
Technical Article 
 
Remarks on optimal design methods in electromagnetics  
 
Abstract — After various decades impressively characterised by 
the development of tools for field analysis, recent research in 
electromagnetics has been devoted to the development of tools for 
field synthesis. An insight on the main methodological 
streamlines observed in the literature is proposed; in particular, 
it is shown that algorithms of evolutionary computing could be 
interpreted in a unified way, because the same basic strategy 
stays behind most of them.  Attention is focused on both single-
objective and multi-objective optimisation, with special emphasis 
on optimal shape design problems; finite element analysis (FEA) 
is assumed to be the standard way to solve the direct field 
problem. After a bibliographic review of old and new trends, two 
methods are deepened: a non-parametric moving-boundary 
method, and an inferential scheme based on Bayes theorem, 
respectively. The former makes it possible to explore an infinite-
dimensional design space, while the latter generates a distribution 
of probability yielding optimal solutions with given degree of 
certainty.  
 

I. INTRODUCTION 
 
Computational electromagnetism has so advanced, since the 
advent of digital computers and thanks to the development of 
numerical methods, that in recent years it has been possible to 
integrate the analysis of electromagnetic field with 
optimisation techniques, so moving from computer-aided 
design (CAD) to automated optimal design (AOD) of systems 
and devices. Nowadays, in fact, the association of low-price 
and high-speed computers with numerical libraries makes it 
possible to identify solutions to inverse problems of various 
kind and complexity, so offering scientists and engineers the 
possibility of implementing AOD. 
Optimisation of two or more conflicting design criteria – or 
objectives – is a more recent subject of research. Its 
significance, not yet completely explored, shows to be great, 
and many different approaches are still being developed. 
Papers in the field appear, regularly and quite frequently, in a 
number of journals; books and monographs have been 
published and there already exist symposia and workshops, 
dedicated to this topic and its manifold applications. Several 
approaches to the topic have been devised: modern heuristic 
methods, like genetic or evolutionary algorithms, as well as 
statistical methods have been gradually conquering a 
paramount role beside the more traditional gradient-based 
methods. 
Nevertheless, the topic is a long way from being exhausted, 
because some theoretically-unsolved questions stand still, with 
the related limits in practical applications. For instance, natural 
and artificial evolution are opposing paradigms. In fact, in a 
natural system the goal of species evolution is unknown; in 
contrast, in a computational system, where the minimisation 
algorithm mimicks an evolution strategy, the objective 
functions are deterministically defined a priori, and this makes 
a paradox. It is not a merely theoretical difficult: in practice, 
given a mathematical model of the system considered, a 
preference function might be composed of e.g. a known term 
assigned a priori plus an unknown correcting term. If the latter 
could vary in a self-adaptive way, the intrinsic tendency of the 
modelled system to evolve would be exploited: a variational 
principle, in its essence. 
 
 

II. FROM DETERMINISTIC TO EVOLUTIONARY COMPUTING: 
REDUCTIO AD UNUM ? 

 
For a long time, deterministic methods of minimisation like 
e.g. steepest descent, conjugate gradient, quasi-Newton, have 
been a standard tool to solve local optimization problems. 
However, the lack of standard conditions for existence and 
uniqueness of the solution, like convexity and differentiability 
of objectives and constraints, makes it impossible to deduce 
the global minimum from the knowledge of the local 
behaviour of the objective function. 
It was argued (Gottvald et al. 1992) that if deterministic 
methods are able to give occasionally good results, this 
happens for a paradoxical reason: the violation of convexity, 
smoothness and accuracy requirements makes the optimization 
procedure a kind of random numerical process. Actually, the 
slope vector, which must be updated at each iteration to 
identify the search direction, should be considered as a random 
quantity due to the inaccuracies introduced during the 
computation of the function and its gradient. 
For instance, inaccuracy in computing the gradient of a 
numerically ill-conditioned objective function might originate 
a false minimum; in this respect, the Loney solenoid optimal 
design is a classical benchmark (Di Barba et al. 1995). 
This rationale put the ground to move from deterministic to 
derivative-free non-deterministic methods of minimization, in 
which classical conditions of convexity and differentiability 
are replaced with principles of probability and statistics.  
The basic mathematical structure governing the evolution of a 
random vector in the nv-dimensional search space is a 
probability density function (PDF) 
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where mi and di are mean value and dispersion of a random 
sample xi , respectively. In (1) the choice of the Gaussian law 
is due to the natura non facit saltus principle: in fact, in 
natural evolution small changes happen more frequently than 
bigger ones. 
A primary advantage of evolutionary computing is its 
conceptual simplicity; in fact, following the Darwinian 
language, a very basic pseudo-code could be cast as follows:  
 
i)  initialize a population of individuals; 
ii) randomly vary individuals; 
iii) evaluate fitness of each individual; 
iv)  apply selection; 
v)  if the terminating criterion is fulfilled 

then stop, else go to step ii). 
 
The algorithm consists of initialization, which may be a purely 
random sampling of feasible solutions (step i), followed by 



variation (step ii), and selection (step iv) based on a preference 
function (the fitness, step iii). The preference function 
attributes a numerical value to each feasible solution, in such a 
way that two competing solutions can be hierarchically 
ranked. New solutions are generated by randomly varying 
existing solutions according to the given PDF; the random 
variation may include mutation (as in evolution strategies) and 
recombination (like in genetic algorithms). Selection is applied 
to determine which solutions will be maintained into the next 
generation. Unlike deterministic methods, gradient 
information is not required. Over iterations of random 
variation and selection, the population can be made to 
converge to the optimal solution (step v).  
It can be noted that the basic algorithm behind evolutionary 
computing is always the same. According to (Fogel 1999), the 
procedure generating a new solution may be written as the 
difference equation 
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with initial solution ( ) 00 xx = ; in (3), x(tk) is the population at 
time tk , while v is an operator of random variation driven by 
the PDF, and s is the selection operator driven by the fitness. 
Several representations of a population are possible, and many 
variation operators as well as selection operators can be 
defined: in the literature, this gave rise to very many 
declinations of the same basic algorithm, under different 
names and in different contexts. The effectiveness of an 
evolutionary algorithm depends on the interdependence 
between the operators s and v applied to a given representation 
x of the evolving population, with initialization x0 . In practice, 
this interdependence gives freedom to the designer to tailor a 
specific evolutionary approach for a particular problem of 
interest. On one hand, this feature gives an extra advantage 
over deterministic optimisation methods; on the other hand, 
however, the risk of reinventing already known methods is 
definitely high. 
In particular, the same basic algorithm could be interpreted in 
several ways; biology-oriented and statistics-oriented 
interpretations, which have become popular, are summarized 
in Tables I and II, respectively.  
  

TABLE I. BIOLOGICAL INTERPRETATION OF EVOLUTIONARY COMPUTING. 
m vector parent individual 
x vector outspring individual 
updating of vector m selection 
optimisation trajectory species evolution 

 
According to the biological interpretation, in evolution 
strategy algorithms, the role of the mutation operator in terms 
of selection, survival, death of individuals is paramount, while 
in genetic algorithms, the cross-over operator is paramount. 
 

TABLE II. STATISTICAL INTERPRETATION OF EVOLUTIONARY COMPUTING. 
m vector mean value of the random set 
d vector dispersion of the random set 
Gaussian law probability density function 
optimisation trajectory stochastic process in the search space 

 
According to the statistical interpretation, the following 
remark can be put forward: since the accuracy of a Monte 
Carlo integration depends on the number of statistical samples, 
it comes out that the convergence of the relevant optimization 
algorithm loosely depends on the number of variables. 
Considering both interpretations, seemingly independent 
methods might be unified, possibly originating more powerful 
schemes of global optimisation, for a certain class of 

problems. This idea is not in contrast with the no-free lunch 
theorem (Wolpert and Macready 1997), sometimes over-
emphasized a result. In fact, the simple conclusion of the no-
free-lunch theorem is that there is no best evolutionary 
algorithm, that will always outperform all the other 
algorithms, regardless of the given problem. This result has 
originated a great deal of controversy in the area of 
evolutionary computing, and some misunderstanding too. In 
the nineties of the last century, there has been a considerable 
effort in finding the best set of operators and ‘tuning knobs’ of 
evolutionary algorithms. In genetic algorithm area, for 
instance, these efforts have involved the probabilities of 
crossover and mutation operators, the representation of a 
population, its size and so forth. In particular, most of this 
research has stimulated numerical experiments on benchmark 
functions. 
However, the no-free-lunch theorem essentially states that 
conclusions based just on a set of numerical trials are limited 
only to the benchmark functions considered. In practice, 
design engineers are only interested in a subset of problems; 
consistent with the theorem, it makes sense to select an 
algorithm which outperforms other algorithms for a particular 
class of problems (Baritompa et al. 2005).  
 
 

III. SINGLE-OBJECTIVE OPTIMAL DESIGN: 
EARLY CONTRIBUTIONS 

 
Most of the fundamental and basic optimisation work was 
performed in the last decades of last century; it is important to 
make this point clear, because several ideas come back today 
under another name. Sometimes, it seems that the 
electromagnetic community starts working again on known 
results. 
Probably, the first coupling of finite-element method with 
non-linear mathematical programming was implemented in 
(Shmit 1960) for optimal design of structures. Since then, 
much research work has been devoted to solve problems of 
inverse mechanics. The impact of modern optimisation theory 
on electromagnetism came later. Among the pioneering 
contributions, it is worth mentioning (Marrocco and Pironneau 
1978) who developed the optimum design of an iron-cored 
electromagnet with nodal finite elements for field analysis. In 
(Weeber and Hoole 1993) a review of structural design 
optimisation as a source for developments in electromagnetic 
is presented. 
After (Tikhonov and Arsenin 1974) the importance of 
regularization methods to solve ill-posed inverse problems has 
been recognized also in electromagnetics. For instance, in 
(Sikora and Palka 1981) and (Adamiak 1981) regularization is 
used to solve the Fredholm equation of the first kind 
connected with the synthesis of magnetic fields. In (Rudnicki 
1985) the choice of the regularisation parameter, which is a 
critical matter in the implementation of the method, is 
discussed. In turn, the singular-value decomposition method 
has been used e.g. in (Sikora et al. 1986) for magnetic filed 
synthesis: the discretisation of the Fredholm equation of the 
second kind leads to a rectangular system of equations solved 
by means of the least-square method. 
In turn, when the iterative process towards the objective 
function minimum relies on a gradient-based method, 
sensitivity analysis is the most critical step for making the 
solution procedure work. There are two approaches to 
sensitivity calculation. The first method (discrete approach) 
differentiates the variational equations governing the 
minimisation problem, which have already been discretised, as 
shown in (Salon and Istfan 1986), (Gitosusatro et al. 1989), 



(Sikora 1989). The second method (continuous approach) acts 
on the variational equations before they are discretized, like in 
(Il-han Park et al. 1992) for finite-element analysis, and 
(Chang-seop Koh et al. 1992) for boundary-element analysis. 
For the evaluation of the shape design sensitivity, a method 
based on the material-derivative concept of continuum 
mechanics is proposed in (Il-han Park et al. 1991). 
As far as non-deterministic optimisation is concerned, in 
(Preis and Ziegler 1990) and (Preis et al. 1990) various 
evolution strategies are applied to the optimal shape design of 
a magnetic pole in a comparative way. An overview of 
evolutionary computing is presented in (Kasper 1992), where 
peculiarities of different algorithms are discussed. Another 
non-deterministic method of lowest order is simulated 
annealing: it mimicks the thermodynamic behaviour of a solid 
system that is slowly cooled in order to reach its lowest energy 
rate. In (Simkin and Trowbridge 1992) this method is used to 
solve a shimming problem, in which the finite-element method 
is used for magnetic field analysis. 
The finite-element method is generally preferred for field 
analysis in devices exhibiting a complex geometry. An early 
contribution was in (Nakata and Takahashi 1983), where an 
innovative design procedure for permanent magnets, linking 
the finite-element method to a gradient method, was presented. 
The same approach is used in (Hoole et al. 1991) for the 
identification of cracks and their geometry inside a conductive 
bulk. In (Kadded et al. 1993) a strategy of active constraint set 
is used for the optimal synthesis of the field, in a permanent-
magnet machine simulated by the finite-element method. 
Moreover, the finite-element method combined with 
regularisation is used in (Palka 1983) and, associated with 
singular-value decomposition, in (Sikora et al. 1986). 
When the field analysis is based on integral formulae, like 
those amenable to Green theorem, the synthesis is often 
reduced to the solution of a Fredholm integral equation of the 
first kind, which is generally obtained by means of 
regularisation. This is the case of the electrostatic problem 
discussed in (Sikora and Palka 1981) and the magnetostatic 
problem investigated in (Adamiak 1981) and (Palka 1984). In 
contrast, in (Tsuboi and Misaki 1988) the optimal shape 
design of an electrode is obtained by means of surface-charge 
simulation and gradient-based method. 
The boundary-element method has proven to be convenient for 
electrostatic problems in homogeneous domain. It has been 
used with a least-square approach e.g. in (Sikora et al. 1985), 
for the identification of the boundary conditions in an 
electrostatic problem. It has also been combined with a search 
technique for the optimal design of an electrode in (Liu Jin et 
al. 1990). In turn, the problem of the optimal location of an 
electrode is solved in (Sikora 1989), using the finite-element 
method for the discretisation of the field region and a min-max 
formulation. 
As far as the acceleration of stochastic methods is concerned, 
an early contribution is in (Hameyer and Kasper 1993), where 
various approaches are coupled to implement a cost-effective 
optimisation of a small DC motor for automotive applications; 
the magnetic field analysis is based on finite elements.  
This short selection of early contributions simply aims at 
proving the long-lasting heritage of optimal design methods in 
computational electromagnetism. 
 
 

IV. FROM SINGLE TO MULTIPLE OBJECTIVES: 
OPTIMAL SHAPE DESIGN 

 
In electromagnetics, shape design problems are particularly 
meaningful among AOD problems. In fact, the essential goal 

of shape design is that of identifying, in a completely 
automated way, the geometry of the device that is able to 
provide the prescribed performance, fulfilling a set of 
constraints. This is actually an inverse problem that, in 
general, implies the simultaneous minimisation of conflicting 
objectives. In fact, in engineering practice, one usually has to 
do with multiple objectives to fulfil at a time in the design of a 
device or a system, while the presence of a single objective is 
somewhat an exception or a simplification. Actually, there is a 
need for multiobjective optimisation for a number of reasons: 

• in general, industrial problems have multiple 
solutions which fulfil objectives and constraints, thus 
multiple optimal solutions arise; 

• often, in industrial applications, some solutions can 
be preferred to others, so it is better to get a spread of 
feasible solutions from the design procedure rather 
than a single solution; 

• when a set of optimal solutions is available, the 
selection is left to an external decision maker 
(usually, the designer) who can express the final 
preference. 

At the time being, single-objective models are becoming less 
attractive than in the past, because there is some scepticism as 
far as their real usefulness is concerned. In fact, having a 
unique solution to the design problem, which is assumed to be 
the optimum, is too rigid a limitation and can be unpractical, 
or even unfeasible, from the viewpoint of an industrial 
designer: thus, optimising a single objective is not seen as 
particularly useful and realistic too. As a consequence, the 
future of computational electromagnetism seems to be 
oriented towards, and conditioned by, the development of 
effective methods and robust algorithms for solving 
multiobjective shape design (MOSD) problems. The interest 
of the community on multi-objective optimisation is reflected 
by the increasing number of publications issued in the last few 
years. For instance, the biennial Conference on Evolutionary 
Multi-Criterion Optimization - EMO (held for the first time in 
Zurich, 2001) and the IEEE Transactions on Evolutionary 
Computation are entirely focused on the subject. However, in 
the area of computational electromagnetism, there is not yet a 
specialised forum completely devoted to multiobjective 
design, even if relevant papers are usually presented at major 
conferences, e.g. the biennial IEEE Conference on the 
Computation of Electromagnetic Fields (COMPUMAG), 
regularly organised since the year 1976, and the biennial IEEE 
Conference on Electromagnetic Field Computation (CEFC). A 
smaller, but more focused, biennial meeting is the 
International Workshop on Optimization and Inverse Problems 
in Electromagnetism (OIPE), founded in the year 1989 at the 
University of Pavia just for disseminating recent advances at 
various levels, from theoretical to applicative ones. It is worth 
mentioning also the International Symposium on 
Electromagnetic Fields in Electrical Engineering (ISEF), a 
biennial meeting about computational electromagnetism in 
general. 
 
 

V. CLASSICAL VS PARETIAN FORMULATION 
 

In electromagnetic design, the traditional approach to 
multiobjective optimisation implies to set up a preference 
function, expressing a compromise among the various 
objectives and depending on weight coefficients or threshold 
values; successively, standard single-objective optimisation 
methods can be used to find the optimum of the preference 
function. 



Although offering a friendly implementation, scalar 
formulation presents several drawbacks: first of all, the result 
of an optimisation gives a single solution, which is supposed 
to be globally optimal. A first criticism is that it is not clear 
whether the solution found is a non-dominated one; moreover, 
even if it is dominated, it is not clear where the solution is 
located with respect to the relevant Pareto front (PF). 
Another criticism follows: solving a multiobjective 
optimisation problem gives rise to a variety of solutions, 
which are spread along the PF; knowing this variety is useful 
for the designer, who is provided with a wide range of 
possibilities for a choice a posteriori. In order to obtain 
different solutions located on the PF, one could run subsequent 
single-objective optimisations after modifying the preference 
function, and then collect results in a comparative way. This 
strategy might work in some particular cases; in general, 
however, it is unattractive for a twofold reason; in fact, it 
might originate dominated solutions; moreover, it makes it 
difficult to generate solutions uniformly spaced on the PF.  
Various scalar formulations are possible (Miettinen 2000): 
objective-weighting, ε-constraint, min-max, goal attainment 
are most commonly used in electromagnetic design. However, 
all of them are single-objective in their essence and require 
some amount of problem knowledge. The main practical 
difficulty is that all of them need to be applied several times to 
find an approximation of the Pareto front of the given 
problem. This makes these methods loosely attractive. In 
general, it can be stated that classical optimisation methods 
suffer from various limitations: 
 
i)  an algorithm is needed to be applied several times to find 

multiple Pareto-optimal solutions; 
ii)  most algorithms require some a priori information about 

the problem being solved (e.g., in the ε-constraint method 
both hierarchical relationship among objectives, and 
selection of the numerical grid fixing constraint levels, are 
required); 

iii)  some algorithms are sensitive to the shape of the Pareto 
front (e.g. objective weighting); 

iv)  in most algorithms it is not possible to control the spread 
of Pareto-optimal solutions along the front; 

v)  in problems involving uncertainties classical methods are 
not effective. 

 
As a final remark, it should be pointed out that scalar 
formulations with variable weights and goals can be 
successfully used as front sampling techniques in few cases 
only: the main risk, in fact, is to generate dominated solutions. 
One of the key points of methods based on Pareto optimality is 
the a priori or a posteriori use of higher-level information, 
when the decision maker has to choose among various 
compromises (Ringuest 1992). Often, in industrial 
electromagnetic design the a priori choice is preferred because 
it is easier to understand in its meaning and it is easy also to 
implement. On the other hand, the a posteriori choice implies 
a deeper knowledge of the problem, and gives the decision 
maker a more flexible approach to the design, because all non-
dominated solutions must be taken into account in a 
comparative way before selecting one of them. A flow of this 
twofold logical way is shown in Fig. 1. 
The Paretian formulation of a multiobjective problem, keeping 
conflicting objectives separate and discarding the use of scalar 
preference functions, seems to be more promising from both 
the theoretical and practical viewpoint. Following this 
approach, the extra knowledge - which is required in order to 
choose a single solution out of the theoretically infinite 

solutions of the multiobjective problem - is used a posteriori 
(i.e. after the optimisation process) instead of a priori (i.e. 
before the optimisation process). 
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Fig. 1. Logical paths of classical and Paretian formulations. 

 
A comprehensive review of methods for multiobjective 
optimisation with annotated bibliography is in (Collette and 
Siarry 2003). 
 
 

VI. MULTIOBJECTIVE OPTIMAL DESIGN: 
A BIBLIOGRAPHIC INSIGHT 

 
Looking back at the history of evolutionary computing, in the 
year 1967, Richard Rosenberg suggested a genetic search 
method for finding the chemistry of a population of single-
celled organism with multiple properties or objectives. 
However, its first practical implementation was due to David 
Schaffer a long time after, in the year 1984; then, for almost a 
decade, no significant study was performed, until the year 
1989 when the book by David Goldberg appeared, in which an 
innovative ten-line code of a non-dominated sorting procedure 
was presented. 
 
Evolution strategies, in turn, are a branch of evolutionary 
computing which has originally developed in Germany by 
Ingo Rechenberg and Hans Paul Schwefel. The main feature is 
that the search algorithm facilitates self-adaptive strategy 
parameters, i.e. the automated adaptation of critical quantities 
like e.g. the standard deviation of the mutation operator during 
the optimisation procedure (Rechenberg 1973) and (Schwefel 
1977). This property turns out to be the key feature, 
characterising evolution strategies with respect to other 
approaches, and making them effective algorithms of global 
optimisation (Bäck 1996). 
 
The publication of early-time results showed the superiority of 
evolutionary methods of multi-objective optimisation over 
classical methods. Thereafter, many researchers developed 
different versions of algorithms for evolutionary multi-
objective computing, with special emphasis on genetic 
algorithms (GA). Among the most popular of them, there are:  
vector-evaluated GA (Schaffer 1984); 
multiobjective GA (Fonseca and Fleming 1993); 
niched Pareto GA (Horn et al. 1994); 
strength Pareto evolutionary algorithm (Zitzler and Thiele 
1998); 



non-dominated sorting GA (Srinivas and Deb 1994) and (Deb 
et al. 2002). 
The latter, in particular, became popular in computational 
electromagnetism. 
Focusing now on the electromagnetic community, after 
various decades impressively marked  by the development of 
tools for field analysis (think e.g. of fundamental contributions 
from the TEAM Workshop series), recent work in 
electromagnetics has been devoted to the development of tools 
for field synthesis. The whole topic of single objective 
optimisation in electromagnetics was exhaustively presented 
in (Neittaanmäki, Rudnicki and Savini 1996), a book which is 
still valid, at least from the methodological viewpoint. 
Multiobjective optimisation is a more recent subject in 
electromagnetics. A pioneering contribution can be found in 
(Russenschuck 1990), where the shape design of a permanent-
magnet synchronous machine is formulated as a vector 
optimisation problem. The subject has been recently revisited 
and enhanced (Russenschuck 2010). In the last decade, in 
particular, evolutionary computing applied to multiobjective 
optimisation has proven to be successful in finding a 
distributed set of solutions, approximating the  Pareto front of 
a given design problem. Evidence of this can be found in the 
extensive and rapidly growing literature which has already 
been published. Several papers are in the pipeline and new 
ideas emerge faster than they can be published. 
Actually, it is not an easy task to review the literature on 
multiobjective optimisation (MOO) in electromagnetism. Due 
to its multidisciplinary aspects, the topic is scattered in a 
number of journals and conference proceedings. For instance, 
if the proceedings of two companion conferences like CEFC 
and COMPUMAG are examined, the ratio of number of 
papers on MOO to the total number of papers on AOD 
increases in time, starting from the years 1997 (CEFC, Rio de 
Janeiro) and 1998 (COMPUMAG, Tucson), respectively. 
Anyway, this survey does not intend to be comprehensive, so 
that the reader should not be surprised if some important 
reference have been omitted; the criterion used was that a few 
publications were selected to represent the past and current 
trends in the various aspects of each topic. 
From the viewpoint of methods to solve multiobjective 
optimisation problems, at least two main streams can be 
observed. 
The former focuses on the use of approximation techniques to 
identify response surfaces representing the dependence of 
objective functions and constraints on the design variables. 
This way, field computation is required to generate surfaces, 
which are used to drive the search: global-optimisation 
oriented algorithms or nature-inspired algorithms, are then 
applied to find an approximation of non-dominated solutions. 
The surrogate model so generated is interpreted as an accurate 
representation of a given objective function, and the minimum 
of the interpolating surface is evaluated. However, this might 
lead to a false minimum, i.e. a point which minimises just the 
surrogate model, but not the true function. Therefore, close to 
a possible optimum, an assessment based on the real function 
evaluation is performed. The advantage in terms of 
computational cost is evident: field analysis is limited to the 
identification of response surfaces and to assessment points, 
while the evaluation of objectives and constraints during the 
search is inexpensive. A survey of main methods based on 
surrogate models is presented in next Section. 
In turn, the latter stream of methods preserves the use of finite-
element models at each iteration of the optimisation procedure 
(Dias and Vasconcelos 2002). Actually, the FEM is commonly 
employed in the AOD of electromagnetic devices, where 
computation of field is required for the evaluation of 

objectives and constraints: it is well known that this step takes 
most of the optimisation time, while the cost related to the 
optimisation procedure in itself is often negligible. 
The computational burden of each function call could be 
lightened e.g. by matching accuracy and velocity of the FE 
analysis in a convenient fashion. The basic idea is to adjust the 
refinement of the mesh, according to the level of accuracy 
required for the objective function calculation, rather than for 
the field solution itself. To this aim, adaptation methods 
(Haslinger and Neittaanmäki 1988) are sometimes employed 
to improve the mesh. Similar methods were coupled, for 
example, with deterministic methods of single-objective 
optimisation, in order the mesh to be refined as the current 
solution gets closer to the minimum (Brandstätter et al. 2001) 
and (Gavrilovic and Webb 2002). What is common to the 
aforementioned approaches is that the mesh is adapted, in 
order to reduce the error in the objective function calculation 
at a given iteration. Likewise, in (Di Barba 2009) a strategy of 
mesh adaptation is linked with an algorithm of evolutionary 
MOO. 
As far as applications are concerned, the suitability of the 
multiobjective approach to industrial electromagnetic design 
problems has been discussed in several contributions. In fact, 
procedures of optimal design are currently applied to both low 
and high frequency devices (Lu et al. 2009). In the literature, 
the applications of the Pareto theory to the optimal design of 
electromagnetic devices are growing. After early contributions 
(Chiampi et al. 1996), (Surdacki and Montusiewicz 1996) and 
(Borghi et al. 1999), a new research field is emerging, in 
which the traditional design, based on single-objective 
optimisation, is critically revisited and the development of 
new numerical methods and relevant algorithms is stimulated 
(see e.g. (Ho et al. 2002) and, more recently, (Régnier et al. 
2005)). Low-frequency applications are mainly focused on 
electromechanics, with special emphasis to the shape design of 
magnets and rotating machines (Kim et al. 1998); as for high 
frequency, evolutionary multiobjective optimisation (EMO) is 
used in antenna design (Lisboa et al. 2006). Classical fields of 
design like magnetostatic systems, actuators and electrical 
drives are still popular. 
In computational electromagnetism, MOO is still quite recent 
a streamline of research: it is mainly oriented to the 
development of cost-effective algorithms (Paul et al 2009) and 
(Wanner et al 2008). In areas like e.g. aerospace engineering, 
MOO is becoming more mature a subject: for instance, 
multiobjective design is commonly applied to the shape design 
of airfoils for subsonic flight (Sasaki et al 2001). A very basic 
algorithm of multiobjective evolution strategy in 
electromagnetics was proposed in (Di Barba 2000).  
More sophisticated strategies based on parallel computing are 
nowadays viable. In this respect, the identification of the 
magnetic permeability of an anisotropic material, based on a 
three-dimensional field model, is presented in (Di Barba et al. 
2011). A review of differential evolution methods suitable for 
a multicore processor can be found in (Alotto 2010). 
Resorting to game theory as an alternative to Paretian 
optimality, a straightforward modification of a basic evolution 
strategy has proven to be successful in finding a unique 
optimal solution, corresponding to the Nash equilibrium of a 
bi-objective design problem (Di Barba 2010). 
Dynamic multiobjective optimisation is another promising 
subject. In fact, in problems of shape design of 
electromagnetic devices, usually objectives and constraints do 
not depend on time. When either the objectives or the 
constraints, or both of them, depend on time, the Pareto-
optimal front is time dependent too. In that case, it is not 
possible to identify a set of non-dominated solutions by 



exploring the objective space at steady state, but the time 
evolution is to be taken into account (Di Barba 2010). 
Nature-inspired algorithms offer promising strategies of 
search. The main popular are the following: ant colony 
(Dorigo 1997), swarm intelligence (Beni and Wang 1989, 
Reddy and Kumar 2007), artificial immune systems (de Castro 
and Von Zuben 2002), cultural evolution (Reynolds 1994). As 
far as electromagnetic design is concerned, an application of 
immune algorithms can be found e.g. in (Canova et al 2005) 
and (Batista et al 2009), swarm intelligence is used in 
(Baumgartner et al 2004), while cultural algorithms are 
employed in (dos Santos Coelho and Alotto 2009). 
Recently, the extension of an artificial-immune-system 
algorithm to the MO case, with an application in 
magnetostatics, was proposed in (Freschi and Repetto 2006). 
 
 

VII. SURROGATE MODELLING AND OPTIMAL DESIGN 
 
For a surrogate model to be interpolating an objective function 
f, it is necessary to have ms+ns sampled points and to use a set 
of additional basis functions φ , each centred around one out 
of ns observations. In general, the predictor can be written as 
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where iψ  are basis functions modelling a global trend (e.g. a 

low-order polynomial), while the φ -dependent term can be 
viewed as a functional deviation; coefficients bi and βj are 
found by e.g. least-square fitting. 
Issues of meta-modelling and global  optimization are 
discussed in (Mullur and Messac 2006), while neural-network 
models of inverse electromagnetics are used e.g. in (Cau et al. 
2007) and (Carcangiu et al. 2008). 
Actually, multiple choices exist for φ ; for instance, kriging is  
a surrogate model based on statistical foundations, first 
developed in geoscience in the sixties of last century (Jones 
2001). It assumes 
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where 0≥jθ  and ] 2,0∈j ]α ; therefore, a Gaussian 
stochastic process is used to model  the second term in the 
right-hand side of (5). Again, the exponential family has a 
paramount role. 
A certain number of points needs to be sampled before a 
kriging model can be constructed (Santner et al. 2003). This 
initial set is called an experimental design, and the theoretical 
background for selecting suitable points is known as design of 
experiments (Montgomery 2001). In the past, techniques 
derived from design of experiments were used for planning 
computer simulations in a cost-effective way; at the time 
being, the two commonly used techniques of experimental 
design are the Latin hypercube (Jones et al. 1998) and the 
Hammersley sequence (Kalagnanam and Diwekar 1997). In 
the context of statistical sampling, a square grid containing 
sample points is termed a Latin square, if there is only one 
sample in each row and each column. A Latin hypercube is the 
generalisation of this concept to an arbitrary number of 
dimensions, where each sample is the only one in each axis-
aligned hyperplane containing it. Latin hypercube sampling 

ensures that the set of random samples is a good representative 
of the real variability of the function. An improvement is 
given by orthogonal sampling, in which the sample space is 
divided into equally probable subspaces: all sample points are 
then chosen simultaneously, in such a way that the whole set 
of points is a Latin hypercube and that each subspace is 
sampled with the same density. 
From the viewpoint of surrogate modelling, optimisation 
methods can be classified according to the kind of model used, 
and the technique to select points driving the search. In two-
stage methods, first the surrogate model is fitted to the 
observed points and, then, an utility function is used to find 
the next search point. In turn, in one-stage methods, a new 
search point is generated which would yield the most likely 
response surface. Almost all existing algorithms are two-stage; 
however, one-stage algorithms have been implemented, using 
both kriging and radial basis-function models (Regis and 
Shoemaker 2007). 
Recently, a hybrid one-then-two stage algorithm has been 
proposed, consisting of three steps: initialization, one-stage 
experimental design, and two-stage search (Hawe and 
Sykulski 2007). Initialization allows a kriging model to be 
constructed by means of a set of 4nv sample points, based on 
Hammersley sequence. Successively, the one-stage 
experimental design aims at deciding where to sample next. 
To this end, let fmin and fmax be minimum and maximum values 
of the objective function within the set of 4nv sampled points, 
respectively. A design vector  is assumed to exist, which is 
the inverse image of 

x~

 
 ( minmaxmin )~ ffcff −−≡    (6) 

 
where parameter [ ]1,0∈c  is updated using a cyclic scheme 
dependent on the iteration index. At each iteration, the design 
vector  actually chosen for evaluation is the one which 
maximises the likelihood of the assumption that its image is 

. This step is repeated until 10nf~ v points in total have been 
evaluated. 
Finally, in the two-stage search, a kriging model is constructed 
using the 10nv previously sampled points; the weighted-
expected-improvement utility function (Sobester et al., 2005) 
is then used to select new points for evaluation. The whole 
procedure is repeated until the stopping criterion is fulfilled. 
Multiobjective optimisation methods  using surrogate models 
can be divided into scalarizing and non-scalarizing. The 
former combine multiple objectives into a scalar preference 
function and then use one of the methods for single-objective 
optimisation (see previous Section V). By varying the 
parameters which control how multiple objectives are 
combined, an approximation of the Pareto front can be 
recovered (Knowles 2006). In turn, non-scalarizing methods 
consider each objective individually; the simplest approach is 
to evaluate the non-dominated solutions predicted by the 
surrogate models associated with the objectives; an application 
in electromechanics is in (Lebensztajn et al. 2005). 
Evolutionary algorithms using surrogate models belong to the 
class of non-scalarizing methods; cost-effective algorithms 
have appeared rather recently (Emmerich et al. 2006) and 
(Keane 2001). 
A possible alternative could rely on field diakoptics and 
generalized Thévenin theorem. In fact, when solving analysis 
problems in electricity and magnetism by means of FEM, it 
often happens that only a small part of the field domain 
incorporates the region of main interest. Nonetheless, the 
analysis of the whole domain should be performed, even in 

http://en.wikipedia.org/wiki/Latin_square


subdomains of no interest. If repeated field analyses have to be 
performed, like e.g. in optimal design problems, the 
computational burden is remarkable. In (Di Barba and Savini 
2010) an optimal design theory based on a principle of field 
diakoptics is presented: the region Ω2 which is not of interest 
is replaced with a multi-terminal element by means of the 
generalized Thévenin theorem (Santini and Silvester 1996), 
and the optimisation takes place within the reduced domain Ω  
only. The mesh discretising Ω  is updated according to the 
shape variation governed by the minimisation algorithm, while 
the Thévenin multi-pole is an invariant.

1

1

  
 
 

VIII. TOPOLOGY OPTIMISATION AND SENSITIVITY ANALYSIS 
 
In topology optimisation, the continuous-valued 
parameterization of the geometric model enables virtually all 
feasible shapes of the device under consideration to be 
explored (Kim et al. 2004), and this feature is definitely 
interesting for synthesizing a new device. The methodological 
background can be found in the level set method (Sethian 
1996). 
In the traditional approach to optimal shape design, the 
geometry of the region to synthesize is parametrized by means 
of a finite set of variables, which are updated by a 
minimisation algorithm according to the value of the objective 
function. This way proved to be effective for problems with a 
low or moderate number of variables; however, difficulties 
occur when the problem complexity increases. In fact, the 
performance of every minimisation algorithm deteriorates 
when several variables are to be handled simultaneously, 
because the ill-conditioning of the associated inverse problem 
increases. On the other hand, the description of complicated 
geometries necessarily asks for a large number of parameters. 
In this respect, a parameter-free approach can be promising. In 
practice, the material distribution – which is unknown - is 
forced to vary gradually from void to solid state, according to 
an acceptance criterion preventing the occurrence of distorted 
shapes (Shim et al. 2008). In the case of a source synthesis 
problem, the distribution of current-carrying conductors (or 
permanently magnetized domains) is unknown. 
In the magnetic case, a generalized sensitivity formula, 
showing the total derivative of the objective function in the 
direction of the design vector, has been derived for both the 
primary and the adjoint systems (Kim et al. 2005) and (Kim et 
al. 2007).  Despite having been introduced as a mathematical 
derivation, the adjoint system is physically meaningful, 
because geometric and material properties are found to be the 
same as in the primary system. Therefore, both primary and 
adjoint problems can be solved by means of a standard FE 
analysis. Then, the sensitivity formula is evaluated and the 
material distribution is updated, to drive the search towards the 
distribution corresponding to the optimal shape of the device. 
Alternatively, procedures of numerically derived sensitivity, 
like those based on the Lipschitz constant (Campelo, 
Watanabe and Igarashi 2008), are applicable. 
 
 

IX. MULTI-LEVEL OPTIMAL DESIGN 
 
As complexity of engineering systems increases, often 
knowledge and experience of just a single designer are not 
enough to deal with the full design problem. An approach to 
cope with this difficulty is to decompose the corresponding 
optimisation problem into smaller ones (components) that are 
easier to solve (Brisset and Brochet 2005) and (Moussouni, 

Brisset and Brochet 2008). A posteriori, the system solution is 
recovered from the component solutions. In practice, when 
e.g. a multi-physics inverse problem is dealt with, a complex 
system can be partitioned by physical domain. Moreover, due 
to decomposition, a parallel-distributed computation can be 
implemented. 
In particular, target cascading is a hierarchical multi-level 
design method, useful when an optimisation problem can be 
organised according to a tree structure (Moussouni et al. 
2008). This way, a large-scale problem is first decomposed 
into levels, and levels are subsequently decomposed into sub-
problems (or components), each of which acts on a reduced set 
of design variables. Components exchange data by means of 
linking variables: the application of a coordination strategy 
forces consistency (e.g. fulfilment of global contraints) among 
component solutions. In a multiobjective context, an 
approximation to the Pareto front of the original problem is 
obtained by composing the fronts of each sub-problem 
(Nguyen Huu et al. 2008). 
A drawback of the method is that the derivatives of objectives 
and constraints must be calculated; in this respect, strategies 
for the automatic differentiation of computer codes, accurate 
up to machine precision, have proven to be effective (Enciu et 
al. 2008). 
 
 

X. FEA TOOLS AND OPTIMAL DESIGN 
 
In a sense, design optimisation is always a field-dependent 
numerical procedure, because the calculation of objectives and 
constraints in an irregularly-shaped field domain implies the 
numerical simulation of electric and magnetic fields which the 
device operation is based on. 
In fact, software for electromagnetic analysis has become a 
mature tool, commonly used in design offices across all 
sections of an industrial company. Thinking of an industrial 
R&D centre, FEM-assisted optimal design is simple to 
implement, because it does not require a major modification to 
a commercial software. A basic knowledge of any 
programming language is enough to link a FEA code with an 
optimisation routine. Surrogate modelling or target cascading 
are interesting alternatives to FEM-assisted design because 
they are finalised to low-cost models of inverse problems; 
however, they are still at early stages of development and 
require substantial modifications to a commercial FE software 
in view of a practical implementation. Moreover, the source 
code of a commercial FE software is seldom available to an 
industrial user for making substantial modifications to the 
program architecture. Finally, even if the source code is 
available, seldom the man-time, or the know-how, is sufficient 
for doing it.  
The very point is that commercially available FE codes are 
designed to help the solution of direct problems rather than 
inverse problems. For instance, in a procedure of AOD, it 
might be necessary to keep the number of nodes along the 
boundary constant, and to prescribe their position too. In 
practice, using a commercial code of FEA, the topology of the 
domain mesh can be hardly controlled by the user at this level. 
In fact, it happens that the domain boundaries are meshed first, 
while the domain subregions are subsequently meshed: the 
solution mesh is automatically generated in a recursive way to 
reduce the discretization error, by means of classical 
techniques like e.g. Delaunay triangulation or mesh refinement 
(George 1991). As a consequence, the best possible mesh for 
analysis is often not adequate for synthesis. 
Moreover, according to a trivial criticism, it happens that 
optimisation procedures are considered to be nothing but 



useless (a mere exercise of mathematics !) for industrial 
design purposes, mainly because the associated analysis 
models are simplified in order to keep the computational cost 
moderate. Again, a misunderstanding between analysis and 
synthesis takes place: an optimisation procedure, no matter 
whether deterministic or evolutionary, does not need a high 
degree of accuracy when the direct problem is solved, because 
the main goal of the optimisation itself is to identify the right 
trend towards an improvement of the modelled device. In 
practice, this means that low-density FE meshes are 
satisfactory enough, while denser meshes are necessary a 
posteriori, just to compare initial and final solution, so 
assessing the improvement found. This is a way to make the 
optimisation work even for complex analysis problems. And 
the search for robust solutions in terms of small perturbations 
(another requirement of industrial design) is naturally 
emphasized by evolutionary computing. 
To the best knowledge of the author, a commercial package 
truly devoted to multiobjective optimisation in 
electromagnetism has not yet been released, even if some 
software houses offer tools for automated optimal design (e.g. 
OptiNet code by Infolytica, Optimetrics code by Ansoft, and, 
more recently, Optimizer by Vector Fields). At an academic 
level, the NIMBUS algorithm, implementing a non-
differentiable interactive multiobjective bundle-based 
optimisation method, is accessible at the Jyväskylä University 
web-page. 
  
 

XI. BEYOND PARAMETRIC MULTIOBJECTIVE OPTIMISATION: 
A MOVING BOUNDARY APPROACH 

 
Another way to the optimal shape design is to consider the 
boundary of the region to synthesize as a front propagating 
with a velocity dependent on the objective function. So doing, 
a parameter-free moving boundary problem is originated. By 
treating the boundary line (in 2D) or surface (in 3D) as a 
functional level, changes in the propagating front are easily 
handled. 
In natural processes, like e.g. crystal growth, the velocity of a 
propagating front, might be an arbitrary function of its 
curvature, and the front is passively advected by an associated 
flow. Likewise, in a problem of optimal shape design, the 
velocity is a vector field defined in each node of the moving 
boundary, and dependent on the value of the objective 
function. 
The methodological background can be found in the theory of 
fronts propagating with curvature-dependent velocity (Osher, 
and Sethian 1988).  
In principle, a simple algorithm could be defined as follows: 
 

i) given a feasible shape of the boundary, solve the 
direct problem; 

ii) compute the objective function (OF); 
iii) compute the OF-dependent velocity components; 
iv) solve the advection problem in a time step; 
v) update the boundary position; 
vi) iterate until the velocity of the boundary is zero. 

 
In other words, the boundary of the field region to synthesize 
is considered as a moving boundary, and the velocity field 
leading to the optimal solution is unknown. On the other hand, 
however, the method is not based on a regularization principle; 
therefore, the evolution of the boundary might fall into a local 
minimum, and the relevant solution would depend on the 
initialisation. 

A simplified solution to the moving boundary problem could 
be obtained by means of a kinematic approach. In contrast to 
various methods of topology optimization based on the level 
set theory (Kim et al. 2009), the kinematic approach does not 
require to solve the diffusion equation governing the advection 
problem. In order to mitigate the local behaviour of the 
moving boundary method, it is here proposed to synthesize the 
kinematic law, leading to the optimal boundary, by means of a 
global-minimum oriented algorithm. The key idea is defining 
the velocity vector e.g. as follows: 
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where speed constant v0 and time constant T are unknown, 
while (x,y) are the coordinates of ng moving nodes along 
boundary γ , and (x0 ,y0) is a reference point. So, the velocity 
field is radially directed towards point (x0 ,y0). Accordingly, 
the correction vectors are: 
 

γ∈Δ+=+ xtvxx xkk ,1     (9)   
 

  γ∈Δ+=+ ytvyy ykk ,1   (10) 
 
with k iteration index. Having prescribed  as the maximum 
displacement of γ, the time step  is defined according to the 
following constraint: 
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where the velocity components refer to iteration k, while tΔ  
refers to iteration k+1.  
At each iteration, [ ]Tt 5,0∈  is considered; the field analysis is 
updated at t=5T, when the boundary movement is practically 
expired due to the assumption of exponential time 
dependence. This way, only one call to the FE solver is 
required per iteration. Note that the definition of velocity field 
allows for negative components of velocity, so enabling both 
expansion and contraction of the boundary. Because the shape 
of γ is governed by 2ng parameters, a multi-dimensional 
search, controlled by only two degrees of freedom (v0 ,T) and 
requiring one field analysis per iteration, is originated. If a 
derivative-free algorithm of evolution computing is used, the 
search is global-oriented too. The user-defined objective 
function is implemented as a routine, according to the usual 
format required by the optimisation algorithm. 
A more sophisticated strategy would be defining a curvature-
dependent velocity field, like e.g. 
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with c(x,y) curvature of the boundary at point (x,y). This way, 
the boundary velocity  
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would depend on the point coordinates. 
 
 

B. Case study: guard-ring optimal design 
 
The design optimisation of the guard ring of the high-voltage  
winding (HVW) in a power transformer is considered as the 
case study. The ring is located near the ends of the HVW, 
where the highest electric stress occurs (Reece and Preston 
2000). 
For modelling purpose, a two-dimensional Cartesian model of 
the oil-filled (ε =2.2) field region Ω is developed. The test of 
applied voltage is simulated: accordingly, low-voltage  
winding (LVW), core and tank are short-circuited at the 
ground potential; moreover, a terminal of the HVW is open-
circuited, while the other one is connected to an ideal voltage 
source. In terms of the analysis problem, Ω is a source-free 
doubly-connected domain; therefore, the Laplace equation of 
electric potential u in static conditions is considered, subject to 
u = U at the ring and HVW surface, u = 0 at the LVW surface, 
and D u = 0 elsewhere. 

r

n
In view of the optimal field synthesis, a possible pair of 
objective functions, both to be minimized with respect to 
(v ,T), is the maximum field strength in the oil-filled region 
(hot spot) 

0
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and the maximum field deviation (inhomogeneity) too 
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with Ω∈r  position vector and uE ∇−= . In turn, Ω⊂R  is 
a controlled region defined as [ ]  where a[ 4321 ,, aaaa × ] 1 and 
a2 are the abscissae of LVW and HVW ends delimiting the oil-
channel, a3 is set to a fixed ordinate value, and a4 is the highest 
ordinate value along the moving boundary, with a4>a3 . 
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Fig. 2. Transformer model: 
FE mesh (about 4,500 linear elements), and potential lines. 
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Fig. 3. An example of velocity field along the ring boundary. 

 
 

In Fig. 4 a set of nine non-dominated solutions is represented 
in the objective space, so proving the existence of a conflict 
between objective f1 and objective f2 . Results have been 
obtained by means of a (1+1) evolutionary algorithm; for the 
sake of a comparison, the initial solution is also shown. Under 
a prescribed search tolerance equal to 10-3, the typical number 
of convergence iterations is 80. 
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Fig. 4. A set of non-dominated solutions in the objective space 

(dimensionless values, referred to the uniform field in the oil channel). 
 
 
Fig. 5 and Fig. 6 show the solutions corresponding to the end 
points of the non-dominated set represented in Fig. 4, 
respectively; the hot spot position is shown. 
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Fig. 5. Solution of low hot spot (FE mesh, and potential lines): 
v0= 58 mms-1, T= 123 ms (marked as “low f1“ in Fig. 4). 

 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.55

0.6

0.65

0.7

0.75

x [m]

y 
[m

]

 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.55

0.6

0.65

0.7

0.75

x [m]

y 
[m

] Guard  ring

Hot spot

 
 

Fig. 6. Solution of low inhomogeneity (FE mesh, and potential lines): 
v0= -39 mms-1, T= 31 ms (marked as “low f2“ in Fig. 4). 

 
Comparing Fig. 5 and Fig. 6, it can be noted that an expansion 
(v0>0) leads to a reduction of the hot spot value, while a 
contraction (v0<0) gives rise to a reduction of the field 
inhomogeneity, starting from the same initial solution. 
 
 
XII. BEYOND EVOLUTIONARY MULTIOBJECTIVE OPTIMISATION: 

A BAYESIAN APPROACH 
 
Though being powerful, EMO methods are affected by some 
inherent limits, the most crucial of which is the absence of a 
theoretical proof of convergence. However, there is an even 
more cogent reason of dissatisfaction: seldom does a 
configuration fit the requirements of a designer, even if it is 
Pareto-optimal, because there exist some constraints – or 
objectives – difficult to be formulated and included in the 
optimization problem, but not less important than those 
accounted for. Actually, there are some design 
considerations that are easily made only a posteriori and, 
usually, become evident when not fulfilled: sensitivity of the 

solution might be one of them. In evolutionary computing, 
individuals of a population-based method of optimisation run 
towards improvement through a randomness guided by a set of 
possible heuristics in the objective space Y. An alternative way 
could be developing a statistical method to identify the regions 
of the design space X which are more likely to map onto 
Pareto-optimal solutions. The designer, then, should be 
provided not with a large collection of individuals assumed to 
be optimal, but with a distribution of probability in the design 
space, which yields optimal configurations with a given 
degree of certainty. A possible formulation could rely on the 
Bayes theorem, the goal being the computation of some 
probability surfaces, to identify the most promising candidate 
regions for Pareto-optimal solutions.  
From the Bayesian viewpoint, probability quantifies the level 
of belief about an event. Rather than expressing any 
physical property of the event itself, it just represents how 
much an event is trusted to be true. Now, beliefs are the 
mixture of prior assumptions - prior probability distributions, 
in the Bayesian language - and (incomplete) experimental 
information. Bayes theorem formalizes this learning chain, 
from a prior to a posterior through experimental observation. 
 
 

A. Local formulation 
 
The Bayesian local formulation considers two, priorly 
unrelated elements x and y in the design space X and 
objective space Y, respectively. The two following 
propositions can then be assigned a probability level: 
( )xμ   :  “x belongs to the Pareto set (PS)” 
( )yφ   :  “y belongs to the Pareto front (PF)” 

Some prior information is available about the search 
space, and it could be called I. From the design viewpoint, 
I includes at least bounds and constraints defining the 
feasible search region. 
What is interesting to know, for solving a multiobjective 
problem, is which is the PF, escaping possible local fronts, 
and which is the corresponding PS - or, which elements of 
X map to the PF in Y. Clearly, this implies relationships of 
conditioned probabilities between the aforementioned 
propositions, subject to the background of I. According to 
Bayes theorem, it turns out to be: 
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The term on the left represents the probability that a given y 
lies on the PF, conditioned to the fact that x is on the PS, 
and to prior information I. For one is conditioned to the 
other, a relationship between x and y must be implied in 
the evaluation of this term. A way to see it, is to take an 
element of X, say x*, and generate the probability surface 
( ( ) ( ) )Ixyp ,*μφ , i.e. the left-hand side of (17) specialized 

to the particular value x*, and still function of the 
independent variable y. The left hand side of (17) could be 
called stopping term, because it indicates when the search 
can be stopped during the optimization, according to the 
established degree of certainty about the probability 
surface. 
As far as the right hand side of (17) is concerned, the 
denominator could be viewed as a normalization constant. 
The terms in the numerator indicate the two conditions 



which must be true at the same time, for stating that an 
element x* is in the PS in what it maps to an element y* in 
the PF. Basically, x* must be the counter-image of a y* 
lying on the current front of non-dominated points, and the 
current front must definitely be the PF. The relationship 
between elements x and y is summarized by the term 

( ) ( )( )Iyxp ,φμ , which represents a kind of probabilistic 
inversion of function F, i.e. the function mapping a vector 
from the design space to the objective space; therefore, it 
could be called inverse-mapping term. The other term, 

( )( )Iyp φ , evaluates the probability of proposition ( )yφ : 
it is zero for y already known to be dominated - i.e. 
dominated by points in the front - and, for points lying on 
the front, it corresponds to the probability that it is the 
Paretian one. Because of this meaning, it could be named 
front-mapping term. 
 
 

B. Integral formulation 
 
The local formulation implies inverting function F, in the 
inverse mapping term, and this might be quite 
complicated a task. On the other hand, what is really 
important to identify the PS, is knowing which elements x 
do map on the front, rather than which point of the front 
their image falls onto; in fact, all points belonging to the 
same front are equivalent, according to Paretian 
optimality. This, in equation (17), is equivalent to taking 
the integral of both members, with respect to y. As far 
as the left-hand side is concerned, the term 
 

( ) ( )(∫ dyIxyp ,μφ )    (18) 

 
is the probability that, given one Xx∈  belonging to the 
PS, at least one  belongs to the PF. In the right-hand Yy∈
side of (17), only the numerator depends on y : carrying 
out the integration on it yields the probability that x maps 
to at least one element of the PF. Now, considering the 
distance of any element y from the front, is a 
simplification, for the inverse relationship F-1 is not to be 
found out. This, however, implies finding a suitable 
metric, in the objective space, for expressing the 
distance of any point to the front. The details of the 
metric used – called Paretian distance (Fig. 7) – can be 
found in (Di Barba 2010). 

 

 
 

Fig. 7. Geometric interpretation of Paretian distance 
in the two-dimensional case. 

Moreover, points will be classified as Paretian if falling 
within a tolerance distance from the front. 
The remark that the term 
 

( ) ( )( ) ( )( )∫ dyIypIyxp φφμ ,   (19) 

 
is a function of x means that it is a probability density with 
respect to x: the probability that the distance of y=F(x) 
to the front is zero, wherever y might be. Such 
probability is weakly regular, because the objectives are 
supposed to be weakly regular: under this frame, the 
probability can be considered to be an image. When 
looking at the image with the appropriate scale, an 
subregion Ω could be detected as sufficiently 
homogeneous in its inner structure, and well defined with 
respect to the surrounding patches. Therefore, the inner 
structure of Ω can be described in terms of the 
cumulative distribution function (CDF) of the Paretian 
distance over Ω itself. The probability that any point 
inside it maps to a point of the Ω is equal to the 
probability that the distance associated to the points inside 
Ω is zero within the prescribed tolerance. This 
information is extracted just from the CDF, assumed as 
the probability value for any point of Ω. 
The computation of the probabilistic terms is fully 
described in [6]. In particular, a central problem is that of 
insulating good or promising subregions of the search space, 
in order to generate a probability distribution function 
around the PS. The task can be split in three steps: 
 

i) insulating a set of subregions; 
ii) analysing the probabilistic structure of each 
       subregion; 
iii) choosing the best looking subregion for subsequent 
       search refinement. 
 

A Bayesian imaging method for probability computation here 
used was developed in (Bramanti 2002). 
 

 
C. Case study: optimal design of a small actuator 

 
The device considered is composed of a U-shaped 
magnetic core, and a mobile magnetic plunger, with an 
air-gap. The plunger is able to alternatively move, under 
the attractive action of the magnetic field, determined by 
a pulse current flowing in the copper winding, and the 
opposite force exerted by a spring. Fig. 8 shows the 
domain chosen for the analysis thanks to symmetry. The 
magnitude of the longest dimensions is ten through twenty 
mm, while the shortest side of the core is 1 through 2 mm: 
an electromagnet of small size is dealt with. In the past, a 
similar device was applied in electrical typewriters as a 
linear actuator: a character is printed out when the plunger 
impacts against the paper sheet. The system is energized 
by the excitation winding, which carries a pulsed specific 
current equal to 2·105 A m-2. 

The upper part of the core, and correspondingly the facing 
part of the plunger, are shaped in the way shown, where 
the profile is controlled by the angle α the tilted section 
forms with the reference system, and the horizontal 
projection 2x of the section itself. The reason is twofold: 
on the one hand, the air-gap is smaller, so reducing flux 
line dispersion; on the other hand, the mechanical 



positioning of the plunger is improved, especially with 
respect to its alignment with the core. 
 

 
 

Fig. 8. Geometry of the actuator (with a detail of the air-gap), 
and design variables. 

 
 
At a fixed current density, the geometry can be varied, in 
particular, acting upon the following five design variables 
(Fig. 8): h1 and h2 , height and width of the winding, 
respectively; , cross-sectional side of the core; α and x, l
angle and semi-horizontal projection of the tilted section, 
near the air-gap. 
The bi-objective problem can be cast as follows: 
find 

( )aC
a Ω∈
inf  ,   (20) ( ) ( ) ( )aVcaVcaC coppercopperironiron +=

 
and 

( )aFy
a Ω∈
sup  , ( ) ( )

0
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Δ
≈     (21) 

 
with g0 = 6 mm and W’ co-energy of the system, subject to 
 

( )
( ) 0sup BaBy

aw

≤
Ω

     

 (22) 
 
where BB0 = 10 mT is assumed. 
 
The following definitions hold: 

( ) 5,,,, ℜ⊂Ω∈= αxhha l21  is the design vector; 
Fy is the force in the direction of plunger displacement, 
evaluated for an air-gap width  mm; 60 =g
C is the material cost, analytically derived from the 
material volume, assuming per-unit specific costs 1=ironc  
and  respectively; 3=copperc
Ωw is the area of the winding cross-section while 

yBsup  

is a fringing field indicator. 
Optimisation results were compared with a distribution of 
1,250 random samples, randomly generated in design space 
X : Fig. 9 shows the whole sampling in the F space, with 
the PFs obtained from both sampling and optimisation. 
 

 
 
Fig. 9. F-space sampling (1,250 points, circle), with relevant PF (star), 

and PF derived after optimisation (triangle). 
 
The device geometries corresponding to the two front ends 
are shown in Fig. 10. 

 

  
 

Fig. 10. Geometry of the linear actuator, for the maximum force Fy (left) 
and the minimum cost C configurations (right); the objective values are 
Fy = 2.1997 N, C = 0.0113 and Fy = 0.8639 N, C = 0.0066, respectively. 
 

From the design viewpoint, it is interesting to investigate the 
projection of the PS on two significant variables, just 
controlling the winding cross-section, i.e. h1 and h2 . To 
this end, in Fig. 11 the projection of the PS, derived after the 
optimisation procedure on the (h1,h2) plane, is compared 
with the orthogonal projection of the sampled PS on the 
same plane. The PS behaves just as conjectured: there is a 
single island covering the region, which shows quite 
clearly a linear dependence between the two variables. 

 

 
 

Fig. 11. PS projected on the (h1,h2) plane after optimisation, left, 
and the same projection after 1,250 point sampling, right. 

 



The ease in the result interpretation is one of the 
outstanding benefits of the method. Actually, the true 
benefit of the Bayesian imaging method is that the PS is 
well determined, and other optimal solutions can be 
inexpensively generated, by means of new extractions, until 
the requirements of the designer are met. In fact, identifying 
the boundary of the whole Pareto set in a reliable way, rather 
than determining a finite set of optimal solutions, is the goal of 
the design space exploration driven by a Bayesian inferential 
scheme. 
 
 

XIII. CONCLUSION 
 
At the end of this short excursion in the domain of optimal 
design methods, looking back at the pathways run through, the 
author realizes that it was possible to highlight just some basic 
topics of the domain and to describe them in a very concise 
and essential way. 
A general remark is that the impact of optimisation theory on 
electromagnetic design has stimulated completely new 
methods and techniques, which might revolutionise traditional 
design strategies and certainly deserve to be considered, even 
if not all of them become ultimately successful. 
A final remark on industrial electromagnetic design can be put 
forward. While there have been significant improvements in 
the capabilities in the area of MO design, the uptake by 
industrial designers has been somewhat limited. There are, 
possibly, two reasons for this. 
The first is that the evidence, at the industrial level, that 
computer-based optimisation processes can actually enhance a 
designer ability to create a better product has been lacking. 
The second relates to the fact that most optimisation packages 
currently available only handle a single objective and a limited 
number of design variables. In fact, suitable optimisation 
systems, with  no restriction in the size of the design space to 
be explored, and with simple and flexible expressions of 
objectives and constraints, would help match the needs of the 
designer. 
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