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Nonlocal Homogenization

Abstract — The proposed theory of nonlocal homog-
enization applies to periodic structures with arbitrary
cell sizes, not necessarily very small relative to the wave-
length. The end result is an extended second-order ma-
terial tensor that includes, in the most general case, the
usual 6×6 block of local parameters (permeability, per-
mittivity and magnetoelectric coupling) and an addi-
tional block that rigorously quantifies nonlocality. The
local part of the tensor relates the mean values of pairs
of coarse-grained fields, while the nonlocal part relates
the mean values to variations of the fields. The theory
is minimalistic, with only two fundamental premises at
its core: (i) the coarse-grained fields satisfy Maxwell’s
equations and boundary conditions exactly; and (ii) the
material tensor is a linear relationship between the pairs
of coarse-grained fields. Nontrivial magnetic behavior
of intrinsically dielectric media is a logical consequence
of the theory. The approximations involved and the
respective errors are clearly identified. Illustrative ex-
amples of resonant structures with high-permittivity in-
clusions are given.

The theory is closely related to multiple subjects of

direct interest to the Compumag community: edge and

face elements, discrete Hodge operators, hierarchical

bases, applications to electromagnetic metamaterials

and to laminated cores of electrical machines.

To the memory of J. Douglas Lavers

I Introduction: Effective Medium Theory
Meets Compumag

Effective medium theory – the derivation of equivalent
macroscopic parameters of a composite material from its
microstructure – is a very broad and well established area,
with a long history. In physics, it dates back to the
work of Mossotti (1850), Lorenz (1869), Lorentz (1878),
Clausius (1879), and Maxwell Garnett (1904). A num-
ber of more advanced physical theories followed, of which
most relevant to electromagnetics are various extensions
of the Maxwell Garnett formula to wave problems: by
Lewin (1947), Khizhnyak (1957–59), Waterman & Pedersen
(1986) [40, 35, 36, 76]. In particular, Khizhnyak made an
interesting observation that “an artificial dielectric ... made
from inherently nonmagnetic materials, at higher frequency
... will exhibit both dielectric and magnetic anisotropy;”
see [49] for an interesting summary of these developments.
Modern physical theories of homogenization are presented
in Choy’s monograph [12], with the emphasis on random
rather than periodic media.

The mathematical literature on the subject is also rich
and includes the monographs by Bakhvalov & Panasenko,
Bensoussan et al., Oleinik and her collaborators, Dal Maso,
Sanchez-Palencia and Tartar [4, 5, 33, 15, 55, 66]. A very
interesting subproblem is to determine the lower and upper
bounds on the effective parameters of composite materials

with given constituents and to find the microstructures that
actually attain these bounds; see Milton’s monograph [46].

Many purely numerical approaches to homogenization
have also been put forward within the multiscale framework
that has progressed from multigrid / multilevel methods in
the 1960s–1980s to multiphysics over the last decade. This
numerical perspective is beyond the scope of this paper; the
interested reader is referred to the review paper [17] by E
et al. and to [22, 31, 32, 38, 50] and references there.

Altogether, according to the ISI database, there are cur-
rently about 24,000 papers on effective medium theory /
homogenization, covering mathematical, physical, numeri-
cal and engineering aspects of this subject. Why, then, yet
another paper? What else needs to be done and why would
that be of interest to the Compumag community?

The existing theories, for the most part, operate in the
homogenization limit, when the cell size of the microstruc-
ture (or other similar parameters) tends to zero. This is
sufficient for many applications, but not for all. One no-
table exception is optical metamaterials – artificial periodic
structures judiciously designed to control the propagation
of electromagnetic waves and to achieve remarkable effects
such as high-frequency magnetism nonexistent in natural
materials. If the zero-cell-size limit is taken, magnetism
(and negative refraction, an even more remarkable phe-
nomenon) disappear; the material behavior becomes rather
trivial. This conclusion has been reached independently by
several researchers who have approached the subject from
very different perspective [8, 45, 62, 70].

Thus an extension of existing theories beyond the homog-
enization limit is desirable. I call such an extension “non-
local homogenization,” for reasons that will become more
clear further on. The nonlocality implies that the mean val-
ues of the D,B fields depend not only on the mean values
but also on the variations (derivatives) of the E,H fields.
In addition to electromagnetic analysis of optical metama-
terials, nonlocal homogenization may be relevant for the
laminated cores of electrical machines, especially if the skin
depth in the iron sheets is comparable with the thickness
of these sheets [13, 27].

Important as these applications are, they may not be the
primary reason why the Compumag community may be in-
terested in nonlocal homogenization. A more significant
point is that the theory of this paper draws heavily on div-
and curl-conforming interpolation, the cornerstone of edge
and face element analysis [7]. Here, however, these ideas
are used in a new context, analytical in its essence rather
than numerical. Despite its connection with the differential-
geometric treatment of electromagnetic fields and with dis-
crete Hodge operators [7, 28, 37, 67], the theory is framed
in terms of classical vector calculus more familiar to the
majority of engineers and physicists.

Notable for the Compumag is also a link of the proposed
theory to Model Order Reduction methods developed by
Dyczij-Edlinger and others [57].

While the methodology of this paper is itself semi-



analytical, its usage will call for new numerical tools and
procedures – yet another significant Compumag connection.
In general, nonlocal models are computationally costly and
should be employed with a great deal of caution. In the
case under consideration, however, such models may well
be warranted and recommended. One reason is that the
nonlocality can typically be expected to be weak – the D,B
fields will depend on E,H not in the whole computational
domain but in a small volume around any given point in
the medium. Secondly, as already noted, there are applica-
tion problems where the local model is simply unavailable
or inaccurate. Then the choice is not between a local and a
nonlocal model (in which case the local one would clearly be
preferable) but between a nonlocal model and a full-scale
solution of Maxwell’s equations in the microstructure. The
latter in most practical cases is just not feasible.
In this paper, nonlocal effects are described via the vari-

ations (derivatives) of the E,H fields within the lattice cell.
One undesirable consequence of that is an increased order
of the resulting differential equations. A possible alterna-
tive is to convert the model into an integrodifferential form,
with the nonlocality represented by a suitable integral ker-
nel. Methods of this kind are currently under development
but are not covered in this paper. The immediate focus here
is on the analytical treatment of nonlocal effects; numerical
ramifications will be considered in future research.
The proposed theory of nonlocal homogenization yields

an extended second-order material tensor that contains not
only the usual 6×6 matrix of local material parameters (in
3D electrodynamics), but also an additional block quanti-
fying nonlocality rigorously. The local part of the tensor
relates the mean values of the coarse-grained fields, while
the nonlocal part relates these mean values to variations of
the fields.

II Proposed Theory: Key Concepts

The complex electromagnetic behavior of metamaterials –
artificial periodic structures with features smaller than the
vacuum wavelength – has been extensively investigated over
the last decade. Effective medium description of such struc-
tures is indispensable for their analysis and design, and the
existing literature on this subject is quite vast. The ap-
proaches include retrieval via S-parameters, applications
and extensions of classical mixing formulas for small in-
clusions, analysis of dipole lattices, special current-driven
models, and much more. Reviews and references are avail-
able in [56]–[61]; see also [64, 72]. One particularly intrigu-
ing phenomenon is “artificial magnetism” at high frequen-
cies. A physical explanation of it is that resonating elements
in metamaterial cells act as elementary magnetic dipoles.
However, there is a paradox associated with such mag-
netism. In a metamaterial composed of intrinsically non-
magentic components, the “microscopic” magnetic fields h
and b are the same; yet somehow their spatial averages –
the respective coarse-grained fields H and B – differ. How
can two identical quantities give rise to two different aver-
ages?
Remark. Here and in the remainder of the paper I use

the Gaussian system of units, partly to avoid the nuisance
of µ0 appearing everywhere and partly for consistency with
the literature on metamaterials, the majority of which is
written in the Gaussian system.
Our point of departure is the traditional formulation of

Maxwell’s equations in terms of four “microscopic” (point-
wise) fields e,d,h,b; their coarse-grained counterparts
E,D,H,B need to be properly defined. Alternative formu-
lations with fewer fields are available, due most notably to
Agranovich, Ginzburg, Landau & Lifshitz [1, 39, 60]. The
four-field formulation, however, is universally accepted in
engineering (including, certainly, Compumag) and widely
used in applied physics due to a number of advantages. It
treats intrinsic magnetism, when it exists (at low frequen-
cies), in a very natural way; it avoids unnecessary nonlo-
cality; it yields simple local boundary conditions without
additional surface currents.

Besides, there is a certain elegance in treating two pairs
of fields in a symmetric fashion [7]. If so, it is quite natural
to wonder why the same averaging procedure should not
be applied to all four microscopic fields, in which case the
paradox noted above arises: no magnetic effects despite
the overwhelming evidence to the contrary (all references
on metamaterials cited above deal with magnetism in one
way or another; see also [9]).

The theory of [72] and this paper resolves this paradox.
For Maxwell’s equations and standard boundary conditions
to be honored, the coarse-grained fields H and B must be
obtained from the microscopic h and b via different proce-
dures. Indeed, H has tangential continuity across all inter-
faces, whereas B has normal continuity. Specific interpola-
tion procedures producing fields with the required types of
continuity are discussed in [72]; see also Section III.

The proposed theory has several distinguishing features:

• The material is characterized by an extended param-
eter matrix with the usual 6 × 6 diagonal block and
an off-diagonal block that quantifies nonlocality. This
generalizes the traditional local treatment.

• The procedure is applicable to any cell size, not neces-
sarily very small relative to the wavelength.

• The methodology is based on a direct field analysis
in a single lattice cell, in contrast with S-parameter
retrieval procedures [10, 11, 63] where the effective pa-
rameters are inferred from reflection and transmission
coefficients of a metamaterial slab.

• There are no adjustable or fitting parameters and no
artificial averaging rules contrived to arrive at a desired
result such as magnetic permeability µ ̸= 1. Nontrivial
magnetic behavior, if present, follows logically from the
method.

• The coarse-grained fields are defined to satisfy
Maxwell’s equations and interface boundary conditions
exactly.

• The method can take advantage of any available an-
alytical, semi-analytical and/or numerical approxima-
tions of the electromagnetic field in a given lattice cell.

• The approximations made and the respective errors
are clearly and explicitly identified and quantified not
only in the asymptotic “big-O” sense but numerically
as well.

• The model of nonlocality resulting from the theory can
be incorporated into existing methods and software for
field simulation. However, this subject is beyond the
scope of the present paper and will be taken up else-
where.



• The theory is minimalistic, with only a few fundamen-
tal premises at its core; see Section II.

Of a very large number of homogenization methods in
the existing literature, two need to be mentioned separately:
one due to its very wide acceptance and the other one due to
its special relevance to the present paper. In one most com-
mon procedure, effective parameters of a metamaterial slab
are “retrieved” from transmission/reflection data (i.e. from
S-parameters). Being essentially an inverse problem, this
parameter retrieval has some inherent ill-posedness that
manifests itself in the multiplicity of solutions, due to the
ambiguity of branches of the inverse trigonometric func-
tions involved. Parameters retrieved for slabs of varying
thickness (let alone shape) are not always consistent. More
fundamentally, the retrieval procedure does not by itself ex-
plain why such consistency should be expected; obviously,
there must be an underlying reason for it. That deeper rea-
son is the definition of parameters as relations between the
(pairs of) coarse-grained fields within the material.
The existing approach most closely related to the

methodology of the present paper is due to the insight of
Smith & Pendry, who suggested different averaging proce-
dures for different fields in the cell [64]. This idea, sub-
sequently elaborated in [42], stems from the analogy with
finite difference schemes on staggered grids. The present
paper, along with [72], provides an expanded and substan-
tially more rigorous foundation for this physical insight, as
well as a much more comprehensive description of the be-
havior of the fields in terms of the extended material tensor
comprising local and nonlocal parameters. The exposition
below starts with a general description of the key concepts,
followed by some technical details, implementation and ex-
amples.
Since material parameters are linear relations between

the coarse-grained fields, a natural plan is to define these
fields unambiguously and then establish a proper linear
mapping between the (H,E) and (B,D) pairs.
The motivation for any effective medium theory is that

the microscopic fields vary too rapidly to be easily de-
scribed and analyzed; one may say that they have “too
many degrees of freedom” (d.o.f.). An obvious idea is to
split them up into coarse-grained (capital letters) and fast
(tilde-letters) components, e.g. b = B + b∼. For reasons
explained in detail below, this splitting should satisfy sev-
eral conditions:

1. By definition, the coarse-grained fields must vary much
less rapidly than the total fields. Nevertheless the for-
mer must approximate the latter, in a certain well de-
fined sense, everywhere in space.

2. The coarse-grained fields must satisfy Maxwell’s equa-
tions and interface boundary conditions.

3. The fast and coarse components must be semi-
decoupled. That is, the fast components may depend
on the coarse ones, but the coarse fields must not de-
pend, or may depend only very weakly, on the fast
ones.

4. There exists a linear relation (map) between the pairs
of coarse-grained fields (E,H) and (D,B) that is inde-
pendent of the incident waves (at least to a given level
of approximation).

The requirements above define not a single method but a
framework from which conceptually similar but not fully
equivalent homogenization methods could potentially be
obtained by making these requirements more specific.

The rationale for each of the conditions above is as fol-
lows. The first one represents, from the physical perspec-
tive, the very essence of homogenization. From a more
mathematical viewpoint of analysis and simulation, one
might accept a weaker requirement that the coarse fields
could be described with much fewer degrees of freedom but
would not necessarily have to vary less rapidly than the
total fields. For example, the field in a periodic structure
can in many cases be described by a very limited number of
Bloch waves with judiciously chosen wave vectors (see e.g.
[57] for some illuminating examples); this fact may be effec-
tively used in semi-analytical and numerical methods such
as Generalized Finite Element Method (GFEM) [2, 3, 53],
Discontinuous Galerkin methods [29], and Flexible Local
Approximation MEthods (FLAME) [68, 69, 71]. Neverthe-
less the focus of this paper is on physical, not numerical,
methods.

Pointwise approximation of the miscorscopic fields by the
coarse ones is in general not feasible and not required, as
rapid local field oscillations due to the resonance effects in
metamaterial cells are definitely of interest. Instead, we as-
sume that the coarse-grained fields are close to the real ones
at the cell boundary, where the fields vary more smoothly.
Inside the cell, the coarse-grained fields are defined by in-
terpolation from the boundary values.

Although the second requirement (coarse-grained fields
satisfying Maxwell’s equations) seems to be self-evident,
many existing methods pay surprisingly little attention to it
and may actually violate it. In particular, coarse fields de-
fined via simple volume averaging do not satisfy Maxwell’s
boundary conditions. We shall return to this important
point later.

The rationale for the third requirement (weak coupling)
is that, if both components were to be coupled strongly,
the two-scale problem would not be any simpler than the
original one involving the total field.

The fourth requirement is for now open-ended and needs
to be made more specific. Let us assume that, for a
given microscopic field (e,d,b), the coarse-grained fields
(E,D,B,H) satisfying conditions 1–3 above have been de-
fined in some way. The central question then is to relate
the pairs of coarse-grained fields. The generalized “mate-
rial parameter” is, mathematically, a linear map L : (E,
H) → (D,B) from the functional space of fields (E, H) to
the functional space of (D,B). The dimensionality of this
map depends on the coarse-grained interpolations chosen.
A high-dimensional linear map could be of use in numerical
procedures but does not offer much physical insight. One
critical question then is whether a good low-dimensional
approximation of this linear map can be found. A formal
linear-algebraic answer to this question is well known: the
best approximation of a given rectangular matrix by a ma-
trix of rank m is via the highest m singular values and
the respective singular vectors (see e.g. [25] or [16] for the
mathematical details). The error of this approximation is
equal to them+1st singular value. One may note a concep-
tual similarity with the well known Principal Component
Analysis (PCA); see e.g. [58] for an elementary tutorial.

Although the PCA perspective is instructive, it does not
provide a direct connection with the physical parameters



such as ϵ or µ. Our objective is still to find new bases in
which the material map L could be approximately “com-
pressed” to a low-dimensional form, but the bases we are
seeking are physical rather than formally algebraic. More
specifically, in this physical basis the first few components
of the coarse-grained fields E,H,D,B are to be their mean
values, and the subsequent components – the deviations
from the mean. Such bases and the respective matrix rep-
resentation of the map L will be called canonical and are
described in Section III in detail.

III Proposed Theory: Details

A Equations

Consider a periodic structure composed of materials that
are assumed to be (i) intrinsically nonmagnetic (which is
true at sufficiently high frequencies [39]); (ii) satisfy a linear
local constitutive relation d = ϵe. For simplicity, we assume
a cubic lattice with cells of size a. Maxwell’s equations for
the microscopic fields are, in the frequency domain and with
the exp(−iωt) phasor convention,

∇× e = iωc−1b, ∇× b = −iωc−1d

As a reminder, the Gaussian system of units is used
throughout the paper, and small letters b, e,d, etc., de-
note the “microscopic” – i.e. true physical – fields that in
general vary rapidly in space (but still on the scale' 10 nm,
so that the intrinsic permittivity is physically meaningful).
Capital letters refer to smoother fields that vary on the
scale coarser than the lattice cell size.

These coarse-grained fields B, H, E, D must be defined
in such a way that the boundary conditions be honored.
Simple cell-averaging does not satisfy this condition [72].
To understand why, consider, say, the “microscopic” mag-
netic field, for simplicity just a function of one coordinate,
b(x), at a material/air interface x = 0. For intrinsically
nonmagnetic media, this field is continuous across the in-
terface, i.e. b(0−) = b(0+). Since the field fluctuates in
the material, there is no reason for its value at x = 0+
to be equal to its cell average over 0 ≤ x ≤ a, except by
coincidence. Thus, if this cell average is used to define the
B field, its normal component at the interface will almost
always be discontinuous, which is nonphysical. Likewise,
if the H field is defined via the cell average, its tangential
component will in general behave in a nonphysical way.

As a rough, “zero-order,” approximation, these nonphys-
ical field jumps across interfaces could be neglected. This
may indeed be possible in the absence of resonances or for
vanishingly small cell sizes. However, neglecting strong field
fluctuations in other cases would eliminate the very reso-
nance effects that we wish to capture.

The general stages of the method are shown in Fig. 1.
The field in the lattice cell is approximated with a super-
position of several modes (e.g. Bloch waves in the periodic
case). Each of these modes is then “coarse grained” by two
complementary interpolation procedures, div-conforming
for the (D,B) fields and curl-conforming for (E,H) (Sec-
tion B). The extended material tensor is then found as a
linear map between these field pairs.

Figure 1: Key parts of the proposed methodology. Two types

of interpolation are used to obtain the coarse-grained fields with

tangential and normal continuity. The electromagnetic field in-

side the cell, with all its microstructure, is approximated as a

superposition of basis modes. Material parameters are linear

relationships between the pairs of coarse-grained fields.

B Coarse-grained Fields: Interpolation and Continuity
Conditions

This is a key point, where we depart from more traditional
methods of field averaging. The coarse-grained E and H
fields are produced from the “microscopic” ones, e and
b, by an interpolation that respects tangential continuity
across all interfaces. The coarse-grained D and B fields are
produced from d and b by another interpolation, one that
preserves normal continuity. For the Compumag commu-
nity, these interpolation procedures are quite natural and
date back to van Welij’s 1985 paper [74] and the seminal
work by Whitney, Nedelec [51, 52], Kotiuga and Bossavit
[6, 7, 37]. Here, this interpolation is considered in a very
different context – nonlocal homogenization.

Tangentially continuous interpolation is effected by vec-
torial functions like the one shown in Fig. 2, in a 2D rendi-
tion for simplicity. The circulation of this function is equal
to one along one edge (in the figure, the vertical edge shared
by two adjacent lattice cells) and zero along all other edges
of the lattice.

To shorten all interpolation-related expressions, in this
section the lattice cell is normalized to the unit cube [0, 1]3,
i.e. a = 1. Then a formal expression for four x-directed
functions w is [74]

w1−4 = 2x̂{yz, (1− y)z, y(1− z), (1− y)(1− z)} (1)

Another eight functions of this kind are obtained by the
cyclic permutation of coordinates in the expression above.
For each lattice cell, there are 12 such interpolating func-
tions altogether (one per edge). Each function wα has unit
circulation along edge α (α = 1, 2, . . . 12) and zero circu-
lations along all other edges. All of them are vectorial in-
terpolating functions, bilinear with respect to the spatial
coordinates. (In [72] these functions were defined in the



Figure 2: (From [72].) A 2D analog of the vectorial inter-
polation function wα (in this case, associated with the central
vertical edge shared by two adjacent cells). Tangential continu-
ity of this function is evident from the arrow plot; its circulation
is equal to one over the central edge and to zero over all other
edges.

cell scaled to [−1, 1]3 rather than to [0, 1]3, and therefore
the algebraic expressions differ.)
The coarse-grained E and H fields can then be repre-

sented by interpolation from the edges into the volume of
the cell as follows:

E =
∑12

α=1
[e]αwα, H =

∑12

α=1
[b]αwα (2)

where [e]α =
∫
α
e · dl is the circulation of the (microscopic)

e-field along edge α; similarly for [b]α. In the calculation
of the circulations, integration along the edge is always as-
sumed to be in the positive direction of the respective co-
ordinate axis.
Now consider the second kind of interpolation that pre-

serves the normal continuity and produces the D,B fields
from d and b. A typical interpolating function (2D rendi-
tion again for simplicity) is shown in Fig. 3. The flux of
this function through a face shared by two adjacent cells is
equal to one; the flux through all other faces is zero. Two
such functions in the x-direction are (as before, for the cell
size normalized to unity) [74]

v1−2 = x̂{x, 1− x}

and another four functions v3−6, in the y- and z-directions,
are expressed similarly. These six functions can be used to
define the coarse-grained D and B fields by interpolation
from the six faces into the volume of the unit cell:

D =
6∑

β=1

[[d]]βvβ , B =
6∑

β=1

[[b]]βvβ , (3)

where [[d]]β =
∫
β
d · dS is the flux of d through face β

(β = 1, 2, . . . , 6); similar for the b field. In the calculation
of fluxes, it is convenient to take the normal to any face
in the positive direction of the respective coordinate axis
(rather than in the outward direction).
The coarse-grained E and H fields so defined have 12 de-

grees of freedom in any given lattice cell – mathematically,
they lie in the 12-dimensional functional space spanned
by functions wα. This space was denoted with Wcurl in
[72]: the ‘W’ honors Whitney [78] and ‘curl’ indicates fields
whose curl is a regular function rather than a general dis-
tribution. This implies, in physical terms, the absence of

Figure 3: (From [72].) A 2D analog of the vectorial interpola-
tion function vβ (in this case, associated with the central vertical
edge). Normal continuity of this function is evident from the ar-
row plot; its flux is equal to one over the central edge and zero
over all other edges.

equivalent surface currents and the tangential continuity of
the fields involved.

Similarly, D and B within any lattice cell lie in the six-
dimensional functional spaceWdiv spanned by functions vβ .
Importantly, it can be shown that the div- and curl-spaces
are compatible in the following sense:

∇×Wcurl ⊂Wdiv (4)

That is, the curl of any function fromWcurl (i.e. the curl of
any coarse-grained field E or H defined by (2)) lies inWdiv.
Because of this compatibility of interpolations, the coarse-
grained fields satisfy Maxwell’s equations exactly [72]:

∇×E = iωc−1B; ∇×H = −iωc−1D (5)

By construction, they also satisfy the proper continuity con-
ditions at all interfaces.

To recap the ideas, Fig. 4 schematically illustrates the
interpolation procedures and the linear-algebraic part of
the proposed method. The simplified 1D rendition shows
only the x axis, the tangential (y, z) components of E,H
and the normal (x) component of D,B. Other components
(not shown) may be discontinuous at cell boundaries and at
material interfaces. The linear operator L relating the pairs
of coarse-grained fields is in general multidimensional, com-
mensurate with the dimensions of the interpolation spaces
chosen. As we shall see, L has a 6 × 6 (or smaller) ma-
trix block in a suitable “canonical” (hierarchical) basis; this
block relates the field averages of (D,B) to the field aver-
ages of (E,H). The remainder of the matrix relates the
field averages to field variations over the cell and can be
viewed as a manifestation of nonlocality (see Section IV for
further details).

C Approximating Functions

The actual microscopic fields in the material are in general
not known and need to be approximated by introducing
suitable basis functions [72]. Examples include Bloch waves
in the periodic case, plane waves, cylindrical or spherical
harmonics, etc. For a non-vanishing cell size, the field has
an infinite number of degrees of freedom; thus, as a matter
of principle, its representation in a finite basis is approxi-
mate. Nevertheless the relevant behavior of the fields can
be captured very well by relatively small bases [57]. By
expanding the bases, one can increase the accuracy of the



Figure 4: (From [73]). A linear relation between the coarse-
grained fields. E,H are interpolated to ensure tangential conti-
nuity; D,B are normally continuous. 1D rendition for simplicity.
In a canonical basis, the multidimensional operator L contains
a 6× 6 submatrix of local electrodynamic parameters.

representation of the fields, at the expense of higher com-
plexity. A small number of degrees of freedom corresponds
to local material parameters, a moderately higher number
– to nonlocal ones, and a large number falls under the um-
brella of numerical simulation. This viewpoint unifies local,
nonlocal and numerical treatment of electromagnetic char-
acteristics of metamaterials.
In the periodic case, the most natural basis modes are

Bloch waves traveling in different directions (the approxi-
mation accuracy in general depends on the number of basis
modes chosen). If the structure is not necessarily periodic,
one may note that tangential components of the electric or,
alternatively, magnetic field on the cell boundary define the
field inside the cell uniquely, except for the special cases of
interior resonances. To specify the basis, it is thus sufficient
to consider the boundary values in lieu of the values inside
of the cell. A natural set of approximating functions can
thus be obtained by setting the tangential components of
E or H on the cell boundary as low order polynomials and
using that as Dirichlet conditions for Maxwell’s equations
within the cell. This alternative to Bloch modes will be
explored in more detail in subsequent communications.
More formally, let the electromagnetic field be approxi-

mated as a linear combination of some basis waves (modes)
ψα [72]:

Ψeh =
∑

α
cαψ

eh
α + δeh; Ψdb =

∑
α
cαψ

db
α + δdb (6)

In the general case, Ψ and all ψα are six-component vector
comprising both microscopic fields; e.g. Ψeh ≡ {Ψe,Ψh},
etc. The δs are approximation errors that will tend to de-
crease as more modes are included in the expansion. For
simplicity of further analysis, we assume that the chosen set
of modes is rich enough, so that the approximation errors
are small.

D The Hierarchical (“Canonical”) Basis

By construction of the coarse-grained interpolants, the E
and H fields, taken together within a lattice cell, lie in a
24-dimensional linear space (12 edge-based degrees of free-
dom for each field), while the D and B fields together lie

in a 12-dimensional space (six face-based d.o.f. for each
field). Therefore a linear relationship between these pairs of
fields is, technically, a map from a complex 24-dimensional
space to a 12-dimensional one. For a given pair of bases in
these spaces, this map is described by a 24 × 12 complex
matrix and can be viewed as a generalized material ten-
sor. However, there is an important caveat and a necessary
amendment.

The caveat is that there exist linear relationships between
the above-mentioned degrees of freedom that follow directly
from Maxwell’s equations, regardless of the content of the
lattice cell. For example, Faraday’s law relates the edge
circulations of the electric field over any face of the cell and
the magnetic flux through the same face.

Such Maxwell dependencies need to be eliminated before
the generalized material tensor is sought. This could be
done in a formal linear-algebraic way, but our preference
is to stay closely connected to the physics. With this in
mind, a natural, “canonical,” set of degrees of freedom is
as follows:

Boundary averages of the coarse fields, i.e. ⟨E ×
n⟩∂Ω, ⟨H× n⟩∂Ω, ⟨n(D · n)⟩∂Ω, ⟨n(B · n)⟩∂Ω. To reit-
erate, it is the tangential components of E, H and the
normal components of D, B that are being averaged.
The coarse-grained fields inside the cell are produced
by low-order Whitney-like interpolation of the bound-
ary values, and it is easier to use boundary averages of
these fields as a proxy for their volume averages. There
are six d.o.f. in this category altogether for the (E,H)
pair (three Cartesian components for each mean field)
and six d.o.f. for the (D,B) pair.

Boundary averages of a subset of first partial
derivatives of (E,H): ⟨∂Ex/∂y⟩, ⟨∂Ey/∂z⟩,
⟨∂Ez/∂x⟩, and similarly for H.

Boundary averages of a subset of second partial
derivatives of (E,H).

Several comments are in order with regard to this choice of
d.o.f.

1. We are generally interested in expressing the mean val-
ues of (D,B), but not their derivatives, in terms of
(E,H) and (if necessary) of the variations of (E,H)
within the cell. Hence the derivatives of (E,H) are
included into consideration, while those of (D,B) do
not have to be.

2. The d.o.f. cannot simultaneously contain, say,
⟨∂Ex/∂y⟩ and ⟨∂Ey/∂x⟩, because their difference con-
stitutes ⟨∇×E⟩z and is directly related to Bz via Fara-
day’s law regardless of the content of the lattice cell.
However, it is possible to use linear combinations in-
dependent of the curl and symmetrize the derivatives:
⟨∂Ex/∂y + ∂Ey/∂x⟩, etc.

3. Considerations regarding the second derivatives are
similar but more involved. In particular, the Lapla-
cian of the field on the cell boundary is related, via
the wave equation, to the field itself. Thus including
all second derivatives in the set of d.o.f. is in general
redundant.

4. It is clear from the above that the choice of the addi-
tional “nonlocal” d.o.f. is not unique. Different choices



will lead to methods that are conceptually similar but
differ in the particular ways of representing and quanti-
fying nonlocality. Thus we have a spectrum of methods
– a framework – rather than a single method.

5. Some d.o.f. may vanish due to symmetry. For example,
if the lattice cell is symmetric with respect to x, the
x-derivatives of the fields need not be included in the
basis set.

E The Generalized Material Tensor

We are now in a position to describe the algorithmic stages
for obtaining the generalized material tensor:

1. Choose a set of N approximating modes and compute
these modes using any analytical, semi-analytical or
numerical tools available.

2. Choose a set of MEH and MDB degrees of freedom
for the (E,H) and (D,B) pairs, respectively, as de-
scribed in the previous subsection. The d.o.f. will in-
clude the mean values of the tangential components of
E,H and of the normal components of D,B. In addi-
tion, the mean values of some derivatives of E,H may
be included. By increasing the number of d.o.f.s, one
trades higher accuracy for a greater level of nonlocality
in the characterization of the material. Typically for
3D problems, MDB = 6 (three mean values for each of
the two fields) but MEH ≥ 6 (nonlocal d.o.f.s may be
included in addition to the mean values).

3. For each mode m = 1, 2, . . .M , compute its respective
degrees of freedom (the mean boundary values of the
tangential components of E,H for this mode, etc.) As-
semble the d.o.f.s for the E,H fields into the mth col-
umn of matrix WEH and the d.o.f.s for the D,B fields
into the mth column of matrix WDB . Ultimately, ma-
trix WEH is of dimensionMEH ×N and matrix WDB

is MDB ×N (typically 3×N).

4. Solve
ηWEH l.s.

= WDB (7)

for the generalized material tensor η; ‘l.s.’ refers to the
least squares solution:

η = WDBWEH+ (8)

where ‘+’ indicates the Moore-Penrose pseudoinverse
[25]. However, if the number of d.o.f.sMEH is equal to
the number of basis modes N , the pseudoinverse turns
into a regular inverse.

In contrast with with the procedure published earlier [72],
the matrices in (7) are not position-dependent. Another
beneficial difference with [72] is that pseudoinversion is no
longer needed if WEH is a square matrix.
System (7) defines the generalized material tensor. The

structure of this system is shown in Fig. 5. The matrix in
the right hand side has, in the general 3D case, six rows cor-
responding to the six local d.o.f. ⟨Dx,y,z⟩∂Ω and ⟨Bx,y,z⟩∂Ω.
Each column of this matrix corresponds to a basis mode.
The entries of the matrix are the mean boundary values
of the D and B interpolants of the respective mode. The
EH-matrix on the left is analogous, except that it may also
include nonlocal d.o.f. symbolically indicated as ∂E, ∂H;

Figure 5: The structure of matrix equations for the material
tensor. See text for details.

the number of these nonlocal d.o.f. may vary depending
on the desired accuracy of the material model. Finally, the
generalized material tensor on the left contains a leading
6× 6 block with the standard electromagnetic parameters:
the ϵ and µ tensors as well as magnetoelectric coupling pa-
rameters ξ and ζ (also in general tensorial). The remaining
block, indicated symbolically as ∂E, ∂H → D,B is novel; it
quantifies spatial dispersion as the dependence of fields D
and B on the variations of E and H within the cell rather
than on their mean values.

F Approximation Errors

With the material tensor rigorously defined, we are in a
position to identify clearly the approximations made and
the respective errors.

Out-of-the-basis errors δ in (6) is due to the fact that
the field in the lattice cell cannot be exactly repre-
sented by a finite number of modes.

In-the-basis error γ stems from the least squares fit of
the material relation (7). This error can be quantified
as

γ = ∥WDB − ηWEH∥/∥WDB∥ (9)

where ∥ · ∥ is a suitable matrix norm.

There is a trade-off between the two types of error. If a very
large set of basis modes in the field expansion is taken, the
field can be represented very accurately, and the residual
“out-of-the-basis” field can be very small. However, the “in-
the-basis” error will tend to increase: it is more difficult to
characterize a larger number of modes simultaneously with
the same parameter tensor (unless the set of degrees of free-
dom is also expanded to include a larger number of nonlo-
cal variables). Conversely, if the number of basis modes is
smaller, the “in-the-basis” error may decrease (for example,
six modes can in general be represented uniquely by a 6×6
tensor containing only local parameters, but seven or more
modes in general cannot). However, for a smaller number
of modes the out-of-the-basis error can be expected to be
higher, unless one is seeking a “customized” set of material
parameters tailored just to this specific set of modes.

These two types of error are not exclusive to the pro-
posed methodology. It can be argued that they are present
in any rigorous homogenization method, even if not explic-
itly specified or discussed. Indeed, any serious method must
rely on some representation of the field within a lattice cell,
and any such representation is by necessity approximate,
unless the cell size is vanishingly small. Likewise, the set of
material parameters, however defined and computed, must
apply to a large variety of excitation conditions and to the



respective field distributions; this again can only be approx-
imate for nonvanishing cell sizes.
In the proposed theory, the errors are clearly and explic-

itly identified and quantified not only in the asymptotic
“big-O” sense but also numerically; see Section V.

IV “Spatial Dispersion:” the Wheat and the
Chaff

The goal of this section is to recap the notions of nonlocality
/ spatial dispersion for natural materials and to see to what
extent these notions apply to metamaterials. For brevity of
notation, this section deals only with the (e,d) pair of fields,
but similar considerations apply to constitutive relationship
between all fields.
Consider first an infinite homogeneous medium with a

nonlocal spatial response of the form (in the frequency do-
main)

d(r) =

∫
r′
ϵ(r− r′) e(r′)dr′

Dependence of all variables on frequency ω is suppressed to
shorten the notation. The integral is taken over the whole
space. The Fourier transform simplifies this relationship
drastically by turning convolution into multiplication:

d(k) = ϵ(k) e(k)

However, if the medium is not homogeneous in the whole
space, the translational invariance is broken and the nonlo-
cal convolutional response becomes a function of two posi-
tion vectors independently, rather than just of their differ-
ence [1, 43]:

d(r) =

∫
ϵ(r, r′) e(r′)dr′

This expression is no longer simplified by the Fourier trans-
form, and the permittivity can no longer be expressed as a
function of a single k-vector in Fourier space.
Since metamaterials are obviously always finite in spa-

tial extent, spatial dispersion in them, strictly speaking,
cannot be described by the dependence of effective mate-
rial parameters (however defined) on a single k-vector. If
this limitation is ignored, the practical result is likely to be
“smearing” of material characteristics at the material-air
interfaces and violation of the Maxwell boundary condi-
tions. This problem can be alleviated by introducing addi-
tional surface currents, but separate constitutive relations
for such currents are then needed.
Still, in many publications material parameters are de-

rived for a single wave, and then dependence of these pa-
rameters on the wavevector k is investigated. This ap-
proach raises further questions, in addition to the lack
of translational invariance noted above. First, fundamen-
tally, electromagnetic parameters cannot be defined only
from waves propagating in the bulk [72]. This is so be-
cause a gauging transformation may change the relation-
ships between the fields while leaving Maxwell’s equations
unchanged [72, 75]. As a simple example, given the mi-
croscopic physical fields e and b and the auxiliary fields d
and h, one observes that Maxwell’s equations are invariant
with respect to the transformation h′ = h/2, d′ = d/2,
µ′ = 2µ, ϵ′ = ϵ/2, even though the material parameters
have changed by a factor of two. It is through the bound-
ary conditions on the material-air (or material / dielectric)
interfaces that the d and h fields are gauged uniquely.

Second, a natural definition of material parameters for
a single Bloch wave propagating in the bulk of an intrinsi-
cally nonmagnetic metamaterial yields only a trivial result
for the effective magnetic permeability, and hence artificial
magnetism cannot be explained. To elaborate, consider an
x-polarized Bloch wave traveling in the z direction (e.g.
[70, 69]):

eB(z) = EPER(z) exp(iKBz)x̂ (10)

iωc−1bB(z) = ŷ(E′
PER(z)+ iKBEPER(z)) exp(iKBz) (11)

Here “PER” indicates a factor periodic over the cell; KB

is the Bloch wavenumber. For this Bloch wave to mimic a
plane wave in an equivalent effective medium, one has to
have the dispersion relation

ω2µeffϵeff = K2
B (12)

and the wave impedance

(µeff/ϵeff)
1
2 = ⟨eB⟩/⟨bB⟩ = ω/KB (13)

where the angle brackets denote an averaging procedure
that eliminates the periodic function E′

PER and leaves only
the dc component in EPER. From the two conditions above,
it follows immediately that µeff = 1.

Third, even if all the complications above are somehow
circumvented, a single Bloch or plane wave still does not
carry enough information identifying the whole 6 × 6 ma-
terial parameter matrix, so the problem is badly underde-
termined. Recognizing that, Fietz & Shvets [21] consider
a collection of test waves that allow one to set up a sys-
tem of equations for all parameters. A critique of these
approaches can be found in [44] but is not directly relevant
in the context of the present paper.

All of this is not to say that “spatial dispersion” is an in-
valid notion for metamaterials. To the contrary, the theory
proposed in this paper does lead to its precise and mathe-
matically quantifiable definition. The message here is that
“spatial dispersion” is a loaded expression that should be
used with extreme care and with accurate definitions; it
cannot be blindly transplanted from the analysis of nat-
ural materials to metamaterials. For natural media, the
material parameters are extraneous to the Maxwell model
(they come from measurements supported by analytical and
quantum mechanical considerations), so a reasonable par-
ticular form of these parameters such as ϵ = ϵ(k) can just
be postulated. In contrast, the Maxwell model for meta-
materials (with given intrinsic characteristics of all natu-
ral components involved) is completely self-contained and
does not include any extraneous parameters. “Spatial dis-
persion” in metamaterials will remain a heuristic notion or
even a figure of speech unless and until the effective pa-
rameters are clearly and rigorously defined. This, in turn,
requires a precise definition of the coarse-grained fields.

V Application Examples

A A Single Inclusion with Interior Resonances

This example involves high-permittivity inclusions with
strong resonance effects. The setup and parameters are
very similar to the ones in [19, 20], where a special asymp-
totic method was developed and additional adjustable pa-
rameters were needed [20]. The methodology of the present
paper handles this case with ease and without any addi-
tional assumptions or parameters.



Figure 6: Re(H) in the vicinity of a slab with resonant inclu-

sions; p-mode. Radius of the inclusions relative to the cell size

r/a = 0.25; their permittivity ϵincl = 200 + 5i (as in [20]). Left:

pass band, λ/a = 11; right: bandgap, λ/a = 9; inset: zoom-in

on a few cells.

Figure 7: Transmission coefficient (with respect to H) of a five-

layer slab as a function of the vacuum wavelength (top: absolute

value, bottom: phase). r/a = 0.25; ϵincl = 200 + 5i. Triangles:

direct finite difference simulation [69]; lines: slab with effective

parameters. Normal incidence.

The lattice cell contains a high-permittivity cylindrical
inclusion (ϵincl = 200 + 5i); its radius relative to the cell
size is r/a = 0.25; the normalized vacuum wavelength λ/a
varies from 5 to 12. Most interesting is the H-mode (p-
mode) where the electric field cuts across the cylinders and
strong resonances can be induced.

The effective medium theory developed here agrees very
well with “brute force” finite difference simulations where
all inclusions are represented directly. As in [72], propaga-
tion of waves through a homogeneous “effective parameter”
slab is compared with the numerical simulation of this prop-
agation through the actual metamaterial. High-order finite
difference “FLAME” schemes ([68, 69, 71] were used for the
numerical simulation. Fig. 6 illustrates the distribution of
the real part of the magnetic field for normal incidence in
the pass band, λ/a = 11, and in the bandgap, λ/a = 9.

Fig. 7 demonstrates that the transmission coefficient for
the slab with effective parameters is very close, both in the
absolute value and phase, to the “true” coefficient from the
accurate finite difference simulation.

The in-the-basis error γ (9) is below 10% for λ/a ' 5

Figure 8: In-the-basis error γ for the metamaterial with reso-

nant inclusions.

Figure 9: Effective parameters of the metamaterial with reso-

nant inclusions.

and under 5% for λ/a ' 9 (Fig. 8).
The effective parameters plotted in Fig. 9 exhibit a fairly

weak electric resonance near λ/a ∼ 5.5 and a strong mag-
netic resonance around λ/a ∼ 9. As should be expected by
symmetry considerations, the magnetoelectric coupling in
this example is zero (numerically, it is at the roundoff error
level).

B A Particle Trimer with Interior Resonances

A second example involves a trimer of nanoparticles with
the same high value of the dielectric permittivity as before,
ϵ = 200 + 5i, but with a twice smaller radius r/a = 0.125.
The H-mode (TE) is again of greater interest due to the
interior resonances in the trimer. The basis functions used
in the analysis are eight Bloch waves traveling in the direc-
tions ϕm = mπ/4 (m = 0, 1, . . . , 7) relative to the x-axis.
Two such modes, for λ/a = 4.6 and 8, with αm = π/4 are
displayed in Fig. 10 as an example.

The choice of the nonlocal degrees of freedom forH comes
from the following considerations. The x- and y-derivatives
of H are proportional to Dy and Dx and hence (on the
boundary) to Ey and Ex, respectively. These d.o.f. would
therefore be redundant because the electric field is already
included in the local set of d.o.f. With regard to second
derivatives, including both ∂2H/∂x2 and ∂2H/∂y2 would
be redundant, as the wave equation on the boundary makes
the sum of these derivatives proportional to H itself; but



Figure 10: Examples of Bloch modes in a nanoparticle trimer;

the real part of H shown. r/a = 0.125; ϵincl = 200 + 5i for all

three particles. Left: λ/a = 4.6; right: λ/a = 8. The jagged

contour lines are only an artifact of grid-based drawing; the

FLAME solution [68, 69, 71] itself is very accurate.

Figure 11: Diamonds: in-the-basis error γ for the particle

trimer. Triangles: the matrix norm of column 4 of the mate-

rial tensor. Circles: same for column 5. (Columns 4 and 5

characterize nonlocal response.)

H is already included as a local d.o.f.

With all this in mind, two nonlocal d.o.f. used for ho-
mogenization were ∂2H/∂x∂y and (∂2H/∂x2 − ∂2H/∂y2).
The material tensor in this example is then represented by
a 3×5 matrix. Its rows correspond to Dx, Dy and B and its
columns 1 through 3 – to Ex, Ey, H. Columns 4 and 5 cor-
respond to the two nonlocal d.o.f. defined above. Note that
the use of second derivatives as d.o.f. implies second-order
Whitney-like interpolation.

It is instructive to examine the plots of local effective pa-
rameters in conjunction with the in-the-basis error γ and
with the nonlocal parameters (Figs. 11, 12). First, γ in-
creases sharply in the bandgap (shaded areas in the figures).
This is to be expected because the propagating Bloch waves,
used as basis modes in the homogenization procedure, ap-
proximate the fields in the bandgap very poorly. This could
be rectified by replacing the traveling waves with evanes-
cent ones in the basis, but that is not our primary interest
here.

The magnitude of γ is also high (∼ 0.4) for λ/a ∼ 3. This
implies that the effective parameters for such short wave-
lengths may be used as qualitative measures at best. The
accuracy can be improved by expanding the set of nonlocal
d.o.f.; in other words, accuracy can be traded for the level
of nonlocality in the material model adopted.

The imaginary parts of ϵxx, ϵyy and µ are very close to
zero outside the bandgap. Within the gap, their values
(including small negative ones) are unreliable because the

Figure 12: Effective parameters of the particle trimer. Solid

lines: real parts. Dashed lines: imaginary parts. Diamonds:

ϵxx; triangles: ϵyy; squares: µ.

error γ is high. In the wavelength ranges where γ is low
or moderate, the local and nonlocal parameters together
provide a meaningful characterization of the metamaterial.
In particular, the level of spatial dispersion is quantified by
the matrix norms of the fourth and fifth columns of the ex-
tended material tensor (Fig. 11). From the plots, one may
conclude that a purely local model is qualitatively correct
for λ/a ' 4 (but outside the bandgap) and quantitatively
correct for λ/a ' 7. To turn qualitative analysis into quan-
titative (say, for λ/a = 3.5), one needs reliable tools of elec-
trodynamic simulation with nonlocality taken into account.
Such tools – currently in their initial stages of development
– will be discussed elsewhere.

VI Future Work

The theory proposed here suggests a research program that
may progress in several related but diverse directions.

The choice of basis functions. For the sake of brevity
and to keep the analysis in focus, the paper deals al-
most exclusively with Bloch modes as approximating
functions for the field in the cell. Propagating Bloch
waves are a natural choice for periodic media in the
bulk but not for random media and not necessarily in
the vicinity of material interfaces. Therefore other pos-
sibilities need to be explored. One option is to define
the tangential components of the electric or magnetic
field on the cell boundary as low order polynomials
and to compute the respective basis functions satisfy-
ing these boundary conditions. (It is tacitly assumed
that the cell boundary does not cut through the mi-
crostructure of the cell; otherwise polynomials would
not be appropriate.)

The choice of nonlocal degrees of freedom is criti-
cal. In the paper, it is made on physical grounds –
avoiding redundancy and linear dependence of the
local d.o.f. It would be highly desirable to put this on
a more solid mathematical ground.

Numerical methods for nonlocal models. Weak non-
locality will result either in differential equations of
higher order or, alternatively and preferably, in inte-
grodifferential equations. In the latter case, the inte-



gral kernels will have a small support if the nonlocal-
ity is weak, so the computational cost will be reason-
able; however, new computational methods will still be
needed to handle such problems.

Energy-based approaches. The methodology of this pa-
per defines effective parameters by relating face fluxes
of (d,b) to the edge circulations of (e,h). Alterna-
tively, one can define these parameters by equating
the energies on the microscopic and coarse-grained lev-
els. This idea, suggested to me by several colleagues
[24, 30, 59], is closely related to Hiptmair’s work on
discrete Hodge operators [28] but has not yet been im-
plemented, except for a toy 1D problem.

Random media. The methodology has been applied only
to periodic structures so far. The key ideas should
remain valid for random media as well, but many el-
ements of the procedure will need to be worked out
afresh.

Mathematical foundation. The material in this paper is
presented at the “engineering level” of rigor. A more
formal mathematical foundation, with a functional-
analytic setup and convergence proofs, would definitely
be desirable and could be based on the theory of dis-
crete Hodge operators [28]. As always, convergence
properties of a model depend on its consistency and
stability. It is fairly straightforward to demonstrate
that the consistency error of the proposed homogeniza-
tion model corresponds to the approximation accuracy
of the chosen basis set. Stability is more difficult to
establish rigorously.

Applications. In photonics, there are abundant applica-
tions of effective parameter models for metamaterials,
particle and hole [26] arrays. Beyond photonics, ho-
mogenization of laminated stator cores of electric ma-
chines springs to mind [13, 27]. The method can be ex-
tended beyond electromagnetics as well, to acoustics,
heat transfer and possibly to problems of elasticity.

Time will tell which of these directions are more fruitful.

VII Conclusion

The proposed homogenization theory unifies local and non-
local material parameters in an extended tensor. The lead-
ing block (6× 6 in the general case of 3D electrodynamics)
of this tensor relates the mean values of the coarse-grained
(E,H) and (D,B) pairs and contains the standard set of
parameters: the permittivity and permeability tensors, as
well as the magnetoelectric coupling if present. The nonlo-
cal block of the extended tensor relates the mean values of
(D,B) to the variations / derivatives of E,H. By expand-
ing the set of nonlocal degrees of freedom, one can increase
the accuracy of the material model at the expense of its
higher complexity (higher level of nonlocality). In princi-
ple, there is a quasi-continuous spectrum of models, from
local ones with a small number of d.o.f. (up to 36) to non-
local ones and to fully numerical ones (a very large number
of d.o.f. for the latter). This point of view unifies local,
nonlocal and numerical treatment of metamaterials.
The consolidation of local and nonlocal parameters in the

generalized tensor suggests that all these parameters are in-
terrelated. This puts into a proper perspective, for exam-

ple, the recent experimental work of Gompf et al. showing
that spatial dispersion can mimic chirality [23, 26].

The theory of this paper stems from a small number of
fundamental principles – most importantly, that the coarse-
grained fields must satisfy Maxwell’s equations and bound-
ary conditions and that material parameters are, by def-
inition, linear maps between the (pairs of) coarse-grained
fields. Consequently, the E and H fields are produced by
an interpolation that preserves tangential continuity (see
Section III and [72]), while for D and B normal continuity
is maintained.

Two types of approximation errors are clearly identified.
(These errors are not exclusive to the proposed methodol-
ogy and are present in any rigorous homogenization proce-
dure.) The first type (“out-of-the-basis” error) is due to the
fact that the field in a finite-size lattice cell has infinitely
many degrees of freedom and cannot be exactly represented
by a finite number of modes. The second type (“in-the-
basis” error) is due to the fact that a large number of dif-
ferent modes cannot in general conform to a smaller number
of material parameters. Ways of reducing these errors are
identified.

The proposed theory does not involve any heuristic as-
sumptions or artificial averaging rules. The effective param-
eters are defined directly via field analysis in the lattice cell,
in contrast with methods where these parameters are ob-
tained from reflection/transmission data or other indirect
considerations. Nontrivial magnetic behavior, if present,
follows logically from the method. Illustrative examples of
resonant structures are presented.
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