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A pragmatic approach to educating finite element methods  
 
Abstract —Finite element methods are widely used today by 

commercial organizations. Likewise, academic communities 

worldwide are still continuously widening its scope of 

applications. While preparing master students for their future 

career, professors are forced to make fundamental choices 

regarding the content of their lectures, since industry and 

academics tend to request different type of skills. In this paper, a 

pragmatic approach is presented which may be adopted to serve 

both worlds. By gradually increasing the theoretic level and, at 

the same time, treating various practical consequences, people 

are developed that have a global yet thorough view on finite 

element methods. 

 

I. INTRODUCTION 

 

When being appointed to arrange a brandnew course on finite 

element (FE) methods in a master program for mathematics 

and physics students, one may be easily tempted to approach 

finite elements from its theoretical side. Their bachelor study 

programs are rather fundamentally oriented, they are thus used 

to deal with complicated theories and, in contrast to many 

master students in engineering disciplines, they are still 

charmed by theoretic courses. Moreover, the academic 

community stimulates it.  

 

A visionary conflict immediately arises when the lecturer 

himself appears to be a PhD in engineering, having worked 

(and still working) for more than ten years in industry on real-

life finite element applications in various disciplines such as 

magnetics, structural dynamics and fluid dynamics. Being 

convinced that any master program in exact or applied 

sciences should not only prepare for academic careers, but for 

industrial careers as well, he is challenged to arrange a course 

that prepares for both.  

 

In this educational paper, the author describes how he brought 

this into practice. Though the original intention was to bridge 

the gap from theory to practice for students in mathematics 

and physics, similar ideas and concepts may be adopted to 

bridge the gap from practice to theory for students in various 

engineering disciplines.  

 

II. BACKGROUND 

 

Having finished their bachelor program in engineering, 

mathematics or physics, students should possess a thorough 

knowledge of the base disciplines required to become 

specialized in their major discipline. The question rises what 

the required set of base disciplines is and whether it is 

sufficiently/appropriately covered or not. In view of the fact 

that many fresh master students are about two years away 

from their launch into a non-academic job market, where 

theoretic skills are definitely not the only factor that is 

assessed by future employers, a huge gap is to be crossed by 

the students.  

 

For example, if one asks students what differential equations 

are, most will give an acceptable yet mathematically inspired 

answer. Some of them will be eager to tell that many types of 

differential equations can be solved analytically. A handful of 

them will even respond that they have learned how to solve a 

partial differential equation on a unit square with some exotic 

boundary conditions on its edges. The author never met a 

student who considered his first response in view of the 

interest of the requestor, that is an engineer working almost 

full time in industry. When asking them whether they would 

give the same answer when sitting in front of a human 

resource manager while applying for a job, most students 

quickly realize the importance of the context. The subject of 

contextual awareness is extremely important, yet not often 

focused on, resulting in situations as the one described above.  

 

Referring to the same question, students should actually be 

made conscious about the fact  

 that differential equations together with their 

boundary conditions are merely approximate 

mathematical descriptions of physical, financial or 

other processes;  

 that these models rely on parameters such as material 

properties that are rarely accurately known 

themselves;  

 that what is considered the “exact solution” of the 

problem, often represented by a convincing set of 

nicely-looking colored pictures, is thus only an 

approximate solution of reality; 

 that wrong technical conclusions might consequently 

be drawn, possibly resulting in loss of profit and/or 

reputation for the organization;  

 that numerical simulation, in the end, must serve the 

community by yielding ever better designs in ever 

less time and with ever smaller prototyping costs; 

 … 

 

Another issue requiring attention in courses on finite elements, 

particularly for the practical sessions, is finding the right 

balance between commercial software and proprietary 

software many academic research groups possess. The latter 

may be best suited for illustrating all the numerical 

peculiarities occurring. On the other hand, commercial 

software is adapted to historic and actual needs of many 

industrial and even academic users, and addresses numerical 

simulation from a customer point of view. It is definitely an 

added value to students when they have at least shortly been 

exposed to the best of both worlds. Challenge the theoretic 

guys to generate decent meshes on solid models they 

assembled themselves starting from an imported CAD-model, 

or force the practical guys to dig into the core of a finite 

element solver by letting them implement a non-linear solver 

based on a given linear solver, … Cross-fertilization is a nice 

way to open people’s minds. 

 

III. APPROACH 

 

This section of the paper describes in which way the author 

organizes his lecture series on theory and practice of finite 

element methods. In total, there are 13 theoretic and 13 

practical sessions foreseen, two hours per session. The target 

audience consists mainly of master students in mathematics 

and physics. The aim is to provide students with sufficient 

theoretic and practical background so that they are well 

prepared for both, a numerically oriented PhD study program, 



as well as a simulation oriented job in a private company. 

Therefore, theoretic sessions are always complemented with 

relevant examples from the lecturer’s industrial experience, 

whereas practical sessions are always started from a theoretic 

baseline.  

 

There are various approaches to initiating students in the 

world of finite elements. Two extreme examples: 

 Start by introducing the mathematical framework of 

Hilbert and Sobolev spaces, variational formulations 

etc… ; then gradually converge to a descriptive level 

that allows implementation into software; eventually 

apply the techniques to some examples. 

 Let students first play around with finite element 

software to give them some feeling about its practical 

aspects; then point out where the theory comes into 

play;  steadily increase the level of abstraction to end 

with a sound mathematical framework. 

 

Though the first approach may be the most elegant one from 

an academic point of view, it is the author’s conviction that 

students are better served by the second approach. Just a 

handful of brilliant students may like to be immersed in an 

ocean of formulas, but the risk of losing other students’ 

attention as of the first hours of the course on is too large. The 

aversion some may take up during this short period of time, 

might pursue them for the rest of their career, resulting in 

missed opportunities for academic and industrial society. By 

gradually increasing the level of difficulty, students are 

permanently challenged to pass small yet surveyable bridges, 

enhancing the confidence in their newly learned skills.  

 

Moreover, keeping the theoretic level low in the beginning 

allows the lecturer to put stress on the broader context in 

which finite element simulation is to be viewed and on the 

scientific domains the examples are chosen from (e.g. 

electromagnetics & thermodynamics). For some students, 

especially those being strongly mathematically oriented, the 

contextual story is experienced as strange, and sometimes 

even difficult. After having followed the entire lecture series, 

most however agree upon the added value it gives to the 

course.  

 

For the reasons mentioned above, the following sequence of 

course lectures is adopted: 

 FE introduction 

o Demonstration; 

o Guided play with commercial SW; 

 FE principles 

o 1D diffusion problems; 

o 1D convection-diffusion problems; 

o 2D diffusion problems; 

o 2D convection-diffusion problems; 

o Mathematical framework; 

 FE spin-offs 

o Non-linear FEM; 

o Time-harmonic & transient FEM; 

 FE revisited 

o Specific play with commercial SW; 

o Industrial applications (company visit). 

The most important among these topics are discussed more 

thoroughly in the coming sections. 

 

 

 

IV. FE INTRODUCTION 

 

Demonstration is a convincing method for introducing the 

finite element method and the various issues that will be dealt 

with during the course. Three examples are generally 

considered in the first lecture. 

 

A. Diffusion in a rod 

 

Though not being a magnetic example, simulating the 

temperature distribution in a rod of length L is an ideal 

example to start with. Instead of beginning to analytically 

solve the simplest of all differential problems, 

 

 (1) 

 

  ,  (2) 

  (3) 

 

where T [K] is the temperature, x [m] the position along the 

rod and k [W/m/K] the diffusion constant, the students are 

asked where such problems occur in real life. They are often 

surprised hearing that double glazing  and cup or panhandles 

belong to this category. Starting from that insight, it is not a 

big deal to illustrate the discrepancy between modeling and 

reality:  

 The formulation implicitly assumes that all heat is 

flowing along a thermally perfectly insulated rod. 

The panhandle is though cooled along its length by 

diffusion, convection and radiation. 

 The Dirichlet boundary conditions may be well suited 

for simulating double-glazing. However, in case of a 

pan with boiling water in it, a volunteer will certainly 

not observe the boundary condition at  as a 

37°C Dirichlet condition if the length of the steel 

handle is rather short. 

If, additionally, it is considered to have some local heating 

along the rod (e.g. induction heater or band heater), one may 

argue that the problem is no longer a 1D problem, especially 

when the L/D ratio of the rod is fairly small. Despite its 

simplicity, the educational value of this example is large. 

 

B. Lifting magnet 

 

The lifting magnet is a first didactical electromagnetic 

example. A basic model and its magnetic vector potential 

solution is plotted in Fig. 1. 

  

 
Fig. 1.  Magnetic vector potential distribution in a lifting magnet. 

 



Many relevant topics can be covered with this example: 

 2D validity. This actuator is easily modeled in 2D 

Cartesian coordinates (XY-plane). Its depth is 

generally of the same size as its width and height. 

Hence, fringing also takes place in the Z-direction, 

but it is not considered in the analysis. An error is 

thus made and its magnitude additionally depends on 

the relative size of the airgap. 

 Symmetry. In the end, FE requires solving a system of 

equations. By exploiting symmetry, the size of the 

system is reduced, so does the computational effort. 

One may take this opportunity to mention other types 

of symmetry (e.g. periodic symmetry and rotational 

symmetry), and/or to say some words about iterative 

solvers for systems of linear equations. 

 Discretizing, meshing. This topic is often not 

adequately treated in FE courses, yet it is key for  

obtaining accurate solutions. The lecturer can show 

various strategies to obtain decent initial meshes and 

can briefly talk about adaptive mesh refinement. It is 

an ideal topic for the guided play tour with 

commercial SW later on, since the students will 

directly see the effect of their mesh related choices on 

the results.  

 Magnetic vector potential. Quantities such as 

temperatures are easy to deal with, since they are part 

of our daily life. Vector potentials are not and thus 

require some further explanation, especially in 

relation to the next topic.     

 Boundary conditions. This is the right place to 

convince students to think about a numerical solution 

prior to solving for it. One can show the effect of 

erroneous boundary conditions and ask the student to 

reason upon the validity of the result. They should be 

trained to consider solutions as erroneous until it is 

proven they are not. Next to that, the concept of 

natural boundary conditions can be demonstrated 

here as well. 

 Parameterization. This fairly straightforward 

technique is often used in practice and students must 

at least have heard about it once.  

 Solving. By simulating the lifting magnet as a non-

linear problem with adaptive mesh refinement, the 

lecturer can comment on the three nested loops that 

are to be tackled: every adaption step requires solving 

a nonlinear problem; every nonlinear problem 

requires solving a sequence of linear problems; every 

linear problem is solved by an iterative sequence. 

 Post-processing. Students are trained to solve 

problems and check their solutions. However, they 

must now be trained as well to interpret solutions: it 

is the only reason why simulations are to be done. 

Getting insight in the behavior of the actuator by 

looking to the field lines and flux densities, is as 

important as processing the solution, e.g. via the 

Maxwell stress method to determine the force acting 

on the mover. As a side remark, one can mention the 

concept of element order in this scope, since it easily 

observed in the solution, at least for first order 

elements. 

 

C. High voltage line 

 

Most students have already heard of techno-medical 

investigations on the influence that electromagnetic fields in 

the vicinity of high voltage lines may have on the human 

body. Due to the emotional character often related to it, they 

are generally interested in this topic. From the lecturer’s point 

of view, it complements the previous examples.  

 

The high voltage line, with its fields ranging hundreds of 

meters away from the centimeter sized cables, is a good 

example for illustrating the effect of dimensional extremes on 

the meshing requirements. Should all elements be of 

millimeter size? Where should the boundary be placed when 

infinity is no option? Are there any tricks to model the far field 

behavior? Etc… It is also a good example for demonstrating 

that electric field problems and magnetic field problems are 

treated in a different way, since in the former case the earth 

surface is an equipotential surface, whereas it is no barrier at 

all in the latter case. 

 

As a way to introduce some general knowledge, and scientific 

fun as well, a few minutes could be spent on explaining the 

corona effect. After having zoomed in on the electric field 

distribution close to the cables, students could be challenged to 

explain why birds never take long breaks on charged lines.  

 

C. Guided play with commercial software 

 

Having finished the demonstrations, students tend to be 

saturated with new concepts and approaches. Time has come 

to let them play around with a user friendly (preferably 

commercial) software package. They always appreciate it and 

are astonished by the ease of modeling, solving and post-

processing.  

 

Regarding solid modeling, some are capable of creating a 3D-

model of a Greek temple or even the empire state building in 

less than one hour. The examples may seem weird in view of 

computational magnetics, but they are ideal candidates for 

illustrating various aspects of 3D-modelling, among which 

copying, mirroring, Boolean operations ... And the students 

are once offered a lab session they will remember for the 

remainder of their life.  

 

Being sufficiently familiar with the modeling tool, the step 

towards modeling the lifting magnet is rather small. They can 

then get some feeling for the key aspects of the finite method 

and are sufficiently prepared for the next lectures, obviously 

having some more elementary content. 

 

 V. FE PRINCIPLES 

 

As stated before, it is a fundamental choice of the author to 

gradually increase the level of difficulty. This is done in five 

steps, of which the main ideas are outlined below.  

 

A. 1D Diffusion equations 

 

In this first step, it is illustrated in which way the finite 

element method is applied to develop a numerical method for 

solving ordinary thermal diffusion equations as in Eq. 1, 

though including a heat source term q [W/m
3
] in the right 

hand, and with at least one Dirichlet bound. In order to keep 

all equations as simple as possible, the domain is subdivided 

into n elements of the same size h [m]. The temperature profile 

is modeled as a sum of n+1 linear “hat shape” functions , 

one for each node: 

 

  (4) 

 



A residual is defined as 

 

  (5) 

 

and the weighed residual method is introduced: 

 

  (6) 

 

where  is a weighing function. Next, the second 

derivative occurring in the diffusion term is then reduced an 

order by adopting the integration by parts theorem, thereby 

introducing a boundary term.  

 

In order to retrieve an algebraic system of equations, the 

Galerkin method is introduced. For now, it is sufficient to tell 

the students that weighing functions are simply selected from 

the same set as the shape functions. It is not recommended to 

mention anything about the Dirichlet bounds yet. Having 

elaborated the integrals, the well-known (-1)─(+2)─(-1) 

molecule structure of the diffusion matrix is easily shown. It 

illustrates the close relationship with finite difference methods 

based on central difference approximations [1].  

 

The right moment has arrived to let the students implement 

their first elementary FE program. They will typically define 

the system matrix K as  

 

  (7) 

 

and find out it is not of full rank shortly after. This is the better 

moment to point out one has forgotten to consider the 

Dirichlet bound(s) at the edge(s) of the domain or, in other 

words, that is was not required to weigh with the hat functions 

in the Dirichlet nodes. They all continue by setting all off-

diagonal entries on the first (and/or last) line to zero and by 

adding the Dirichlet value to the first (and/or last) entry of the 

vector at the right hand side. The numerical solution is quickly 

computed afterwards. However, the lecturer should then focus 

on the advantage of using (whenever possible) the conjugate 

gradient algorithm for solving the system of equations, and 

point out the possibility to symmetrize the system matrix here. 

The obvious way out is setting the first entry of the second line 

(and/or the last entry of the all but last line) to zero and adding 

appropriate values to the second (and/or all but last) entry in 

the right hand side vector. 

 

The previous part is obviously experienced as fairly simple, 

but the lecturer should stress on the fact that it illustrates many 

of the key ideas behind finite elements. A profound 

comprehension of this basic form significantly eases the 

understanding of the mathematical framework later on 

(step 5).  

 

Having convinced the students about the ease of finite 

elements, some more time is to be spent on their practical 

implementation. In order to retrieve the basic matrix structure 

of Eq. 7, it was implicitly assumed that all neighboring 

elements and nodes are incrementally numbered and that all 

elements are of the same size h. In view of a later 2D 

implementation, where such ideal circumstances cannot be 

met over the entire domain, one should be challenged to 

assemble the system matrix and right hand side vector 

elementwise, starting from arbitrary numbered elements and 

nodes, directly taking Dirichlet conditions and symmetrizing 

operations into account [2]. This is generally the first big 

obstacle to be tackled by the students, since it not only 

requires from them more conceptual thinking but as well more 

advanced programming than they are used to. 

 

However, once their generalized software codes are properly 

working, they can focus on various other aspects. For 

example: 

 Consider a domain of three different neighboring 

materials (e.g. glass-air-glass) with two Dirichlet 

bounds (e.g. inner and outer temperature) and no heat 

production inside. 

 Consider a domain of a single material (e.g. steel) 

being locally heated with two Dirichlet bounds. This 

problem can also be solved analytically, thus it can be 

compared to the numerical solution. It is a nice 

example to illustrate the relation between accuracy 

and the element size that is chosen. This is illustrated 

in Fig. 3. 

 

 
Fig. 3.  Illustration of the influence of element size on the 

numerical accuracy, for a typical thermal diffusion 

problem with internal heating and two Dirichlet 

boundary conditions. 

 

B. 1D Convection-diffusion equations 

 

The treatment of 1D thermal convection-diffusion problems, 

e.g.  

 

  (8) 

 

   (9) 

  (10) 

 

where κ [m
2
/s] is the diffusivity and [m/s]  the velocity of 

the medium, is done in exactly the same way as before. It is to 

be focused only on the convection term. The analytic solution 

reads 

 

  (11) 

 

The software implementation is straightforward. The students 

are then requested to selected a parameter combination 

 that yields a not too steep slope in the analytic 

solution. Subsequently they are asked to play with the size of 

the elements till numerical oscillations start occurring, as 

shown in Fig. 4. 

 



 
Fig. 4.  Illustration of the numerical oscillations occurring when 

applying the Galerking FE method to convection 

dominated convection diffusion problems ( ). 

 

The remainder of the lecture on this topic is dedicated to the 

analysis of the cause of these oscillations and on numerical 

strategies to avoid them. From finite difference theory with 

central differences it is shown that the oscillatory solution on 

an equidistant grid with n + 1 nodes reads 

 

  (12) 

 

  (13) 

 

  (14) 

 

  (15) 

 

The dimensionless quantity is the so-called Péclet-number 

and expresses the level of convection relative to diffusion for 

the chosen grid. When , the ratio r is negative, 

causing r
i
  to change sign at each consecutive node, i.e. 

oscillations [3]. 

 

Two solution strategies are proposed. The simplest one is 

artificially adding diffusivity, up to a (summed) value of 

, such that the “new” Péclet number is always 

smaller than one [3]. The resulting numerical solution smears 

out the sharp gradient. It is shown that this actually 

corresponds to upwind differencing of the convection term [1], 

causing the resulting accuracy of the method to be only of 

, even for diffusion dominated problems.  

 

The better alternative is weighing between central and upwind 

differencing of the convection term, the weights depending on 

the relative convection dominance of the problem. In practical 

terms, this can be done by replacing the diffusivity κ by  

 

  (16) 

 

  (17) 

 

One can show that this particular choice yields a numerical 

solution that coincides with the exact solution of Eq. 11 in all 

the nodes. For diffusion dominated problems, the accuracy is 

of order , which is better than with artificial 

diffusion [3]. 

 

 

 

It is not necessary yet to show in which way a modification to 

the set of weighing functions, instead of augmenting the 

diffusivity, results in exactly the same system matrix. This is 

better considered in the 2D case. 

 

Having finished this topic, the students are sufficiently 

acquainted with the basics of finite elements and its close 

relation to finite difference methods. They are now ready to 

apply similar ideas to partial differential equations. 

 

C. 2D Diffusion equations 

 

In this lecture topic, it is focused on diffusion equations. To 

keep the same notation as before, 

 

  (18) 

 

is proposed as model equation. Magnetostatic 2D problems are 

covered as well when replacing the temperature by the z-

component of a magnetic vector potential Az [Vs/m ; Tm] and 

the diffusivity tensor with a slightly modified reluctivity tensor 

[Am/Vs ; m/H] [2]: 

 

  (19) 

 

This lecture is the first one in which differential operators and 

tensors are used. Students are usually familiar with both 

concepts from their bachelor programs, so one can focus on 

interpretation of formulas instead of their derivation.  

 

Similarities between the 1D and 2D approach are easily 

explained. Once it is clear for the students that integration by 

parts (1D) is actually a special case of Green’s second identity 

(2D or more), they rapidly realize that the slightly more 

complicated way of notation in 2D is just a simple formalism 

that can be easily interpreted via the framework given in the 

1D cases.   

 

It is worth spending some time of the lab sessions on the 

concept of symmetric second order tensors for modeling e.g. 

magnetic anisotropy. Though students are familiar with the 

tensor transformation rule when switching from one 

coordinate system to another, they often do not well 

understand what it can be used for in practice. By using a 

rectangular core of a one-phase core constructed with oriented 

steel as an example, and by writing the tensors for the 

horizontal and vertical legs on the black board, they are easily 

convinced that something must be done with the tensor entries 

when the principal direction of the material is at some nonzero 

angle with respect to the chosen coordinate system. To 

illustrate that non-zero off-diagonal entries can occur as well, 

it is instructive to let the students recompute the tensors for a 

coordinate system that is rotated such that it does no longer 

coincide with the material’s principal directions. A numeric 

solution for the latter case is shown in Fig. 5. In Fig. 6, the 

influence of anisotropy on the distribution of magnetic field 

lines in the areas where the legs of the core overlap is 

compared to the case in which the ferromagnetic material 

model is isotropic. 

 



 
 
Fig. 5.  Magnetic vector potential distribution in a one-phase 

core made of oriented steel. 

 

 
 

Fig. 6.  Detail of Fig. 5 (right) and comparison with the magnetic 
vector potential distribution obtained when using an 

isotropic ferromagnetic material model (left). 

 

For what is yet to come, it is important to demonstrate in 

which way applying the finite element principles on a single 

triangular element finally yields an elementary (3x3) 

contribution Ke to the system matrix, as follows: 

 

  (20) 

 

in which b [m] and c [m] are geometric quantities depending 

on the nodal coordinates of the element and Δe [m
2
] the 

surface area of the element [3,4].  

 

Having reached this point, the students are ready for 

implementing their own linear 2D finite element solver and 

post-processor, starting from given data structures in which 

the nodes, elements, current or heat sources, boundary 

conditions, materials, material directions, … are uniquely 

defined. Achieving this is a challenge for both the students and 

the lecturer. Most students only programmed short and basic 

functions before and quickly tend to lose the overview. For the 

lecturer, the biggest concern is the number of different codes 

he needs to debug for errors. One could as well group the 

students, but this is not advised: the risk is high that one 

person will do the main job, while the others are just passively 

looking and thus not capturing. Though it was already treated 

in their improved 1D implementation, students appear to have 

most problems with an efficient assembly of the system 

matrix, thereby directly accounting for boundary conditions 

[2]. Despite the effort from both parties, satisfaction is very 

large when students plot their first correct solution on the 

screen. Having accomplished this, students definitely have a 

better idea about the complexity of a finite element solver than 

they ever could have had from simply using software or from 

reading complicated theory books. 

 

D. 2D Convection-diffusion equations 

 

The addition of a convective term 

  

  (21) 

 

to the left-hand side of Eq. 18 first requires some explanation 

of concepts coming from fluid dynamics, such as  streamlines, 

upwind, downwind and crosswind direction [3]. In a similar 

way as for the diffusion term, the elementary (3x3) 

contribution Ce of the convection term to the system matrix is 

then derived for a linear triangular finite element: 

 

  (22) 

 

Students are often surprised since the implementation of this 

formula in their software is a matter of five minutes. They 

should however be told that the resulting system loses its 

symmetry. 

 

The magnetic brake is a nice 2D example of an application in 

which this convective term plays a role. The lifting magnet 

example is easily turned into a magnetic brake example by 

mirroring it along the mover, by making the latter somewhat 

longer, and by attributing a speed to the mover. Another 

didactical example, easier to understand for students not 

having a profound background in electromagnetics, is the 

parallel and laminated flow of two fluids entering a  tube at 

different temperatures. Whatever example selected, it is 

interesting for students to confirm what they already know, 

that is the occurrence of oscillations when the velocity 

distribution in the moving parts becomes too dominant. 

 

Next, it is focused on techniques to avoid such wiggles. The 

basic idea of adding artificial diffusion is discussed first. For 

an isotropic medium, the following artificial diffusion scheme 

is proposed: 

 

  (23) 

  (24) 

 

where  [m/s] and  [m/s] are the components of the 

velocity vector in an element and h [m] the element “size”. It 

is to be mentioned that various alternatives exist for the 

element size [3]. Exact definitions of these, with their 

advantages and disadvantages, are not that relevant in this 

scope and are not treated any further. The most important 

issue to discuss here is proving that the proposed scheme not 

only adds undesired diffusion to the crosswind directions, but 

that the amount of additional diffusion depends on the 

coordinate system definition as well. No one wishes to use a 

solver whose results depend on the reference frame. 

 

From the finite difference treatment of convection-diffusion 

equations, it is known that upwinding the convective term 

yields stable solutions [1]. The question is how to realize 

upwinding in a finite element context. This is the right point to 

address a fundamentally different approach via modified 

weighing functions (Petrov-Galerkin methods), in which more 

weight is added to the upwind direction [3]. This is done as 

follows: 

 

  (25) 

 



  (26) 

 

The weighing effect of the second term can be easily 

visualized, as illustrated in Fig. 7.  

 

 
Fig. 7.  Illustration of additional weight added to the upstream 

direction by the second term in Eq. 25. 

 

It is obvious that the definition of the so-called intrinsic time 

scale τ [s] finds its origin in the analytical treatment of the 1D 

model problem, as outlined before. The students are then 

asked to prove that this method only adds diffusion in the 

direction of the streamlines, by computing the elementary 

(3x3) contribution Se to the system matrix originating from 

the extra term in the weighing function: 

 

  (27) 

 

This is simply done by rotating the coordinate system axes 

into the streamline and crosswind direction, causing the 

additional diffusivity tensor to transform into  

 

  (28) 

 

Once again, it takes not more than five minutes to implement 

this in the software, so the students quickly see the effect of 

this stabilizing term. Slight oscillations still occur, but they are 

localized around the typical sharp gradients observed in 

convection dominated problems. The mathematical proof of 

this (Godunov theorem) is out-of-scope. 

 

E. Mathematical framework 

 

Being familiar with the more complicated notations in 2D, 

using vectors, tensors, differential operators and integrals, the 

step towards a more formal description of a finite element 

problem is straightforward. For example: 

 

Let H
1h

 be a subset of the Hilbert space H
1
 of square 

integrable functions with square integrable 1
st
 order 

derivatives, such that 

 

  (29) 

 

where Mh is the triangulation, e an element, P
1
 the space of 

first order polynomials and C
0
 the space of piecewise 

continuous polynomial base functions over the triangulation 

Mh. Let S
h
 be the set of shape functions 

 

  (30) 

 

and V
h
 be the set of weighing functions 

 

  (31) 

 

where  is the Dirichlet constrained part of the domain 

boundary. Let  be an inner product defined as 

 

  (32) 

 

Then the Galerkin finite element solution for a convection 

diffusion problem consists in finding a function such 

that  the following holds: 

  

  (33) 

 
 

It should be obvious that only extremely brilliant students are 

capable of translating such type of formulations into a 

correctly functioning finite element solver. By using the 

approach adopted in this paper, the lecturer can easily relate 

any detail of this formalism to theoretical and practical items 

that have already been covered earlier, yet in a more 

comprehensible way. Nevertheless, it is important that 

students get acquainted with this abstract formalism. They 

should be made aware of the fact the finite element method 

rests on a beautiful mathematical framework and that 

advanced research requires a thorough understanding of it. In 

that respect it is referred to [5] for a brilliant book on the 

foundations of finite elements.      

 

VI. FE SPIN-OFFS 

 

With the basic of finite element methods in mind, the students 

are ready for some extensions, which are briefly outlined 

below. 

 

A. Nonlinear FEM 

 

In a certain sense, treating nonlinear problems is not a finite 

element issue, but one of solving systems of nonlinear 

equations. Students normally have studied this in their 

bachelor program. Therefore, the principles of iterative 

gradient based line search and/or trust region Newton methods 

should normally only be discussed briefly [6].  

 

The main purpose of treating this topic in a finite element 

context is to show in which way a solver needs to be modified 

to include non-linear information to speed up the nonlinear 

convergence rate of a solver. Students are first requested to 

implement a non-linear iterative loop around the linear solver 

they already have, i.e. implementing a successive substitution 

algorithm with some relaxation. Despite prior knowledge, this 

step appears to be difficult for some students. Then it is 

outlined in which way derivative information from the 

material model translates into an additional term in the 

Jacobian matrix, next to the linear system matrix [2]. As with 

adding a convective term or stabilization term, the 

implementation of this particular enhancement is a matter of a 

few minutes programming. Students can then focus on 

comparing convergence rates of both non-linear solvers they 

now have implemented. 

 

B. Time-harmonic and transient FEM 

 

Regarding time-harmonic FEM, it is only conceptually 

focused on the main items:  



 the method of describing phasors using complex 

numbers such that problems can be studied in 

frequency domain; 

 the derivation of the contribution of the phase-shifted 

eddy current term to the system matrix; 

 the properties of the resulting system of equations 

and its consequences on the iterative linear and non-

linear solvers that can be used [7]; 

 the conflict that rises in the material modeling, when 

systems are driven into their nonlinear range, e.g. due 

to saturation at the flux density peaks [8]; 

The second point in this list is interesting for the lecturer 

willing to test a student’s level of abstraction: ask him to 

derive the contribution of a reactive term to the system matrix 

and check whether he sees the relation with an eddy current 

term or not. 

 

Transient FEM is not thoroughly discussed in the author’s 

lecture series, since it is a huge topic and since the total 

number of contact hours is simply too small. Therefore, only 

the basics of time-stepping are explained and some real-life 

examples from the lecturer are shown. 

 

VII. FE REVISITED 

 

A. Guided play with commercial software 

 

Being close to the end of the lecture series, students not only 

have received sufficient theoretic background on finite 

elements, but they also have learned what the complexity of a 

finite element solver is. The moment has arrived to take them 

back to the beginning and have them play once again with the 

same (commercial) software package as before. They now 

look with completely different eyes on the various parameters 

to be set in pre-processing or to be judged upon in post-

processing. They realize the many bridges they have passed, 

but as well the bridges that are still in front of them. This 

session should not be long, but it gives a lot of satisfaction to 

the students.  

 

B. Industrial applications 

 

The last session is entirely dedicated to industrial applications. 

For that purpose, the lecture does not take place at the 

university but in a company nearby: Atlas Copco. Simulation 

experts from that company are asked to talk about their 

experience with finite element methods or other related 

techniques such as finite volume methods. And it is not only 

focused on magnetic simulation, but on structural analysis and 

fluid dynamics as well. 

 

This session is once again an eye-opener since many practical 

issues are addressed that could not be covered during the 

lecture series. For example: the need to modify CAD-models 

(removing bore holes, flattening small rims, …)   before 

letting the mesher do its work; the lack of accurate material 

models and its consequences on accuracy; the element types in 

structural FE; the company’s interest in simulation (cost and 

design cycle time reduction) … However, the specialists all 

bring a similar message, that is the fact that FE software is not 

black box software, thus thorough knowledge of the finite 

element fundamentals is required to successfully retrieve 

meaningful results from it. 

 

 

VIII. LAB SESSIONS 

 

As mentioned before, the students are asked to write their own 

finite element solver for 2D convection-diffusion equations, 

starting from a generic description of the problem. To do so, 

they are given the following set of text-files 

 nodes.txt  A matrix containing the (x,y) coordinates 

for all mesh nodes. The line number corresponds to 

the node number. 

 elems.txt  A matrix containing the node numbers 

for all triangular elements, together with a number 

representing the region to which each element 

belongs. The line number corresponds to the element 

number. 

 sources.txt  A matrix containing the value of the 

source (i.e. current density or loss density) for all 

regions. The line number corresponds to the region 

number. Obviously, source free regions are given a 

zero value. 

 ucons.txt  A matrix containing the node numbers of 

all Dirichlet constrained nodes, together with a 

number representing the constraint label assigned to 

it. 

 uconsvals.txt  A vector containing the values for 

each label to which a Dirichlet condition is assigned. 

 orientations.txt  A vector containing the angular 

positions of the principal material direction for all 

regions. 

 velocities.txt  A matrix containing the x and y 

components of the local velocities for all elements. 

 materials.txt  A vector containing the material 

names for all regions. 

 

Materials and their properties are defined in separate files. 

Each material file contains electric, magnetic and thermal 

properties, indicated by one of the following headings: 

CONDUCTIVITY, PERMEABILITY or DIFFUSIVITY. Such 

headings are followed by generic descriptions of the particular 

property. Properties are characterized by two flags: isotropic 

or anisotropic, and linear or nonlinear: 

 Linear isotropic properties are represented by a single 

number, e.g. the permeability; 

 Linear anisotropic properties are represented by two 

different numbers, e.g. the permeability tensor entries 

in the principal coordinate system of the material; 

 Nonlinear isotropic properties are represented by a 

set of points on a curve, e.g. the magnetization curve; 

 Nonlinear anisotropic properties are out-of-scope. 

 

The lecturer has a set of problems and solutions to his disposal 

which students are free to use. The given solutions are initially 

used for programming two visualizations routines: one for 

showing the temperature or magnetic vector potential 

distribution, the other for showing the distribution of the 

temperature gradient or the flux density. The given solutions 

are of course used as well for ultimately checking the 

correctness of their solver implementation. 

 

One of the main hurdles the students need to tackle, is 

implementing an efficient matrix assembly routine, which 

directly accounts for Dirichlet conditions on one or more 

element nodes, and which automatically symmetrizes the 

system matrix [2]. They are given the flowchart of Fig. 8 as an 

aid. 



 
 

Fig. 8.  Matrix assembly scheme. 

 

 

Having completed their linear FE solver for simulating 2D 

diffusion problems that only contain linear isotropic materials, 

students are requested to add some extra functionalities to 

their software implementation:  

 The first, and easiest, is adding a convective term and 

stabilization term for convection dominated 

problems. 

 The second is extending the program for linear 

problems in which anisotropic materials are used. In 

this respect, the concept of a modified reluctivity 

tensor (Eq. 19) requires special attention, for it needs 

a slightly different treatment than the thermal 

diffusivity tensor. 

 The third, and toughest for most students, is 

implementing a nonlinear loop around the linear 

solver, such that nonlinear problems can be solved as 

well.  

It must be said that not all students succeed in all these, but 

they have at least thought about it once. 

 

IX. EXAM 

 

The presented approach on educating finite element theory and 

practice is highly interactive. After a few sessions, the students 

are getting familiar to this system and are being convinced 

about its added value to their master program. After 50 hours 

of intensive contacts, the lecturer has obtained a very good 

idea about the skills of each individual student and actually 

does not need an exam to make his final judgments. However, 

some students still like the idea of having an official exam. 

Below, four of the author’s favorite questions: 

 Give the students a copy of a non-linear FE solver. 

Ask them to discuss the main blocks. Ask them to 

find a bug in the implementation, but tell them what 

the output of the erroneous program was (loggings, 

field distributions, typical observations, …) so that 

they can logically reason towards the solution. 

 Show the students some nicely looking, yet 

erroneous, thermal and/or magnetic vector potential 

distributions. Ask them to discuss what is wrong. 

 Let students assemble the system of equations for 

solving a 1D diffusion problem on a equidistant grid 

of not more than five elements. Yet, randomly 

number the nodes, set a non-homogenous Neumann 

boundary at one side, and provide one element in 

which the source term is nonzero. 

 Ask the students to derive the contribution of a 

reactive term (in 2D) to the system of equations, 

obviously not telling them the similarity with the 

eddy current term occurring in time-harmonic FE. 

 

X. CONCLUSION 

 

Educating finite element methods can be done in a variety of 

ways. The approach presented in this paper finds it origin in 

the experience the author has acquired with finite element 

simulation in both industrial as well as academic contexts.  

 

The finite element method is introduced in a very simple way, 

but the level of difficulty and abstraction is steadily increased. 

Meanwhile, lots of attention is paid to the practical aspects of 

finite elements. Students are not only asked to program from 

scratch a nonlinear FE solver for 2D convection-diffusion 

problems.  

 

They are as well introduced to commercial software and to 

industrial applications of finite element simulation. In this 

way, master students deciding for an industrial career in this 

field are definitely well prepared, whereas others  choosing for 

an academic career are given sufficient base material to 

autonomously explore the more fundamental landscape of 

finite elements.  
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