEM 
eigenvalue solver on the basis of curvilinear tetrahedral 
elements is reported. The superior convergence rate of higher 
order approximations versus lower order variants can be 
preserved even on non-flat material interfaces with the usage 
of a moderate geometrical transformation order. Parasitic high 
frequency oscillations in the transverse field components 
evaluated along the cavity axis are attributed to arbitrary 
tetrahedral meshes. They can be completely eliminated using a 
symmetric arrangement of the elements with respect to the 
coordinate planes in the vicinity of the evaluation region. 
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