
Abstract – This paper addresses different aspects of 
"coupled" model descriptions in computational 
electromagnetics. This includes domain decomposition, 
multiscale problems, multiple or hybrid discrete field 
formulation and multi-physics problems. Theoretical 
issues of accuracy, stability and numerical efficiency of the 
resulting formulations are addressed along with 
advantages and disadvantages of the various approaches. 
Examples for multi-method, multi-domain, multi-
formulation and multi-physics coupled formulations stem 
from numerical testing of electromagnetic compatibility in 
complex scenarios and numerical dosimetry of biological 
organisms in electromagnetic exposure situations and 
from simulations of large systems in electromagnetic 
power transmission.  

I. INTRODUCTION 

In the computation of electromagnetic fields many 
application problems involve the aspect that different model 
descriptions need to be coupled. This may involve the 
coupling of different computational domains as e.g. in domain 
decomposition or the combination of different discretization 
schemes to describe a problem. Problems combining relevant 
effects originating at very different scales also require coupled 
simulation approaches as those that involve physical models 
beyond the Maxwell regime (multi-physics). The challenge 
arising with these "multi-x" approaches lies in the accuracy, 
stability and numerical efficiency of the resulting coupled 
field formulations. While these aspects have been addressed in 
the past mostly related to the simulation problem at hand, 
more recent research efforts try to mathematically analyze 
these aspects in a more general way. In the following section a 
classification of coupled formulations in computational 
electromagnetics is proposed and common interfaces are 
discussed. Section 3 summarizes a general framework for 
coupled formulations based on dynamic iteration and 
discusses its convergence briefly. 

This paper also presents some real-world applications 
stemming from electrical engineering in Section 4. Examples 
for coupled formulations involve e.g. the numerical testing of 
electromagnetic compatibility (EMC) in complex scenarios 
involving coupled field-cable formulations and numerical 
dosimetry of biological organisms in electromagnetic 
exposure situations, in order to ensure occupational safety and 
health. Also of interest is the simulation of complex systems 
in electromagnetic power transmission, e.g. the simulation of 
high voltage insulators, cable terminators or energy cables, 
which often require coupled electromagnetic field and thermal 
simulations. These formulations may feature different 
methods (e.g. discretization methods) that are employed on 
different subdomains. Often, exploiting this degree of freedom 
allows more efficient simulations for problems, e.g. coupling 
of Finite Elements and Boundary Elements Methods (FEM-
BEM) for electro-quasistatic field simulations or using the 

Method of Moments (MoM) coupled to the Finite Difference 
Time Domain method (FDTD) [35] or Finite Integration Time 
Domain method (FITD) [33] for radio-frequency problems or 
e.g. magneto-quasistatic magnetic fields coupled with electric 
power networks [11]. 

II. CLASSIFICATION 

Many classical problems in electrical engineering are still 
simulated with sufficient accuracy by electromagnetic models 
based on Maxwell’s equations without extension. On the other 
hand, as discussed before, some applications require 
multiphysical models. Over the last years, trends like 
miniaturization and elevation of frequencies increased 
multiscale and multirate phenomena. As a consequence, many 
applications, where traditionally a single model was sufficient, 
must now be represented by more complex descriptions. This 
results in an increased demand to consider coupled problems. 
The important cases belong to one or more of the following 
classes: 

• Hybrid formulations, describing subdomains by 
different field quantities, e.g. current and magnetic 
vector potential based formulations 

• Hybrid discretizations, e.g. using the finite element 
method for complicated geometries and boundary 
elements for uniform subdomains, e.g. [29] 

• Coarsened and refined modeling, e.g. refining 
Maxwell’s equations in a subdomain by a model that 
accounts for quantum effects or coarsening the 
problem by describing subdomains by electric circuits, 
i.e., disregarding spatial distributions, [11,26] 

• Multiphysics, e.g. coupling electromagnetic field 
problems with motion effects, thermodynamics and 
fluid dynamics 

Sometimes the additional effort due to coupling is 
negligible and only small modifications are necessary. This is 
often the case for refined modeling, e.g. thin sheets are 
nowadays incorporated into standard finite elements codes. 
The same holds true for simple multiphysical examples where 
some effects can be extracted in a post-processing step 
because their influence is negligible, i.e., the coupling is only 
one-way, see Fig. 1a). In practice, the more challenging 
multiphysical problems require the solution of an additional 
mutually coupled transient process that is described by its own 
set of (partial-) differential equations. The interfaces are 
typically given by  

• prescribing boundary conditions, i.e., a part of the 
degrees of freedom is fixed by another problem (e.g. 
application of a voltage drop as Dirichlet condition) 

• imposing a source, i.e., introducing an external 
contribution with respect to another problem without 
removing degrees of freedom (e.g. imposing a source 
current from a circuit) 
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• modification of material parameters, i.e., changing the 
value with respect to degrees of freedom of another 
problem (e.g. a conductivity depends on the 
temperature described by a heat equation) 

• deforming the computational domain, i.e., the domain 
is decomposed and the subdomains move with respect 
to another problem (e.g. the rotor position of an 
electrical machine is described by a motion equation) 

In either case, the scaling of the quantities becomes 
increasingly difficult, often the problems are worse 
conditioned and properties of the equations that could be 
exploited before such as sparsity patterns, symmetry and 
definiteness may be lost. Furthermore, the usage of black-box 
solvers does rarely allow for a strong coupled formulation. 
Thus it is often beneficial to solve each subproblem separately 
instead of monolithically (i.e., strongly coupled), see Fig. 1.  

III. CONVERGENCE OF COUPLED SIMULATIONS 

When having mutual dependencies and solving 
subproblems independently, there is commonly a lack of 
information (“splitting error”). Hence it is important to ensure 
a sufficient data exchange. Often the problems are only 
weakly coupled in time. Then a small time lag is acceptable 
and the problems are synchronized only at discrete time 
points, Fig. 1c).  This approach is not stable if the interaction 
of the subsystems becomes stronger. It might not even 
converge when the frequency of the data exchanged is 
increased. This problem can be overcome by an iterative 
procedure. In the following we discuss the dynamic iteration 
scheme that is proven to be convergent for many applications. 

Let us consider coupled problems in the time domain 
following the method of lines, i.e., space is discretized first, 
for example using FEM. The equations are semi-discrete and 
depend only on time. For simplicity of notation only semi-
explicit systems are considered of the form 

d and
dt

0y = f( = g(y,z) y,z)
 

on the time window [0, ]t H∈  with initial values 0y  and 0z  
where the Jacobian of g with respect to z is regular 
det( / ) 0∂ ∂ ≠g z . This formulation is a first order differential-

algebraic equation of index 1. It is easily shown that many 
implicit formulations, e.g., the magneto- and electro-
quasistatic field equations, heat phenomena and many other 
multiphysical problems (see Section 4) can by represented 
equivalently in this form. Left-multiplication of the system by 
the inverse (or pseudoinverse) of the mass matrix, i.e., 

 d multiplied by
dt

+M x = F(x) M   

results in a semi-explicit system as stated above. Here, the 
number of algebraic constraints depends on the dimension of 
the kernel of M, for example the mass matrix in the curl-curl 
equation for magneto-quasistatic fields has a large kernel, due 
to non-conducting regions, while the classical heat equation 
has no algebraic constraints.  

Time dependency in the right-hand-side function f and 
equations with higher order time derivatives can also be 
converted into the form above by introducing additional 
unknowns, e.g., 

2

2 andd d d
dt dt dt

= ⇔ = =x f(t,x) x w w f(M M t,x)  

Please note, that these transformations are convenient for 
discussing the convergence property in a dynamic iteration, 
because it splits the degrees of freedom into variables that are 
defined by differential and algebraic equations. These 
variables exhibit different numerical behavior. In practice, the 
required operations are usually not necessary and probably 
impossible due to their computational complexity.  

Using the convenient notation from above, the iterative 
mutual coupling of several problems yields the following set 
of equations (a Gauss-Seidel-type scheme)
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Figure 1: Coupling schemes: (a) one-way coupling, (b) strong coupling, (c) weak coupling and (d) dynamic iteration 



where ( ) ( )k
j ty   and 

( )( )k
j tz  denote the solution of the j-th 

subsystem ( 1,...,j n=  ) after k iterations ( 1,...,k m=  ) on the 
time window [0, ]t H∈ . In practice these solutions are 
obtained sequentially by a time-stepping scheme with a 
sufficiently high accuracy. Having solved one time window, 
i.e., the splitting error has been reduced below a certain 
tolerance, one proceeds to the next one. In [2,5] it has been 
shown that the scheme above corresponds to a fixed point 
iteration in function space 
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with splitting errors ( )k
yδ  and ( )k

zδ  for the differential and 

algebraic components after k dynamic iterations. The scheme 
above converges for sufficiently small time windows H if the 
contraction factorαis small enough. This corresponds to a 
weak coupling between old and new algebraic variables: 

( 1) ( )

1
1k k+

−∂ ∂  < ∂ ∂ 

g g
z z

. 

Then the spectral radius of the fixed point iteration operator 
can be made arbitrarily small and this guarantees 
convergence. In [2,5,26] also the overall stability with respect 
to the propagation of splitting errors on multiple windows has 
been analyzed.  

In many relevant applications the systems 1,…,n can be 
reordered in such a way that there is no coupling between old 
and new algebraic variables and thus the contraction factor α 
vanishes completely. In particular, ordinary differential 
equations do not suffer from a divergent iteration because an 
algebraic coupling as discussed above cannot occur.  

A vanishing contraction factor α guarantees a convergence 
rate of at least O(H) such that only a few iterations are 
necessary to obtain a splitting error that is in the order of the 
discretization error of the time stepping scheme. Recent 
analysis shows that convergence rates up to order O(H2) can 
be achieved when choosing the coupling interface carefully. 

The results above apply in particular to low frequent field-
circuit, semiconductor-circuit, and field-thermodynamic 
coupled application. For example weak electromagnetic-
thermal and FDTD-MoM couplings are discussed in the 
following sections. 

IV. COUPLED FORMULATIONS IN CEM 

In this chapter some typical examples of coupled problems in 
computational electromagnetics are addressed that showcase 
the different coupling possibilities and techniques involved. 

A.  Multiple Physical Models 

From the large number of multi-physically coupled 
formulations in electromagnetic field simulations especially 
the coupling to thermal effects is widely established. As Joule 
heat losses typically are the main parasitic loss mechanism for 
many electromagnetic field problems with an impact on 
electromagnetic material parameters. This usually requires the 
additional simulation of thermostatic problems or even 
thermodynamic problems involving the solution of the heat 
transport equation. Since the characteristic time of a thermal 
process often exceeds that of the coupled electromagnetic 
process, usually a weak coupling approach can be adopted, cf. 
Fig. 1c). Here, the thermal process is the dominant process, 
which requires the Joule losses as thermal field excitation 
source to be calculated first in a post-processing step to an 
electromagnetic field problem solution. In turn, the 
electromagnetic material parameters may depend on the 
temperature and thus an iterative coupling as discussed in 
Section 3 might by necessary, Fig. 1d). 
An example of such a coupled electrodynamic-
thermodynamic problem is the simulation of a high-voltage 
direct current (HVDC) cable, where the dielectric PE 
(Polyethylene) cable insulator material features a low 
nonlinear conductivity 

0( ,| |) exp( ) exp( | |)k T E k T Eα β= ⋅ ⋅ ⋅ ⋅
 

, 

where k0 is a specific direct current conductivity at 0℃ and 0 

kV/mm, Τ is the temperature in ℃, E


 the value of electric 

field in kV/mm, α a temperature coefficient of the specific 
direct current conductivity and β is a field strength coefficient 
of the specific direct current conductivity. The typical values 
for Polyethylene are α ~ 0.1K-1 and β ~ 0.1mm/kV.  

Extending the one-dimensional coupled field formulation in 
[3], a coupled 2D simulation of these electric field energy 
transport systems [34] features the weakly coupled solution of 
a stationary current problem solving 

 
Figure 2: (a) Rotationally non-symmetric model and 2 evaluation lines in red, (b) electric field distribution during heating process 
and (c) electric field distribution along the evaluation line 1 in (a) during the heating process [34] 

 



div( ( , ) grad ) 0k T ϕ ϕ⋅ =  

where T is the temperature in K, φ is the electric scalar 
potential and k(T,φ) is the nonlinear electric conductivity, and 
the transient heat transport equation 

div( grad )p t EC T T Qρ λ⋅ ⋅∂ − ⋅ = , 

where Cp is the heat capacity at constant pressure, ρ is the 
density, λ is the thermal conductivity, QE describes electric 
heat sources calculated from the Joule heating from the cable 
and the thermal power losses from in the PE insulation 
material.  

These simulations yield the (contra-intuitive) result that 
electric field stresses may be larger at the outer radius of such 
a cable than close to the inner conductor. Fig. 2 shows the 
model of a radially non-symmetric configuration: Due to high 
temperatures, the insulation thermoplastic material, e.g. LDPE 
(low density Polyethylene), may become soft and thus the 
inner conductor may sag because of gravity [21]. 
 

Beyond the coupled simulation of thermal and 
electromagnetic fields, other multi-physical models include 
e.g. acoustic simulations of electric machine noise emissions 
or electro-mechanical simulations [17]. Also the simulation of 

charged particles with so-called particle-in-cell codes, 
combining the solution of Maxwell’s equations e.g. via FDTD 
or DGFEM schemes and Vlassov charged particle dynamics is 
a widely established standard specifically in accelerator 
design, see. e.g.  [25].  

B.  Refined Modeling 

Different discretization methods within one electromagnetic 
field phenomenon are typically applied if one method alone is 
not capable of representing all the required features of an 
electromagnetic problem and/or if the benefit of the additional 
modeling capabilities gained outweighs any additional 
difficulties arising from the coupling process. 

For radio-frequency electromagnetic wave propagation 
problems typically implementations of volume oriented space 
and time discretization methods such as the FDTD/FITD 
method or more recently Discontinuous Galerkin Finite-
Element (DGFEM) methods are considered established 
standard simulation tools. They allow for a high resolution of 
geometric features in the near field of electromagnetic 
radiation sources. However, many electromagnetic 
compatibility (EMC) problems feature geometric aspect ratios 
which would require very large numbers of volume grid cells 

         
Figure 3: Car model including door harness model with blue cable bundles and yellow connectors [23] 

 

 
Figure 4: Door harness with yellow connectors, blue cable bundles and a cross section overview [23] 

 



to cover all the relevant geometric details. This also affects the 
time step size of explicit methods due to the Courant-
Friedrich-Levy (CFL) condition. While considerable progress 
has been made in terms of reducing computation times to an 
acceptable level even for large scale problems featuring 
hundred million grid cells by using graphic process units 
(GPU) accelerators, many EMC problems featuring both 
complex dielectric material distributions and large aspect 
ratios can still not be tackled with such a one-method 
approach.  

A typical example of this problem type arises from testing 
cable harness systems in complex electromagnetic 
environments, i.e., metallic enclosures (possibly with 
apertures) such as car bodies, airplane hulls or electronic 
system enclosures, see e.g. Fig. 3. As it is not possible to 
discretize the cable harness, where cables have a diameter in 
the (sub-) millimeter range, as part of a resonant structure with 
a typical size in the order of decameters or meters, a multi-
method approach should be adopted. It combines a 
multiconductor transmission line (MTL) approach for the 
harness and a standard volume oriented discretization scheme 
for the surrounding field environment.  

As an example for this approach, a complex harness system 
inside a car door (Fig. 4) is considered using a co-simulation 
approach combining two dedicated implementations available 
e.g. for the MTL model in the CST Cable Studio connected to 
a FITD implementation of the CST MicroWaveStudio [10]. 
Starting from a real door harness supplied by an industrial 
partner, the cable routes and their connector places are studied 
inside a high resolution 3D vehicle model [23].  

 The door harness consists of 32 cable routes with single 
wire and twisted pair cables. Within the MTL model an 
equivalent lumped element circuit is calculated with respect to 
the cable characteristics as e.g. 2D cross sections, cable 
lengths, Ohmic and dielectric losses and simulation frequency. 
Using static simulations in the 2D cross sections of the 
harnesses, the MTL inductance, capacitance and conductance 
matrices are computed.  In addition, every single cable end, 
represented by a pin in the equivalent circuit, can be equipped 
with further lumped elements as e.g. a voltage source. 

The MTL harness model is coupled via voltages and 
currents to the FITD model. The coupling can be performed 
by a uni-directional method (one-way coupling): For 
simulating a field radiation into the cable harness the electric 

field components of the FITD grid edges are integrated along 
the cable segments and each cable segment is then exposed to 
the resulting voltage (field-to-cable coupling). Alternatively, 
the currents calculated from the MTL model are used as field 
irradiation source into a reference conductor of the FITD 
model. Also, a bi-directional coupling (e.g. using dynamic 
iteration) is possible combining the simulation radiation and 
irradiation simultaneously, e.g. for resonating structures, by 
exchanging voltage and current information between the 3D 
solver and MTL harness model to calculate the fields. 

For both uni- and bi-directional field coupling methods, the 
currents of the cable bundles are summed up to a single 
common mode current which is represented by an impressed 
field source in the 3D field model, while the cables are not 
physically present during the FITD calculation [10]. This 
approach often allows for a sufficient approximation of 
common mode currents in cable harnesses which pose a 
serious EMC problem in many technical systems.  

 
Alternatively, field-cable coupled formulations are also 

possible using a strong coupling e.g. for full transient 
simulations. An approach used by Holland [20] to couple the 
FDTD scheme to a cable transmission line mode was recently 

 

     
Figure 6: Field-cable coupled DGFEM simulation of a helicopter antenna (left) and the radiated electric field intensity [16] 

 

 
Figure 5: Wire-to-tetrahedron coupling using Gauss points 
along a wire segment cutting the tetrahedron [16] 



extended to the higher order DGFEM formulations in [15]. 
Here, Maxwell equations discretized with a higher order 
DGFEM nodal formulation [19] are coupled to the cable 
transmission line model which is also discretized using the 
DGFEM approach [16]. For each finite element the Maxwell 
curl equations are reformulated to a system of ordinary 
differential equations  

1 1 *

1 1 *

d ( ) ( ) ( ) ( ) ,
dt
d ( ) ( ) ( ),
dt

E E

H H

t t f f t

t t f f

ε

µ

− −

− −

= − − −

= − + −

E M SH M F J

H M SE M F

 

 

 

where E, H are vectors of nodal electric and magnetic field 
strength values, ε, μ are the electric permittivity and magnetic 
permeability, S describes a local differentiation matrix, M is a 
local DGFEM mass matrix and F(.) represents the flux 
expression coupling neighboring finite elements and J is the 
electric current density within the elements. The thin wire 
formulation following Holland [20] discretizes to 
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where q corresponds to a unit charge per wire length, v is the 
speed of interaction between charges, L´ denotes an 
inductance per unit length and Ds is the local derivative matrix 
along the wire.  

The coupling involves the integration of the discrete 
electric field Es inside each volume element (see Fig. 5). It 
adds the resulting electric voltage as an excitation source to 
the line model and the cable currents are used to calculate the 
right hand side excitation currents of the 3D field DGFEM 
formulation. The resulting high dimensional set of ordinary 
differential equations, i.e., the DGFEM-discretized 3D field 
equations and the 1D thin wire equation are solved 
simultaneously using an explicit time integration scheme such 
as e.g. an Low Storage Runge-Kutta method of 4th order [15].  

Fig. 6 shows the simulation result of wave propagation 
from a helicopter model featuring a thin wire antenna on its 
tail boom using this strongly coupled transient DGFEM field-
cable formulation. 

As the coupling of current MTL and 3D discrete 
electromagnetic field formulations is still subject to some 
severe restrictions concerning the validity of the MTL 
modeling assumptions for certain high-frequency EMC 
problems, this coupling is still matter of ongoing research 
efforts. 

C.  Hybrid Discretization  

Electromagnetic dosimetry simulations at radio frequencies 
using high resolution body phantoms may become a problem 
within FITD/FDTD simulations as soon as also large portions 
of an ambient environment have to be taken into account, 
possibly even including additional complex geometric details. 
Fig. 7 shows a simple example configuration of such an 
exposure situation with a body phantom positioned in some 
distance to an electromagnetic field source. 

    

 
Especially for such large scale exposure situations a weakly 

coupled method-of-moment (MoM) / FDTD multi-method 
approach can be adopted. First a MoM simulation is 
performed for the exposure situation, where the body model is 
replaced by either a homogeneous dielectric material body 
model or a perfectly electrically conducting (PEC) surface. 
Then this approximation of the field distribution between the 
body and the antenna is sampled on a closed Huygens surface 
around the body phantom. In a next step, a full three-
dimensional FITD dosimetric SAR simulation is performed 
with a high-resolution voxel body phantom inside the 
“Huygens box” excited by the surface near field sources (see 
Fig. 8). While the weak MoM-FDTD coupled approach is an 
iterative approach, the iteration typically is stopped after the 
first step, since the FDTD calculated body currents are too 
small for a second MoM simulation and thus can be neglected.  

 

 
Figure 7: Exposure situation: Human body phantom on a 
perfectly conducting metal plane in some distance to an 
antenna [31] 

 
Figure 8: FDTD dosimetry simulation of a human body 
phantom excited by near surface source fields with the MoM 
calculated field values evaluated on the Huygens box surface 
[31] 

 



The optimization of nonlinear field stress grading in electric 
high-voltage system components such as surge arresters, 
microvaristor coated long rod insulators or microvaristor filled 
cable terminators requires nonlinear transient electro-
quasistatic field simulations [14,28]. For these simulations a 
strongly coupled hybridization of a finite-element / boundary 
element method (FEM-BEM) has been proposed in [29]. With 
this formulation it is possible to model the attenuation 
behavior of the electric scalar potential, i.e., the BEM part 
models the “open” boundaries of the problem. 

The strongly coupled FEM-BEM hybrid formulation in 
[29], here shown for electrostatic problems, yields the discrete 
formulation  
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where the matrix blocks Aij correspond to the FEM part of 
the formulation, the BEM-matrix block M corresponds to the 
discretization of the identity operator, V corresponds to the 
single-layer potential integral operator, K to the double layer-
potential integral operator and D to the hypersingular integral 
operator. The BEM matrix blocks can be represented in a 
memory efficient way using matrix sparsification techniques 
as e.g. the Adaptive Cross Approximation [7]. The solution 
vector consists of Φf inner node potential values, Φc air-
interface potential values and t the normal derivative values of 
the potential. The right hand side vector contains the 
predefined problem potential values as Dirichlet values gD.  
Fig. 9 shows a long rod insulator where the solution in the air 
part of problem is completely represented with the BEM 
formulation, thus avoiding the need to discretize the exterior 
air domain. 

While the hybrid FEM-BEM coupled electro(-quasi-) 
static) formulation elegantly solves the problem of an “open” 
boundary, this comes at the prize of an additional complexity 

in the solution of the resulting algebraic systems of equations, 
where the challenge lies in an efficient preconditioning of the 
FEM-BEM-coupled system. 

D.  Multi-Domain Coupled Formulation 

Domain decomposition techniques are a widely established 
procedure in the numerical solution of boundary value 
problems, see e.g. [27],[32]. Quite often the segmentation of 
the domain into multiple domains blindly follows 
requirements of computational load balancing or algorithmic 
simplicity. 

Depending on the problem to be solved, also more refined 
criteria for the decomposition of the computational domain 
into multiple subdomains may be useful. To highlight this, a 
nonlinear transient electro-quasistatic field formulation is 
considered. The FEM discretization [14,28] leads to a stiff 
nonlinear system of ordinary differential equations 

( )d
dtε κΦ + Φ Φ =M K b , 

where Φ is the vector of electric potential values, εM  and 

κK  denote the discrete div-grad operators w.r.t. permittivity 
and field dependent nonlinear conductivity. The Dirichlet 
boundary conditions are incorporated in the right hand side b
. The implicit time integration schemes used for these systems 
of stiff ordinary differential equations require long simulation 
times due to the large number of linear algebraic systems of 
high dimension that need to be solved repeatedly.  

Using a multi-domain approach, the computational domain 
is split up into an interior subdomain corresponding to the 
dielectric materials including also the nonlinear conductive 
components and into an exterior subdomain corresponding to 
the air region with nodal vectors Φ1 and Φ2, respectively. As a 
result the discrete electro-quasistatic system is partitioned 
with 
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Now, following a similar idea as in the coupled FEM-BEM 

approach [29] or the domain decomposition-based linear 
subspace information recycling approach published in [9], the 
linear exterior parts of the problem are now treated using 
proper orthogonal decomposition (POD) model order 
reduction (MOR) techniques aiming at a reduced dimension 
for the solution process. 

Solving the full discrete system in time-domain allows 
saving snapshots of the solution. Then, a singular value 
decomposition of the snapshot matrix (see [12]), containing 
the system information, results in a low rank basis which 
represents the system dynamics and provides information for a 
projection operator. Constructing a projector only for the 
exterior nodes results in an n x p operator P, where n is the 
number of exterior domain degrees of freedom and p the 
number of singular vectors used for the projection and Φ2= 
Pz2. Use of the projection operator P yields an ordinary 
system of equations  

 
Figure 9: Electrostatic potential distribution on Lapp 
Insulators RodurflexTM long rod insulator [28] 
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Here, the number of degrees of freedom in the exterior air 

domain is reduced from n to dimension p.  
The validity and effectiveness of this multi-domain coupled 

approach is shown in a nonlinear electro-quasistatic 2D field 
simulation of an IEC norm surge arrester design [28,30]. Fig. 
10 shows simulated electric field distribution results along the 
vertical surge arrester axis, where the results of the MOR 
projected simulations with p=1,4,5 are compared to a full 
simulation with 3,900 degrees of freedom with an exterior 
domain problem dimension n=3,028 (about 78% of the whole 
problem size). The MOR solution for p=5 coincides with the 
full solution, which corresponds to a dimension reduction 
factor of about 600. This reduction in the problem dimension 
allows then for a faster optimization of the nonlinear material 
characteristics.  

V. CONCLUSION AND OUTLOOK 

Many high and low frequency electromagnetic field 
simulation methods have reached a high level of maturity. 
Today's challenges are often due to multiscale or multiphysics 
phenomena. In this paper a classification of coupled problems 
was presented with corresponding examples of coupled 
formulation, e.g., for scale bridging (cable models, hybrid 
discretizations, MOR techniques) and multiphysical 
simulation (in particular the important coupling with the heat 
equation).  

The convergence issue of coupled time-domain simulations 
was discussed and an iterative algorithm to increase stability 
was proposed. One important result that applies also to co-
simulations without iterations is that reordering the 
computational sequence of the subsystems can improve 

stability. This can be mathematically verified by analyzing the 
Jacobians. 

 When looking into the future of coupled simulations, the 
data exchange will be an increasingly important factor. Today, 
most implementations for coupled simulation are still single-
threaded or exchange their complete volumetric data at 
synchronization steps, e.g. one core computes the 
electromagnetic field and another one the thermal distribution. 
This procedure may become increasingly expensive in terms 
of time and energy consumption while the costs per flops will 
further reduce in the future. According to SciDAC reports, [8], 
medium-sized clusters will have in the range of 400.000 cores 
by 2020 such that data-movement efficient parallelization is 
an important issue for large-scale computations.  

Possibly the traditional way of splitting problems by 
physics must be replaced by a splitting in space, e.g., the 
computational domain is decomposed into subdomains and 
each core computes electromagnetic and heat effects for its 
subdomain locally, which then will only require the exchange 
of boundary information. 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the support of the 
BMBF grant 03MS648E “SOFA: Coupled Simulation and 
Robust Optimization in Virtual Vehicle Design” and the 
collaboration with Delphi Deutschland GmbH, Wuppertal, 
Lapp Insulators GmbH, Wunsiedel, and the 
Computersimulationstechnik AG, Darmstadt.   

REFERENCES 

[1]  G. Alì, A. Bartel, M. Brunk, S. Schöps. “A 
convergent iteration scheme for 
semiconductor/circuit coupled problems.” In 
Bastiaan Michielsen and Jean-René Poirier, editors, 
Scientific computing in electrical engineering SCEE 
2010, volume 16 of Mathematics in Industry, pp. 
233-242, Berlin, January 2012, Springer. 

 

     
 

Figure 10: Electric field distribution along IEC surge arrester vertical axis: Results of the full nonlinear electro-quasistatic simulation 
and the three MOR projected simulations with p=1,4,5 



[2]  M. Arnold, M. Günther, “Preconditioned dynamic 
iteration for coupled differential-algebraic systems”, 
BIT Numerical Mathematics, Vol. 41, No. 1, pp.1 --
25, 2001. 

[3]  R. Bärsch, J. Kindersberger: „Nichtlineare 
dielektrische Funktionseigenschaften von 
Dielektrika“, ETG-Report of the Workshop 
“Werkstoffe mit nichtlinearen dielektrischen 
Eigenschaften”, Vol. 10, VDE Verlag, Berlin, 
Offenbach, 13.03.08. 

[4]  A. Bartel, R. Pulch, “A concept for classification of 
partial differential algebraic equations in 
nanoelectronics”, In L. L. Bonilla, M. Moscoso, G. 
Platero, J. M. Vega, eds., Progress in Industrial 
Mathematics at ECMI 2006, Mathematics in 
Industry, Berlin, vol. 12, 2007, Springer. 

[5]  A. Bartel, M. Brunk, M. Günther, S. Schöps, 
“Dynamic iteration for coupled problems of electric 
circuits and distributed devices”, SIAM Journal on 
Scientific Computing, 2012. Submitted. 

[6]  O. Bíró, K. Preis, „Finite element analysis of 3-d 
eddy currents”, IEEE Transactions on Magnetics, 
vol. 26, no. 2, pp. 418-423, March 1990. 

[7]  M. Bebendorf and S. Rjasanow, “Adaptive low-rank 
approximation of collocation matrices,” Computing, 
vol. 70, pp. 1–24, 2003. 

[8]  J. Carter, Computing Sciences Overview, NERSC 
Report, 2011. 

[9]  M. Clemens, S. Schöps, A. Bartels, “Regularization 
and Decomposition of Nonlinear Anisotropic Curl-
Curl DAEs,” COMPEL, vol. 30, no. 6, pp. 1701-
1714, 2011. 

[10]  CST Studio Suite 2012tm, Computer Simulation 
Technology AG, Darmstadt, Germany, 2012. 

[11]  H. De Gersem, R. Mertens, U. Pahner, R. Belmans, 
K. Hameyer, “A Topological Method Used for Field-
Circuit Coupling“, IEEE Transactions on Magnetics, 
vol. 34, no. 5, pp. 3190-3193, September 1998. 

[12]  D. Schmidthäusler, M. Clemens, “Low Order 
Electro-Quasistatic Field Simulations Based on 
Proper Orthogonal Decomposition,” IEEE 
Transactions on Magnetics, vol. 48, no. 2, pp. 567-
570, February 2012. 

[13]  D. Schmidthäusler, S. Schöps, M. Clemens, 
“Reduction of Linear Subdomains for Non-Linear 
Electro-Quasistatic Field Simulations”, CEFC 
Conference, Oita, Japan, 2012. 

[14]  L. Egiziano, V. Tucci, C. Petrarca, M. Vitelli, “A 
Galerkin model to study the field distribution in 
electrical components employing non-linear stress 
grading materials”, IEEE Trans. Dielectr. Electr. 
Insul., vol. 6, no. 6, pp. 765–773, 2002.  

[15]  N. Gödel, N. Nunn, T. Warburton, and M. Clemens, 
“Accelerating multi GPU based discontinuous 
Galerkin FEM computations for electromagnetic 
radio frequency problems," ACES Journal, vol. 25, 
no. 4, 2010.  

[16]  N. Gödel, T. Warburton, M. Clemens, “GPU-
Accelerated Thin Wire Computations Coupled to 
DGFEM Electromagnetic Field Formulations.” 
Proceedings of the 27th International Review of 
Progress in Applied Computational 
Electromagnetics, Williamsburg, Virgina, USA, 27.-
31.03.2011.  

[17]  K. Hameyer et al., „The Art of Modelling Electrical 
Machines“, Technical Article, ICS Newsletter, Vol. 
19, No. 2, July 2012. 

[18]  A. Hansen, J. Bitz, A. Streckert, A. El Ouardi, "A 
numerical approach for efficient calculation of 
human exposure in front of base station antennas." 
Proc. XXIIIth General Assembly of International 
Union of Radio Science (URSI), New Delhi, October 
2005. 

[19]  J. S. Hesthaven and T. Warburton, “Nodal 
discontinuous Galerkin methods.” Springer, 2008. 

[20]  R. Holland and L. Simpson, “Finite-difference 
analysis of EMP coupling to thin struts and wires," 
IEEE Transactions on Electromagnetic 
Compatibility, vol. EMC-23, no. 2, pp. 88-97, May 
1981. 

[21]  H. J. Mair et al.: „Kunststoffe in der Kabeltechnik: 
Entwicklung, Prüfung, Erfahrungen, Tendenzen“, 3rd 
ed., Renningen-Malmsheim: expert verlag, 1999. 

[22]  H. H. Pennes, “Analysis of tissue and arterial blood 
temperature in the resting human forearm”, Journal 
of Appl. Physiology, vol. 1, pp. 93–122, 1948. 

[23]  S. Runke,  "Entwicklung von CAD Modellen für 
numerische elektromagnetische Feldsimulationen 
und Untersuchung der Feld-/Kabelkopplung in hoch 
aufgelösten Kraftfahrzeugmodellen", Master Thesis, 
Wuppertal 28.03.2012  

[24]  U. Richert, „Ein Beitrag zur Eignung extrudierter 
Polyethylenisolierungen für Gleich-spannungskabel“, 
Dissertation, TU Dresden, Germany, 2001.  

[25]  S. Schnepp, E. Gjonaj, T. Weiland, „Analysis of a 
particle-in-cell code based on a time-adaptive mesh,“ 
Proc. IEEE Partical Accelerator Conerence (PAC), 
pp. 3271 - 3273, June 2007 

[26]  S. Schöps, H. De Gersem, A. Bartel, “A 
Cosimulation Framework for Multirate Time-
Integration of Field / Circuit Coupled Problems,“ 
IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 
3233-3236, July 2001 

[27]  B. Smith, P. Bjorstad, W. Gropp, "Domain 
Decomposition: Parallel Multilevel Methods for 
Elliptic Partial Differential Equations," Cambridge 
University Press, 2008. 

[28]  T. Steinmetz, M. Helias, G. Wimmer, L. O. Fichte, 
M. Clemens, „Electro-Quasistatic Field Simulations 
Based on a Discrete Electromagnetism Formulation“, 
IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 
755-758, April 2006. 

[29]  T. Steinmetz, N. Gödel, G. Wimmer, M. Clemens, S. 
Kurz, and M. Bebendorf, “Efficient Symmetric 



FEM-BEM Coupled Simulations of Electro-
Quasistatic Fields," IEEE Transactions on 
Magnetics, vol. 44, no. 6, pp. 1346-1349, June 2008. 

[30]  “Surge arresters—Part 4: Metal-oxide surge arresters 
without gaps for a.c. systems,” in IEC 60 099c-4-
am2, 2001.  

[31]  T. Timm, "Numerische elektromagnetische 
Felddosimetriesimulationen zu Antennenfeld-
expositionen mit einer Kopplung der 
Momentenmethode und der FDTD-Methode," B.Sc. 
Thesis, Bergische Universität Wuppertal, January 
2012.  

[32]  A. Toselli, “Domain Decomposition Methods -
Algorithms and Theory,” Springer, 2004. 

[33]  T. Weiland, “Time Domain Electromagnetic Field 
Computation with the Finite Difference Methods”, 
International Journal of Numerical Modeling: 
ENDF, Vol. 9, pp. 295-319 (1996). 

[34]  H. Ye, E. Boudoudou, M. Clemens: “Coupled 
Electro-thermal Field Simulation in HVDC Cables”, 
Proc. COMSOL Conference 2011, Stuttgart, 26.-
28.10.2011. 

[35]  K.S. Yee, “Numerical solution of Initial Boundary 
Value Problems Involving Maxwell’s Equations in 
Isotropic Media”, in IEEE Transactions on Antennas 
and Propagation, vol. 17, pp. 585-589 (1966).  

 

 

AUTHORS NAMES AND AFFILIATION 

Markus Clemens1, Sebastian Schöps2, Carsten Cimala1, Nico Gödel1, Simon Runke1, Daniel Schmidthäusler1, Thomas Timm1 
 

1 Bergische Universität Wuppertal,  Chair of Electromagnetic Theory,  Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany 
clemens@uni-wuppertal.de, http://www.tet.uni-wuppertal.de 
 

2 Technische Universität Darmstadt, Graduate School CE and TEMF, Dolivostraße 15, 64293 Darmstadt, Germany 
schoeps@gsc.tu-darmstadt.de, http://www.graduate-school-ce.de 
 


	I. Introduction
	II. Classification
	III. Convergence of Coupled Simulations
	IV. Coupled formulations in CEM
	A. Multiple Physical Models
	B. Refined Modeling
	C. Hybrid Discretization
	D. Multi-Domain Coupled Formulation

	V. Conclusion and Outlook
	Acknowledgements
	References
	Authors Names and Affiliation

