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Abstract — This paper is mainly focused on the Natural 
Element Method. Based on a Voronoï cell diagram, new 
shape functions are introduced and used to solve Maxwell 
equations with both Galerkin or point collocation 
approaches. The computational performance is illustrated 
through several examples, and compared to results 
provided by classic Finite Element Method and also by 
Element-Free Galerkin method. 

I. Introduction 

Mesh-based computational simulation methods are largely 
used in analysis and modeling of physical phenomena in 
engineering. Nowadays a traditional method, such as the Finite 
Element Method (FEM), relies on a high level of 
development. The experience in the investigation of a wide 
range of problems and the availability of many commercial 
software packages are undeniable advantages of this 
method [1]. 

Although its well-established capabilities, its narrow 
dependency on a mesh structure brings some limitations that 
become progressively apparent as the simulation requirements 
become more sophisticated. The mesh-based approximation in 
classic FEM is not suited for the treatment of local effects like 
eddy currents and discontinuities that do not coincide with 
elements edges. The accuracy of the method is closely related 
to the regularity of the elements as well. In consequence, in 
problems that involve displacements, for instance, the 
distortion of elements can degrade results. Remeshing strategy 
can be used in order to keep a good mesh quality, although 
this process is costly and technically complex, especially in 
3D. Moreover, the “mapping” of the field quantities between 
the successive meshes is also a costly process that usually 
leads to degradation of accuracy [1]. 

In the 90s some alternative numerical methods have started 
drawing more attention of the computational simulation 
community. The general goal has been to overcome the 
limitations related to the narrow mesh-dependency. Some of 
these alternatives can be regarded as improvements of 
traditional approaches and some others are based upon 
relatively new concepts, such as a total independency of a 
mesh structure – at least for the interpolation of the field 
variable. 

The Element-Free Galerkin method (EFG) [2] and the 
Natural Element Method (NEM) [3] are two major examples 
of these new approaches developed over the last years. While 
the first doesn’t make use of any mesh at all for the solution 
approximation construction, the latter uses a discretization 
scheme based on Voronoï cells as support. If both of them 
overcome in a good measure the referred limitations of the 
classic Finite Element Method, the NEM is a more recent 
method that has not been as explored as the EFG by the 
simulation community. 

This work is concentrated on the Natural Element Methods, 
addressing the description and analysis of its main concepts 
and characteristics. A series of benchmarking problems is 
presented, where the NEM performance is compared to the 

FEM, EFG and analytical solutions. 
 
The article structure is organized as follows: 
 
The section II presents a summary of the main 

developments in terms of alternatives to the classic finite 
element method. 

A brief overview of the element-free Galerkin method is 
presented in the section III. Some particular concepts 
associated to the class of methods frequently referred as 
meshless methods are introduced. 

The Voronoï diagrams/cells and related concepts are 
developed in section IV. The construction of specific shape 
functions based on Voronoï diagrams and their application in 
both collocation and Galerkin techniques are described. 

The section V focuses the treatment of the boundary and 
interface conditions in the NEM and the coupling with the 
FEM. 

The section VI addresses the Natural Finite Difference 
Method (NFDM), a finite difference scheme on irregular grids 
based on the natural neighbor concept. 

In the section VII, performance of the NEM and NFDM on 
the resolution of some benchmarking problems is showed. The 
error is computed through dual formulations or analytical 
reference. Results are compared to FEM and EFG. 

Section VIII presents the application of the NEM in a series 
of realistic problems, covering low and high frequency 
applications. A FEM-coupled simulation of an electrical 
machine is also presented. 

The general analysis of the obtained results and the 
perspectives about further research on the Natural Element 
Method are presented in the section IX. 

Technical works that were basis for this article are 
referenced in the section X. 

II. Alternatives to FEM: from meshless to natural 
neighbors methods 

The classification of the several approaches that emerged 
mainly over the last two decades is somewhat controversial. 
On the whole, they are frequently referred as meshless or 
meshfree methods, even for the case of the techniques that use 
some kind of space discretization but are not rigidly restricted 
by it. 

Ideally, meshless or meshfree methods are numerical 
simulation techniques in which no mesh is necessary at all 
throughout the process of solving a physical problem [1].  In 
general, the basic idea is using a cloud of nodes to represent 
the problem domain and its boundaries. Any a priori 
information about connectivity between nodes is needed. The 
function approximation is made entirely in terms of nodal 
data.  In such conditions, the improvement of the solution in 
specific regions is done simply by adding nodes and the 
treatment of problems involving large displacements can be 
done more robustly [4]. However, in general the 
computational cost of the solving process in meshless methods 
tends to be higher than in FEM. This issue will be addressed in 



the next section for the specific case of the EFG method, but it 
can be roughly generalized. 

In practice, some of the methods claimed as meshless are 
not “truly meshless”. Methods based upon the Galerkin 
procedure generally make use of a background mesh or 
integration grid for the integration of the matrices derived 
from the weak form.  However, one can say that the mesh used 
in the integration procedure is not necessarily restricted by the 
details constraints of the problem geometry, being much 
simpler to generate. Moreover, the field quantities 
interpolation is still independent of any mesh structure. 
Further discussion about this issue will be carried out 
throughout this work. 

Hereafter we present a brief summary of some of the main 
developments in the so called meshless methods. More 
extensive and detailed overview works covering the principal 
methods can be found in [1],[4-9]. 

The concept of mesh independency was introduced by Lucy 
[10] and Gingold and Monaghan [11] with the Smoothed 
Particle Hydrodynamics (SPH) in 1977. This point collocation 
particle method is based on the kernel estimates approximation 
and its direct goal was to solve unbounded astrophysics 
problems. Until the 90s the research on the application of the 
SPH method in other classes of problems than astrophysics 
was very modest, with some works addressing its application 
in fluid dynamics. In the 90s the method started to be applied 
in solid mechanics and a series of improvements were 
incorporated into SPH, since the original version suffered 
from spurious instabilities and inconsistencies [9]. The 
Reproducing Kernel Particle Method (RKPM), introduced by 
Liu et al. in 1995 [24] is an example of improvement in the 
SPH concepts. It has both Galerkin and point collocation 
versions. 

Other point collocation methods emerged in the 90s, using 
several approximation techniques, such as least square (LSQ), 
weighted least square (WLS), radial basis functions (RBF), 
etc. [5]. 

Another branch of the so called meshless family had its 
starting point with the work of Nayroles et al. in 1991, 
developing the Diffuse Elements Method (DEM) [12]. This 
method makes use of the moving least square (MLS) local 
interpolation over a cloud of nodes and a Galerkin procedure. 
The DEM was the first meshless method to be applied in 
electromagnetic problems, in 1992, by Maréchal et al. [13]. In 
1994 Belytsckho et al. proposed some improvements in the 
DEM, developing the Element-Free Galerkin method (EFG) 
[2]. Since its introduction in the computational simulation 
community, the EFG has been one of the most explored 
meshless methods, with several application works and 
improvements. Being methods based on a global weak form 
and the Galerkin technique, both DEM and EFG make use of 
the background mesh for integration purposes. 

In attempt to eliminate the integration grid or background 
mesh, the Meshless Petrov-Galerkin method (MLPG) was 
introduced by Atluri and Zhu in 1998 [14]. This method 
makes use of the concept of local weak form, which allows the 
background mesh to be created in sub-domains. Although the 
concept of background mesh still exists, this method is said to 
be essentially a meshless method because the creation of the 
background mesh in this case is much simpler than the global 
weak form methods – as the DEM and EFG method, for 
instance – once the integrations are performed over 
overlapping and regularly shaped sub-domains. 

Originally, the MLS approximation scheme was used in the 
MLPG method, but later variations of the method were 
developed with the use of different approximation schemes, 
such as radial basis functions, Shepard function, RKPM, 
etc. [15]. 

One of the evident drawbacks of using the classic MLS 
interpolation is that this scheme does not present the 
Kronecker delta function property. Hence the imposition of 
boundaries conditions commonly requires the implementation 
of some additional technique, such as Lagrange Multipliers, 
penalty methods, coupled finite element, etc. [7]. 

Aiming to replace MLS functions, Liu and Gu proposed the 
Point Interpolation Method (PIM) in 1999 [16]. This method 
uses polynomial interpolation technique, leading to excellent 
accuracy and shape functions that possess the Kronecker delta 
function property. In our community, this method is deeply 
studied and developed by Mesquita and his group [36]. The 
initial versions of the method presented some limitations 
related to the singularity of the moment matrix and the 
numerical stability [1]. However the method has been 
continuously improved and applied to a large range of 
problems. This method has been applied to both Galerkin and 
local Petrov-Galerkin formulations. 

The partition of unity concept [18] was used as basis for the 
construction of a series of new approaches. Some of them 
were presented as FEM extensions. In these cases, the basic 
principle is to use the partition of unity concept to enrich 
locally the solution based on a priori knowledge about the 
function being approximated. It allows the solution to 
reproduce special characteristics like discontinuities and 
singularities without the costly requirements of mesh 
refinement and/or remeshing of the classic FEM. Some 
examples of these methods are the Partition of Unity Finite 
Element Method (PUFEM), presented by Melenk and Babuska 
in 1996 [19], and the Extended Finite Element Method 
(XFEM), presented by Belytschko et al. in 1999 [20,21]. 

The h-p Clouds method is another example of partition of 
unity based method. It was presented by Duarte and Oden in 
1995 [17]. The h-p stands for the possibility of adaptivity in h 
and p. The method's fundamental idea is the use of the 
partition of unity concept for the construction of a hierarchical 
basis [7]. 

In general, collocation methods and finite differences 
method using irregular grids present the advantage of not 
requiring integration at all and, consequently, they can 
eliminate completely the mesh concept, being truly meshless 
methods. However, these methods are said to be less stable 
and accurate when compared to the Galerkin methods [1]. In 
practice, the concept of meshless method started to be more 
disseminated in the scientific community after the advent of 
meshless methods based on the Galerkin procedure – even if 
some sort of mesh is necessary in the process. Actually, 
nowadays the requirement of an ordinary mesh as support for 
the search for neighbor nodes and the numerical integration 
are not considered a major limitation of these methods, once 
this kind of mesh is not subjected to the same requirements of 
quality that are present in FEM. The independence of a mesh 
structure for the field quantities interpolation is the key feature 
of this kind of methods. 

Another important remark about meshless methods in 
general is that the physical discontinuities (interfaces of 
different materials) are not treated naturally as in FEM. 
Therefore the simulation of inhomogeneous medium requires 



the implementation of some additional technique [1]. 
In 1997 Sukumar et al. presented the Natural Element 

Method (NEM) [3]. Basically, this method relies on the 
construction of the Voronoï cells over the problem domain and 
the concept of natural neighbors for the construction of shape 
functions. This method overcomes all major drawbacks of 
previous meshless methods, while keeping the smooth and 
highly accurate solutions observed with the latter. The concept 
of Voronoï cell functions was also applied to the finite 
difference approach. The resulting method (NFDM) [23] 
proves its efficiency in terms of computation time and 
accuracy even on unstructured grids. 

In general, these recent approaches have brought a series of 
promising results. On the other hand, new challenging issues 
have emerged and research has been carried out in the last 
years. Today, in comparison with FEM, these methods are still 
in an early development phase. 

III.  Element-Free Galerkin Method 

The EFG makes use of the MLS interpolation scheme to 
approximate the solution of a PDE problem through a 
Galerkin procedure. The problem domain Ω is represented by 
a set of N nodes with coordinates xi (i = 1, 2, 3 … N). Each 
node i has a corresponding influence domain or subdomain Ωi, 
which is the region where the node contributes to the 
approximation [25]. The size of these subdomains can vary 
accordingly to the nodes distribution and their union must 
cover the whole problem domain. In 2D the shape of Ωi is 
generally circular or rectangular, as illustrated in the Fig. 1. 

 

 
Fig. 1. Clouds of nodes in EFG: left, circular influence domains, right, 

rectangular influence domains (the influence domains are truncated in the 
domains borders). 

 
In a real problem, there is much more overlapping between 

the subdomains than the showed in Fig. 1. It was intentionally 
decreased in the illustration for sake of clarity. 

In the following subsection the procedure for obtaining the 
shape functions of the classic EFG method in a two 
dimensions space will be briefly presented. 

A. MLS approximation 

The MLS approximation is constructed from three 
components: a weight function associated to each node, a basis 
and a set of coefficients [25]. The weight function and the 
basis (generally polynomial) are chosen, while the coefficients 
are arbitrary unknowns functions of the spatial 
coordinates xT = [x  y]. 

Considering a function u(x) defined in the domain Ω, the 
MLS approximation of this function, denoted by uh(x), is 
given by 
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where m is the number of terms in the basis, pj(x) are 

monomial basis functions and aj(x) are their associated 
unknown coefficients. Basically, the choice of the basis will 
be related to the desired consistency order. Common choices 
are the linear and quadratic bases [6]. 

The coefficients aj(x) can be obtained by minimizing the 
weighted residual J: 
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where n is the number of nodes whose influence domains 
cover the point x, wi(x) is the value in x of the weight function 
associated to the node i and ui = u(xi). 

The weight function must be non-zero only over a relative 
small region around the node, defining its influence domain. 
This local support feature of the weight function will lead to a 
banded system matrix. The choice of the weight function is 
quite free, as long as it satisfies some conditions like 
positivity, monotonic decreasing and the desired degree of 
derivability [6]. Examples of weight functions traditionally 
associated to the EFG method are cubic and quartic splines. 

With the minimization of (2) (∂J/∂a = 0), the coefficients 
a(x) can be then calculated in the following form 

( ) ( ) ( ) UxBxAxa ⋅⋅= −1  (3) 

with the weighted moment matrix A given by 
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and the B matrix having the form 
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The vector U collects the function values in the nodes with 
influence over x: 

[ ]ni uu =U . (6) 

Finally the approximate function can expressed as 
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where the shape functions are 
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ni φφ   (8) 

The MLS technique makes the approximated function to be 
continuous and smooth in the entire problem domain.  Major 
advantages of this technique are the capability of producing an 
approximation with the desired order of consistency and the 
possibility of adding enhancements functions that allow the 
approximate field to model special characteristics such as 
singularities and discontinuities [1]. 

One of the drawbacks of this approach is the fact that it 
generates shape functions that do not possess the Kronecker 
delta function property (non-interpolating shape functions). It 
means that the value of the approximation over the nodes is 
not exactly equal to the actual nodal values. Consequently, the 
imposition of boundary conditions is not direct. 

Another drawback of the method is the need for the moment 
matrix (Amxm) inversion for each shape function computation. 
Besides the computational cost involved in the operation 
(especially with the use of higher orders basis), there is the 
possibility of a singular moment matrix as well [9]. Indeed, the 
moment matrix is invertible when the condition m  ≥  n is 
verified. If m = n and the nodes lie on a line, A will be singular 
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(if the nodes lie approximately on a line the matrix will be ill-
conditioned, yielding inaccurate shape functions values) [26]. 
This characteristic of the method requires special attention in 
the nodal topology and the influence domains definition. 

In the following subsection, alternatives to overcome some 
of the classic EFG method drawbacks are described. 

B. Interpolating and Improved MLS 

The fact that the original MLS scheme is non-interpolating 
makes the method dependent of the use of special techniques 
for the imposition of the boundary conditions. Such techniques 
as, for example, Lagrange Multipliers, penalty method, 
coupling with FEM, etc., can have disadvantages like the 
degradation of the system conditioning, the increasing of the 
number of unknowns, extra computational cost, extra 
implementation complexity, etc [7]. 

A straightforward alternative was proposed by Lancaster 
and Salkauskas [27]. This alternative consists in the use of 
singular weight functions, like wi (x) = r-2t, where r is the 
normalized distance between the node i and the point x and t a 
positive integer. The shape functions generated with the use of 
this kind of weight functions satisfy the Kronecker delta 
function property, leading to an Interpolating MLS scheme.  
The weight function adopted in this work makes use of a 
perturbation technique that overcomes some difficulties 
related to the singularity over the nodes [28]: 
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where r is the normalized radius (for circular influence 
domains), given by r = di / dmi, with di corresponding to the 
distance between x and xi and dmi corresponding to the radius 
of Ωi. The parameters t and ε are defined empirically, being 
4 ≤  t  ≤ 6 and 10-8 ≤  ε  ≤ 10-12 examples of satisfactory ranges 
for some applications [28]. Difference between the classic and 
interpolating MLS shape functions is illustrated in Fig. 2. 
 

 
Fig. 2. MLS shape functions: (a) classic shape function using quartic spline 

weight function; (b) interpolating shape function using (9) with t = 6 and 
ε = 10-12. One can remark in (b) that ϕi(xi) = 1.0 and ϕi(x) ≈ 0.0 over the four 

neighbors nodes. 

Another improvement in the method can be done by the use 

of orthogonal basis in the MLS approach [29], leading to a 
scheme commonly referred as Improved MLS. The Schmidt 
orthogonalization procedure can be used to derive an 
orthogonal basis ( )xp~ , in such way that the following 
condition is satisfied: 
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Therefore the moment matrix (4) will have all off-diagonal 
terms equal to zero and its inverse is calculated directly. 

Although this procedure can reduce the computational cost 
of the moment matrix inversion, the same restrictions relating 
spatial arrangement of nodes and the conditioning of the 
moment matrix existing in the classic approach still valid [25]. 

The EFG code implemented in this work is based on these 
techniques. The simulations presented were performed using 
circular influence domains with constant radius and the 
visibility criterion for the treatment of non-convex 
boundaries [7]. 

C. Galerkin procedure 

The weak form of the problem is solved through the 
standard Galerkin procedure. However, typically the 
integration of the system matrices requires some sort of mesh 
structure as support for the quadrature points. The common 
solution of this problem consists in the use of a background 
mesh as integration support. In this work, for example, a 
triangular FEM mesh was used. The favorable argument in 
favor of this approach is that this background mesh can be 
created without the requisites of mesh quality necessaries in 
FEM, once the shape functions do not use the mesh as support. 
Indeed, the background mesh is not even necessarily subjected 
to the problem geometry, being quite easy to implement. In 
principle, this integration mesh can overpass the domain in a 
form of a simple rectangular grid, for example, as showed in 
Fig. 3. 
 

 
Fig. 3. Integration grid for the hypothetical problem showed in Fig. 1. 

 
Once the background mesh or integration grid is defined, 

the procedure to evaluate the solution of the PDE problem is 
quite similar to the standard FEM procedure. The main 
difference is that the number of nodes that are related to each 
quadrature point can vary. Actually, each time the expression 
(8) has to be calculated, a search for the nodes that have 
influence over xQ takes place. In other words, the connectivity 
between nodes is defined by the superposition of the influence 
domains and it’s determined in run-time. At same time that 
this feature gives flexibility to the method in the sense of 
adaptivity and solution refinement, it generates an extra 
computational cost. 

integration 
grid 

quadrature 
points xQ 

(a) 

(b) 



IV. Voronoï Cell Functions 

Thanks to this experience on meshless methods, researchers 
have tried to propose alternatives that keep the good 
approximation characteristics of the spherical zone of 
influence around a node, but overcome the intrinsic difficulties 
mentioned previously such as handling properly physical 
discontinuities.  

In the late 90’s, the Natural Element Method (NEM) was 
proposed [3], based on a Voronoï diagram and Voronoï cells, 
and the notion of natural neighbors. It provides interpolant 
shape functions, satisfies partition of unity and linear 
completeness properties and allows an easy handling of 
essential boundary conditions, FEM coupling and interfaces 
between different materials.  

This section first introduces Voronoï diagrams and Voronoï 
cells, then presents Sibson and Laplace shape functions, and 
last applies these shape functions to solve Maxwell equations 
with both Galerkin or point collocation approaches. 

A. Voronoï Diagram 

Let us consider a set of nodes N = {n1, n2, n3 … nN} 
distributed in the whole domain. The Voronoï diagram (1st 
order Voronoï diagram) is a subdivision of the domain into 
cells, where each cell Ci associated to node ni is such that any 
point in Ci is closer to node ni than to any other node nj for 
i ≠ j. These cells are the so-called Voronoï cells. In 
mathematical notation, a Voronoï cell is defined by: 

( ) ( ){ }ijddC n
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where d is the distance between 2 points in Euclidean metric. 
Therefore, a Voronoï cell can be seen as the intersection of 
several half spaces. 

Considering for instance a 2D space, Ci is the region of the 
plane that contains the points closer to node ni than to any 
other node as shown in Fig. 4. The Delaunay triangulation, 
which is the dual of the Voronoï diagram, is built by 
connecting the nodes that have a common Voronoï facet. 
Alternatively, the vertices of the Voronoï cell are the center of 
the circumcircles of the Delaunay triangles. For a given node, 
its natural neighbors are all the nodes that share a facet of its 
Voronoï cell. Last, it is also interesting to note that, as opposed 
to Delaunay triangulation, the Voronoï diagram is unique. 

 

 
Fig. 4. Voronoï diagram (blue color) and its associated Delaunay triangulation 

(red color). At node ni, its Voronoï cell and its 6 natural neighbors n1 to n6. 

B. Sibson Natural Shape functions 

Data interpolation based on Voronoï cells was initially 
proposed by Sibson [30] in 1980. For sake of simplicity, we 

will consider a set of nodes with known nodal values in a 2D 
plane, and look for the interpolated value at point x. The 
Sibson coordinates Φi are measuring the nodes contribution in 
the interpolation at point x, in a classical way:  

( ) ( )∑ ⋅=
i
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To build Sibson coordinates, point x is first added to the 
original Voronoï diagram, defining a new Voronoï cell around 
x. This also defines the natural neighbors of x i.e. the “closest 
nodes” that will be actually used for the interpolation at x. 
They are the nodes that share a common Voronoï facet with 
the Voronoï cell around x.  

 
Fig. 5. Sibson natural neighbors and natural coordinates (original Voronoï 

diagram in blue, natural neighbors in green, additional Voronoï cell due to x in 
black, Sibson sub area in green).  

The influence of these natural neighbors on the interpolation 
at point x is given by (3) where each Ai(x) represents the sub 
area of the Voronoï cell centered on x linked to the natural 
neighbor ni, as illustrated by the filled region in Fig. 5. 
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From (13), it is quite obvious that the natural coordinates 
are always positive and less than 1, that the sum of all 
coordinates are equal to 1, and that when x tends towards ni, 
the natural coordinate tends towards 1 for node ni and towards 
0 for all other nodes. Thus, the partition of unity is satisfied. 
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  Since the linear completeness property can also be 
demonstrated [3], natural coordinates are very much 
appropriate to serve as shape functions and will be called 
Sibson shape function from now on. 

Starting from the definition of natural neighbors based the 
“empty circumcircle criterion” on Delaunay triangles, it is 
easy to understand that the Sibson shape function extension 
for a node is in fact the union of all circumcircles passing 
through this node, as plotted on Fig. 6 (a). 

  
Fig. 6. (a) Support for NEM shape function and (b) Plot of the Sibson shape 

function. 



Last, Fig. 6(b) shows the elevation of the Sibson shape 
function on a regular grid of nodes. It smoothness and 
regularity can be already noticed and will be more thoroughly 
investigated later. 

Extension to n dimensional spaces is immediate. Several 
works have been proposed using 3D models [31]. It should be 
noticed however that the complexity of the computation of 
Sibson shape functions increases significantly in that case. 

C. Laplace Natural Shape functions 

In the early 2000’s, several researchers proposed 
alternatives to Sibson shape functions, among which the so-
called Laplace shape function. This section summarizes the 
main characteristics and differences of Laplace shape 
functions with respect to Sibson approach.  

On the whole, since Laplace shape functions are based on a 
Voronoï cell pattern, most the work developed for Sibson 
shape functions remains valid. In particular the shape function 
extension is the same, made of the union of the circumcircles 
containing node ni. But in 2D (resp. in 3D), Laplace functions 
are expressed by a ratio of length (resp. surface). Fig. 7 shows 
the various lengths used in the Laplace shape function 
expression given in (15). 

 
Fig. 7. Laplace NEM shape function computation. 
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Quite obviously, the partition of unity stands for the same 
reasons than in the case of Sibson shape functions. Linear 
completeness of the Laplace interpolation is also valid as 
shown in [30]. 

One of the main advantages of Laplace Shape functions is 
that they involve only length (resp. surface) computation in 2D 
(resp. 3D) whereas Sibson shape functions need surface (resp. 
volume) computation in 2D (resp. 3D). More than that, the 
Laplace shape function has explicit expression for both the 
shape itself and its derivatives. This is of course a 
computational advantage when compared to Sibson’s 
functions. On the other hand, continuity property is slightly 
deteriorated since the Laplace function is C0 on all edges of 
circumscribed circles whereas the Sibson’s are mostly C1 
except at node location. Fig. 8 shows both functions, the 
global shapes are of course very similar, but the change in the 
level of continuity can be noticed. 

 
Fig. 8. (a) Sibson shape function on left and (b) Laplace shape function on 

right. 

D. Computation of the shape functions 

As one may expect, computation of Voronoï cell shape 
functions involves many geometric calculation. Considering a 
given point p, the process consists in: 

• Finding out the Delaunay triangles for which the 
circumcircle enclose point p. The set of external 
nodes defines the natural neighbors for point p; 

• Insert point p as a new vertex in the triangulation, by 
deleting interior edges and joining the point p to 
boundary facets 

• Calculate each center of the circumcircles of the new 
triangulation. These centers are the vertices of the 
new Voronoï cell related to point p. 

• Last, if Laplace (resp. Sibson) shape functions are 
expected calculate the length of the facets of the 
Voronoï cell (resp. surface of the 2nd order Voronoï 
cell). 

 
The following figures depict all this steps. 

 

 
 

Fig. 9. Shape function calculation procedure at point p. 

E. Voronoï cell functions for enhanced post processing 

In order to illustrate the efficiency and the relevance of the 
natural shape functions, we propose to simply post-treat a first 
order FEM solution using Sibson shape functions. The 
following figure shows the result obtained on an L shaped 
capacitance: right, the standard isovalues using FEM 
interpolation, left the Sibson interpolation of the same nodal 
values.  



 
Fig. 10. L shaped capacitance: left, FEM post processing, right, Sibson 

interpolation of the same nodal values. 

The gain in quality is obvious and will be quantified more 
precisely in section VII.   

F. Voronoï cell functions versus FEM or EFG 

On one side, when trying to compare FEM with NEM, the 
analogy with the definition of first order triangular shape 
function, using barycentric coordinates can of course be 
underlined.  
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Fig. 11: Barycentric coordinates in a triangle. 

The same approach has been used to define Sibson shape 
functions in (13), and this why the Sibson shape function can 
also be seen as natural coordinates inside a Voronoï cell. 

On the other side, when comparing NEM to EFG, the 
analogy with meshless approximation is very strong except 
that instead of having a pure spherical zone of influence 
around a node, the sphere is pinched at each neighboring 
nodes to fulfill the interpolation property (see Fig. 6.) 

 
Finally, the following figures summarize the three methods. 

On the left, FEM interpolation, compared to EFG shape 
function extension: the regularity of the FEM interpolation is 
limited and very much oriented by the edges of the elements. 
On the right, NEM compared to EFG, equivalent regularity 
and shape function extension, same isotropic interpolation, 
beyond the edges of the mesh. In that sense, the Natural 
Element Method belongs to the family of meshless methods, 
even if for calculation purpose, a triangulation is still used for 
integration for instance. 

  
Fig. 12. FME, EFG and NEM shape functions: left, first order FEM compared 

to EFG shape function extension, right, NEM compared to EFG shape 
function extension. 

V. Natural Element Method for solving Partial 
Differential Equations 

Using either Sibson or Laplace shape functions in a 
Galerkin procedure is quite straight forward and there is not 
much to say about it. The main differences with the finite 
elements implementation are essentially related to code 
optimization aspects, especially in the integration and 
assembly parts. Still, some aspects need to be examined in 
deeper details, namely the boundary and interface conditions, 
and the ability to couple NEM to FEM.  

A. Boundary and interface conditions 

On the convex boundary of the study domain, the Voronoï 
cell based shape functions naturally become linear [3],[31]. 
Fig. 13 shows the Sibson shape function along an edge of the 
boundary or on a corner.  

 
Fig. 13 Representation of the shape function at nodes on the boundary of the 

domain. 

Thus, between two regions with different materials, the 
continuity of the variable as well as its tangential derivative is 
ensured, as soon as when interpolating a field in a region, only 
the nodes of that specific region are considered as natural 
neighbors (this is exactly what we do when using FEM). This 
interesting propriety allows the take into account the interface 
conditions between different materials in a classical weak 
sense.  

Moreover, Voronoï cell functions being interpolant, the 
essential boundary conditions are also very easy to implement, 
using the same approach as finite elements.  

B. Highly non convex boundaries 

For a non-convex boundary and Sibson shape functions, the 
linear propriety is no more verified. However, since the 
boundary is usually well discretized, the error made by 
considering that the Sibson functions are still linear is 
generally negligible. 

It exist some situations where the boundaries are by essence 
highly non convex, like for instance a crack in non-destructive 
testing problems. 

 
Fig. 14.  Non convex boundary and constrained NEM. 

 

  



In such cases, even if the boundaries are well discretized, 
the standard Voronoï diagram may consider nodes situated on 
either side of a crack as natural neighbors, and therefore 
introduce an undesirable mutual influence.  

To overcome this problem, the solution is to use the 
constrained Delaunay triangulation associated with a criterion 
of visibility. The constrained Delaunay triangulation allows 
imposing the edges of the board in the list of edges of the 
triangulation. The visibility criterion avoids that points on both 
sides of an internal border become natural neighbors [31]. 

C. Coupling with the Finite Element Method 

Due to its properties, the Natural Element Method can be 
coupled to finite element method easily contrary to the most of 
meshless methods. Indeed, the NEM shape functions and the 
FEM shape functions are the same on the boundaries of a 
domain. Thus the continuity of the approximation and of the 
tangential derivatives is naturally ensured. 

VI. Voronoï cell Finite difference method 

The Voronoï cell can be considered as the elementary cell 
for the conservation of the divergence of flux at one node. 
When pushing in that direction, the discrete form of the partial 
differential equation can be solved using a point collocation 
scheme. This can be also considered as a finite difference 
scheme on irregular grids. All the theoretical aspects that are 
briefly presented below were initially developed by Sukumar 
[23]. 

Let us start with a classical magneto-static equation in 
scalar potential formulation, 

 ( )( ) 0=Φ∇⋅−∇ µ  (16) 

and consider the Voronoï cell around node i, Ωi, as a domain 
of a region of conservation of the divergence of the flux. 

Around each node, using the Gauss theorem, we can write 
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where Ωi is the area of the cell around node i. Replacing the 
flux by its expression in terms of scalar potential, we have: 
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Introducing the discrete approximation of Φ, we can further 
develop the previous equation into: 
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where Ωi is also expressed in terms of lij and hij.  

Indeed after some several simple manipulations and 
noticing that αij=lij / hij is part of the Laplace shape function 
definition, the discrete form of the matrix system of the 

magneto-static equation is given by:  







−==
=Φ

∑ ijijij
j

ii KK αµαµ ,
0K

 (20) 

This approach, called from now on Natural Finite 
Difference Method (NFDM), is very interesting since it does 
not involve any quadrature aspect. It will be tested and 
compared to FEM and NEM both in terms of accuracy and 
computation time.     

VII. Computational Performances of NEM, FEM and 
EFG 

In this section, we propose to compare computational 
efficiency - i.e. accuracy for a given cost, of the three 
numerical methods (NEM, FEM 1st and 2nd orders and EFG). 
Moreover, a finite difference implementation of Voronoï cell 
functions (NFDM) is also included in the comparison. The aim 
of this comparison is to locate the NEM in the landscape of 
numerical methods. 

A. Efficiency Results on a Singularity Free test Case 

To illustrate the computational performance of each 
method, we are presenting a first numerical example based on 
a test problem consisting in a square domain of dimension 1 
on each side, where the following equation is solved:  

( ) ( ) ( )
( ) Ω∂=

Ω=∆
on  0,

in  sinsin2, 2

yxu
πyπxyxu π  (21) 

The whole domain is initially subdivided into a regular 
mesh of 32 triangular elements, and is enriched several times 
by splitting each triangle into 4 new triangles. The analytical 
solution is given by (2) and allows the calculation of the local 
error. This problem does not include any singularity and thus, 
theoretical convergence rates are reachable. 

( ) ( ) ( )yxyxu ππ sinsin, =  (22) 

 
Fig. 15.  Accuracy of NEM, NFDM, EFG and FEM according to the distance 

between nodes. 

Fig. 15 shows the relative error on the variable, in L² norm, 
computed on the whole domain as the integral of the local 
error with respect to the mean size of the element edge length. 
On the whole, NEM and EFG accuracy are globally between 
the 1st order (FEM1) and the 2nd order FEM (FEM2) 
accuracies. As expected, both FEM1, EFG and NEM (Laplace, 



Sibson or Finite difference) are following a 1st order method 
slope (h²) whereas the FEM2 follows a second order (h3) 
slope. 

Next, Fig. 16 shows that even though the 2nd order FEM is 
obviously more accurate for a given size of element, all NEM 
methods are in fact performing better than FEM2 up to 200 
degrees of freedom, which is a very interesting result in favor 
of this interpolation approach. It should be noticed that EFG 
present the same accuracy as the NEM. 

 
Fig. 16: Error versus the number of degrees of freedom (DoF) 

Last, Fig. 17 plots the computational efficiency of all 
methods, defined as the computational cost for a given 
accuracy. It clearly shows that for 1st order approximation, 
NEM is outperforming FEM of nearly 2 orders of magnitude 
and can even be compared to FEM2 efficiency. But due to a 
higher convergence rate, superiority of FEM2 increases when 
the number of degrees of freedom is getting higher. Note that 
the comparison does not include the EFG method because the 
code that we have developed for this method is not optimized. 

 
Fig. 17: Computational efficiency of all methods. 

To have a better understanding of where the computation 
time is spent, Fig. 18 plots the time required to build the 
matrix system (integration and assembly). As expected, due to 
the large amount of geometric calculation linked to the 
Voronoï cells, Laplace and Sibson are the most expensive 
methods. Finite difference Voronoï cell (NFDM) is, to that 
consideration, much more efficient since no integration and no 
gradient are required. It is useful to note that numerical 
integration was carried out using Gauss quadrature approach 
using 3 Gaussian points. 

 
Fig. 18: Computation time spent for matrix construction 

Considering the solution solving time, some preliminary 
considerations must be introduced. First is the band size and 
second is the condition number. As shown in the table below, 
the band size is significantly increasing in the case of NEM. 
This is in fact a direct consequence of its ability to smooth the 
solution by taking into account information far beyond finite 
element edges and that property naturally contributes to 
increase the integration and assembly times for NEM. 

 
TABLE I. BAND SIZE 

FEM1 Laplace Sibson NFDM FEM2 
7 21 21 9 12 

 
On the other side, the conditioning of the matrix is much 

better for NEM as Fig. 19 shows. Hence, although the band 
size is higher, the time spent for the matrix solution 
calculation with NEM is the cheapest of all methods. 

 
Fig. 19: Condition number of the matrix system for FEM and NEM  

B. Efficiency Results on a Test case with Singularity  

The second numerical example is based on an electrostatic 
problem describing an L shaped capacitance. The length of the 
domain is set to 100 in each direction. Compared to the 
previous case, this problem includes a singularity at the 
corner, which will significantly reduce the convergence rate.  

 
Fig. 20. Accuracy of NEM, NFDM, EFG and FEM according to the distance 

between nodes for the L shape test case. 



Fig. 20 shows that again NEM, NFDM and EFG 
accuracies are between FEM 1st and 2nd order. Since no 
analytical solution is available, the error is determined by 
solving dual formulations. Although for this case, due to the 
singularity at the corner, accuracy is limited and all methods 
tend to the same asymptotic behavior. Fig. 21 shows the 
computational efficiency of all the methods, except EFG. 
Globally, NEM still outperforms 1st order FEM, and second 
order FEM behaves even better. But due to the singularity at 
the corner, accuracy is limited and all methods tend to the 
same asymptotic behavior. 

 
Fig. 21. Computation efficiency for the L shape test case. 

VIII. Applications on real world problems 

In order to illustrate the relevance and potential of the 
natural element method to solve different electromagnetic 
problems, this later is applied to two fields of applications. 
The first one is an application at low frequency (team 
workshop 25 and electric machine) and the second one 
concerns an example at high frequency (electromagnetic 
scattering problem). In each case, the NEM is compared to 
FEM. 

A. NEM applied to solve magnetostatic problem (Team 
Workshop 25) 

The team workshop 25 is a die model of press with 
electromagnet for orientation of magnetic powder [32], used 
for producing permanent magnet. Fig. 22 shows the studied 
device. It is a 2D magnetostatic non-linear problem.  

The weak form of Ampère’s law is then given by the 
classical formulation: 

[ ] 0=Ω⋅−⋅⋅= ∫
Ω

dwwR iii njscurlAcurl ν            (23) 

where wi the shape function and Γ the studied domain. A and 
js are the magnetic vector potential and the source current 
density respectively. Equation (23) leads to a system of 
nonlinear algebraic equations that can be solved by means of 
the Newton–Raphson method. 

 
Fig. 22. Model of die press with electromagnet 

 
The problem is solved with NEM and FEM (1st and 2nd 

orders). Fig. 23 illustrates the flux lines of the magnetic flux 
obtained by NEM and FEM resolution. A good agreement 
between the two methods is observed. 
 

    
          (a)                       (b) 

Fig. 23. Magnetic flux distribution in the studied device obtained by (a) 
nonlinear NEM resolution and (b) non linear FEM resolution. 

 
Fig. 24 plots the computational performance. The 

reference solution is obtained using a very fine 2nd order FEM 
solution. On this particular case, the errors are mainly due to 
the singularities in the corners. It is well known that in such a 
situation, increasing the number of nodes is much more 
efficient than increasing the order of approximation. Hence, 
for a given number of nodes, NEM is more accurate than 
FEM2, and even if the intrinsic cost of NEM is roughly 3 
times more expensive, at the end, both NEM and FEM2 give 
almost the same computational performance. This tends to 
clearly demonstrate the very interesting behavior of the 
Voronoï cell approach: the interpolation has a high degree of 
continuity. 

 
Fig. 24. Computation efficiency for TEAM 25 test case. 

B. NEM coupled with FEM to simulate electric machine 

Due to its properties, the natural element method can be 
coupled to finite element method easily contrarily to the most 
of meshless methods. Indeed, the NEM shape functions are 
interpolants and become linear at the boundary of the domain. 
This property shared with FE method allows a natural 
coupling to the FEM shape functions.  

In order to illustrate this interesting property, we have 
solved the stator of an electric machine using FEM whereas air 
gap, rotor and bars are solved using the NEM method. Table I. 
summarizes the main features of the simulated machine. Fig. 
25 shows the distribution of the magnetic flux. It has been 
compared to a pure FEM solution and the both solutions are in 
good agreement. 



 
TABLE I 

THE CHARACTERISTICS OF THE MACHINE 
Outer rotor diameter (mm) 108 Inner rotor diameter (mm) 30 
Outer stator diameter (mm) 150 Inner stator diameter (mm) 110 

Number of phases 3 Stator current density 
(A/mm2) 4 

Rotor and stator relative 
permeability 1000 Bar relative permeability 1 

 

 
     (a)     (b) 

Fig. 25. Magnetic flux distribution in a motor obtained by (a) coupled NEM-
FEM resolution and (b) FEM resolution  

 
Coupling FEM and NEM is very interesting in all cases 

where remeshing is either too complex or leads to 
unacceptable numerical noise. In this last domain, the ripple 
torque calculation of motors or numerical derivatives 
according to geometrical parameters for optimal design 
according is known to be very sensitive to edge swapping or 
remeshing. Using NEM in all deformable parts provides an 
elegant approach to reduce significantly the numerical noise. 

C. The Natural Element Method Applied to Solve 
Electromagnetic Scattering Problem 

The numerical solution of the electromagnetic scattering 
problem is a topic of great interest in sciences and many 
engineering areas [33]. The Element Free Galerkin Method 
was already successfully applied to solve arbitrary problems 
[34]. The aim of this section is to investigate the feasibility 
and the accuracy of the NEM when applied to study 
electromagnetic scattering problems. Since the interest is the 
evaluation of the reliability of the proposed numerical 
approach and not the analysis of actual cases, the attention is 
restricted to 2-D problems. To limit the domain, an absorbing 
boundary condition of first order is applied. Thus, the 
proposed approach is denominated NEM-ABC. Plane 
transverse magnetic and electric waves are considered as an 
excitation. The results are compared with analytical solution 
and the traditional FEM-ABC method. 
 
Problem formulation 

Consider the 2D electromagnetic scattering problem due to 
non-homogeneous obstacles which properties are uniform 
along its infinite axis (z-axis) as illustrated in Fig. 26. 

For the purpose of analysis, the scattering problem is 
divided into two regions: Ω0, the free space with permeability 
μ0 and permittivity ε0 and Ω that may consist in general of 
non-homogeneous material with permeability μ(x,y) and 
permittivity ε(x,y). In this work, both TMz and TEz 
polarization are considered for the incident electric Ei and 
magnetic Hi fields and the general expression for them are 
given by:  

)sincos(0
ii yxjki

z eu θθ +=      (24) 

where, u=Ez  for TMz or u = Hz for TEz polarization, θi is the 

incident angle shown in the Fig. 26 and 000 εµω ⋅=k  is 
the wave number. 
 

The Helmholtz differential equation describes the total field 
behavior in Ω and Ω0. The weak formulation associated to the 
wave equation can be written as: 

 
Fig. 26. Arbitrary cylinder illuminated by a plane wave. 
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where u is an approximation for the electric or magnetic fields 
and w is the weight function. Also, k0 represents the wave 
number, α1=1/µr, α2=εr and u=Ez for electric field polarization, 
while for magnetic field polarization α1=1/εr, α2=µr and u=Hz. 
To solve this kind of problem by FEM-ABC or NEM-ABC an 
artificial boundary γABC must be chosen beyond the target's 
border. On the artificial boundary γABC, the Wilcox's 
expansion for the first order of the last term of the right 
member in (25) gives [35]: 
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In (26) q and γ are given by the following expressions: 
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where κ  is the inverse of the distance from the ABC boundary 
and the center of the target. Now, the final form for the weak 
formulation could be obtained replacing the last term in (25) 
by (26) by: 
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(28) could be solved by both FEM and NEM methods.  
 
Validation and results 

Numerical results for the electromagnetic scattering of 
various 2D targets are presented in this section. These kinds of 
problems are typical because many practical scatters as 
missiles and aircraft fuselage could be represented by 2-D 
problems. In the first problem, a perfectly conducting cylinder 
is investigated by a 0.3-GHz TEz plane wave. The second 
problem considers a semi-open dielectric cavity with εr = 2.56 
and illuminated by a TMz plane wave of 1GHz. 



For the first problem, the solution is taken at the half upper 
cylinders surface for θ ranging from 0° to 180° degrees.  
 

1. Perfectly conducting cylinder 
In the first case, the perfectly conducting cylinder of radius 

0.3λ is simulated. The studied problem have been discretized 
in 476 nodes and excited by a TEz plane wave with θi = 180o. 
The external circular boundary, where the ABC of the first 
order is applied, has radius 0.8λ. The results presented in Fig. 
27 shows that the FEM-ABC, the NEM-ABC and the exact 
solutions are in good agreement. The calculated L2 norm is 
0.09 for FEM-ABC and 0.07 for NEM-ABC. This means that 
both methods are capable to treat conducting scattering 
problems. 

 
Fig. 27. Absolute value of the total magnetic field over the half upper 

semicircle of the conductor surface. 

 
2. Dielectric semi-open cavity Dielectric cylinder 

In this case a semi-open dielectric cavity is considered. The 
geometrical parameters of this problem, shown in Fig. 28, are 
a = 4λ, h = λ and t = 0.2 λ.  

 
Fig. 28. Absolute value of the total electric field along the x axis 

A 1GHz incident TMz wave is assumed to propagate in a 
direction which lies at an angle of 210° to the axis of the 
cavity [35]. The cavity dielectric are assumed to have a 
relative dielectric constant εr =2.56. The calculated solutions 
are compared with the FEM in which a very fine mesh is 
carried out (Fig. 28 and Fig. 29). A mesh of 7121 nodes is 
used to compare NEM-ABC and FEM-ABC solutions. The 
result showed a good concordance between them. 

 
Fig. 29. Iso-values of the electric field magnitude in the semi-open cavity. The 

arrow represents the direction of the incident field. 

IX. Conclusions 

In this paper, an overview of main meshless methods is 
presented. The study is focused on the computational 
efficiency and the application of the natural element method to 
2D electromagnetic problems. 

 This method can be considered as an interesting alternative 
to the FEM for several reasons: It presents similar numerical 
behavior with a better accuracy. It is well adapted to study 
electromagnetic devices by its property to handle boundary 
conditions and discontinuities between materials naturally. 
Last, moving and rotating parts are nicely taken into account 
since the numerical noise related to edge swapping in the mesh 
disappears. 

In order to deepen the study, the element-free Galerkin 
meshless method has been also developed and compared to the 
other methods. The obtained results show that the methods 
based on Voronoï cell functions – NFDM, NEM – and the 
EFG method are significantly more accurate than 1st order 
FEM. 

However, it should be noticed that the EFG method present 
some drawbacks which limit its interest compared to the 
NEM. Indeed, the definition of the size of the influence 
domains and the restrictions about the spatial arrangement of 
nodes can be challenging issues when handling irregular node 
distributions. Moreover, the search of neighbors requires the 
use of some additional technique leading to additional 
computing time. Finally, difficulties are encountered when 
imposing boundary conditions and treating interfaces 
discontinuities. 

This work has to be extended to higher order NEM shape 
functions. It will be interesting to perform the same analysis 
on second order approximation and compare computational 
efficiency of FEM and NEM in that case. Hopelessly, while 
higher order approximations were quite easy to produce with 
EFG, NEM higher approximation is not straightforward. 
Simulation of 3D problems is also a great challenge.  
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