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Abstract —
for the analysis and design of electromagnetic devices

Numerical methods are frequently used

or for the solution of inverse problems of computational
electromagnetics. The precision provided by such sim-
ulators is usually fine but at the price of computational
cost. In some applications this cost might be crucial or
in some other applications users might require an easy-
to-use environment dedicated to their particular prob-
lem. These lead us to consider cheap surrogate models
in order to reduce the computation time still meeting
the precision requirements. Among all available surro-
gate models, we deal with the generation and applica-
tion of adaptive database of pre-calculated results com-
bined with certain interpolators. In this paper, three
adaptive sampling algorithms are investigated. Two of
them —one being based on simpler-mesh refinement, the
other is supported by the kriging interpolation— aim
at generating a so-called output-equidistant database,
i.e., the stored results are required to be equally repar-
titioned in the space of the measurable output data.
The third sampling strategy is designed to improve di-
rectly the precision of the kriging interpolator (subse-
quently fitted to the samples stored in the database).
The yielded databases can be used for the approximate
solution of both forward and inverse problems, they
can also be applied to build a problem-oriented easy-
to-use simulator that can be operated without any pre-
liminary knowledge of computational electromagnetics.
Beyond the mere approximations, the structure of the
output-equidistant databases carries considerable meta-
information on the modeled forward problem. This
meta-information can be exploited for the quantitative
characterization of the related inverse problem. All ap-
proaches are illustrated by examples drawn from eddy-
current nondestructive evaluation.

I INTRODUCTION

Computational electromagnetics is widely used for the solu-
tion of various engineering problems. In a number of appli-
cations (e.g., certain nondestructive tests), computational
load and time consumption are crucial, whereas the preci-
sion requirements are still demanding. However, an end-
user can neither be expected to know the mathematical
model in details nor have time to run overlong simulations.
So, nowadays more and more emphasis is being put on the
emulation, or surrogate modeling, [1]. Surrogate models in-
tend to imitate the behavior of the true model as far as
possible, but at a much less computational cost, however.
Many surrogate modeling techniques are sample-based,
i.e., the true model is evaluated for certain feasible config-
urations (e.g., defect prototypes in nondestructive evalua-

tion), and an interpolator is fitted to the observed data.
The configuration is specified by the input parameters
(spanning the input space), the measurable quantities are
called the output data, and the set of corresponding input-
output pairs is referred to as a database in the following.
Once the database is generated, the “end-user” does not
need the simulator any more, but only the database and the
appropriate interpolator. Most of the computational load is
then concentrated into the database generation stage, per-
formed only once and off-line using the simulator operated
by an “expert” who is not necessarily the end-user of the
computational results. Consequently, the time consump-
tion of the database generation is not of main interest. On
the contrary, at the end-user’s stage, the originally time
consuming issues (e.g., the solution of an inverse problem
or design optimization) can be addressed within a reduced
computational budget.

The key points of such interpolation-like surrogate mod-
eling are the choice of the samples and the applied inter-
polator. The sampling strategy can be chosen form a wide
range provided in the framework of Design-Of-FEzxperiments
(DOE, or Experimental Design). DOE is the collective
name of information-gathering techniques related to obser-
vations of a given phenomenon. At the beginning of DoE’s
long history, the word “experiment” referred to classical
(e.g., physical, chemical) experiments, whereas nowadays
running a computer code of a simulation is also considered
as a “computer experiment”.

As DOE plays a central role in our approaches, Subsec-
tion A is devoted to some traditional sampling strategies in
order to provide a historical basis. Then, we give the bio-
graphic background of the domains in which our research
efforts are concentrated. The simplex-mesh and the kriging-
based meshless adaptive sampling strategies are concerned
in Subsections B and C, respectively. Both method aims at
generating a database consisting of samples being “equally
spaced” in the space of the output data. Whereas such
equidistant sampling can easily be achieved in the input
space, the output-equidistant sampling is much more chal-
lenging. In Subsection D, a specific interpolation tool —the
functional kriging— is briefly introduced.

A Traditional Design-Of-Experiments

Classical approaches (see, e.g., [2], [3], [4] as recent text-
books) are based on only geometrical considerations related
to the repartition of input samples. These methods do not
take the interpolator into account, i.e., the sampling is in-
dependent from the subsequent use of the samples. Well-
known classical designs are the full-factorial design (spacing
the input samples at the nodes of a regular grid in the in-
put space) and the Latin hypercube sampling. The latter
was introduced to ensure the uniform representation of the
whole range of all input parameters in the sample-set, but
at a much smaller sample number than at a full-factorial
design ([5]). The essential work [6] gives a thorough review
of the first attempts about computer experiments, more-
over, proposes a method for the interpolation based on the
samples. More recently, classical DOE approaches are dis-
cussed by [7] and [8] (with applications in control theory,
citing almost 200 references).

A step towards adaptive DOE is to take into account the
interpolator subsequently fitted to the samples (but still
not accounting for the actually observed output values).



An example of such model-oriented DOE is the approach
of sample-pattern optimization presented in [9], whose goal
is to reduce the uncertainty of the kriging prediction in
a geostatistical application. Kriging —a stochastic tool for
function approximation— is dealt with in more details in
Subsection C and in Sections V and VI, respectively.

Fully adaptive DOE methods account not only for the
model but for the actually observed output samples as well.
Thus, most of the adaptive methods are sequential sam-
pling techniques, and the choice of the subsequent sample
depends on all the previous observations. An up-to-date
general overview is, e.g., [10], with more than 100 refer-
ences. In the following three subsections, our specific do-
mains of adaptive DOE are introduced.

B Mesh-based sampling

A remarkable manner of adaptive sampling is based on
meshing methods, inspired by meshes of Finite Element
Methods. Several papers deal with the optimal spatial sam-
pling of multivariate scalar functions in order to interpolate
them by means of simplex meshes [11, 12]. The key of
optimal sampling is the equidistribution of the interpola-
tion error among the mesh elements. In particular, it is
proved to be efficient to use an anisotropic mesh whose
edge lengths are adjusted according to the directions of the
principal curvatures of the function. This is because in or-
der to equidistribute the error of linear interpolation, the
edge length should be longer in a low curvature direction,
and shorter in a high curvature direction. These criteria
are usually tackled by introducing a specific local metric
based on the Hessian of the function, so that the triangu-
lar elements of the optimal sampling are locally isotropic
and their volumes are globally equidistributed under this
metric [13, 14].

Since our objective is the interpolation of multivariate
multicomponent functions of arbitrary dimensions (or even
functional data), we cannot use the above results — derived
for scalar functions — directly. An approach worth men-
tioning here is the so-called co-triangulation [15], which was
successfully applied to color image data (m = 3). However,
the method seems to be computationally too expensive for
higher number of data components (which can count some
tens or even hundreds in e.g., a typical nondestructive test-
ing application).

In order to extend the above concept of optimal sampling
for multicomponent functions, we developed a specific sam-
pling method that relies on the adaptive anisotropic trian-
gulation of the input space as well [16]. In this method, the
goal of adaptive mesh refinement is to balance the distance
between pairs of points connected by an edge, all over the
mesh. This “distance” however, is associated with the max-
imum estimated interpolation error along the given edge,
instead of being measured in a specific local metric based
on the Hessian, as mentioned above. It can be seen that
specifically for nearest neighbour (NN) interpolation this
edge length relates to the Euclidean distance of the data
stored in the connected mesh nodes, which allows us to call
it an “output-equidistant” sampling.

Among others, this paper addresses (in Section IV) the
technical issue of generating an optimal sampling of a mul-
ticomponent function, with respect to its NN interpolation
over simplicial mesh, by using existing and available mesh-
ing tools. To overcome the problem of anisotropy, in our

improved method the mesh-based sampling is carried out
in a hypothetical “control-space” in which the optimal mesh
is seen isotropic and quasi-uniform (see Section IV). Note
that although the mapping between the input space and
some control space (computational space) is a concept al-
ready introduced in several papers (see e.g. [12, 13]), up
to now the control space has not been used directly as the
“site” of mesh generation, rather just as a useful abstraction
to make the idea of anisotropy comprehensible.

Furthermore, in the proposed method, we apply mesh
deformation based on spring analogy to let the data points
find their position in the control space (see Section IV for
more details). Very similar relaxation technique based on
spring equilibrium is described in [17, 18]. Further related
techniques based on particle system model are reported
in [19, 20]. In this latter approach, proximity-based in-
teracting forces (both attractive and repulsive) are defined
among the data points, and a force-balancing configuration
is to be found using dynamic solution, similarly to a spring
system.

Although this work was solely inspired by the authors’ ex-
perience in mesh generation and NDT, after extending the
scope of looking for related works, it was soon realized that
very similar techniques (mesh mapping, spring analogy,
etc.) appear in various engineering applications. As a mat-
ter of fact, the common idea behind most of these works (in-
cluding this one) can be designated as “generalized surface
fitting” or “distance mapping”. Accordingly, the applied
methods are intended to capture low-dimensional structure
of data living in high-dimensional spaces or at least to pro-
vide a low-dimensional representation of them. Popular
application fields include geophysical modeling, computer
graphics, data visualization, data mining, clustering and
signal processing.

Two prevalent methods have to be highlighted. One
of them is the self-organizing map (SOM), a type of ar-
tificial neural network invented by Kohonen. It converts
complex, nonlinear statistical relationships between high-
dimensional data items into simple geometric relationships
on a low-dimensional (typically two-dimensional) display.
This is carried out through a competitive self-learning al-
gorithm that develops a topological ordering of the data.
Its application for scattered data interpolation and surface
fitting is presented in [21]. The other method is called
generative topographic mapping (GTM) [22]. GTM is a
statistically based approach intended for modeling continu-
ous, intrinsically low-dimensional probability distributions
embedded in high-dimensional spaces. It can be seen as
a non-linear form of principal component analysis (PCA),
the result of which is called the “principal manifold”. One
realization of GTM using elastic grids — based on a physical
analogy with elastic membranes — together with its appli-
cation to data visualization are presented in [23].

C Kriging-based meshless sampling

As an other approach, a meshless adaptive sampling strat-
egy for the generation of output-equidistant databases is
also discussed in this paper (Section V), [24, 25, 26]. The
approach consists in an iterative optimization procedure,
adding samples one-by-one, according to a given criterion
of optimality. The sample-insertion rule aims at spreading
out, the output samples as much as possible in the out-
put space. Since the optimization problem —to which the



sample-insertion rule boils down— appears to be computa-
tionally demanding, the realization of the method involves
the kriging interpolation of the auxiliary objective func-
tions.

By now, kriging —invented in the domain of geostatis-
tics in the 1960s— has become a widely used tool of func-
tion approximation. Thorough discussions can be found in
the textbooks, e.g., [27], [28] (from the original domain,
geostatistics), [29] (a rigorous mathematical approach), [3]
and [2] (containg a short but purposive summary from an
engineering viewpoint). Among the vast amount of jour-
nal papers, let us mention [6] (first introducing kriging
to model computer experiments), [30] as a quite recent
overview and [31] discussing an application for the solution
of eddy-current testing inverse problems.

D A novel manner of interpolation: functional kriging

A recent development of mathematics is the so-called func-
tional kriging, being an extension of the original theory (of
scalar function interpolation) to the interpolation of func-
tional output data [32, 33]. Functional kriging has success-
fully been applied for surrogate modeling in eddy-current
nondestructive evaluation, and has been compared to tradi-
tional (nearest neighbour, piecewise linear and radial basis
functions (RBF)) techniques [34]. However, in [34], the
samples were chosen in a naive way: a rectangular grid was
defined in the input space, and samples were placed to the
grid-nodes.

In Section VI, a functional kriging surrogate model is
dealt with, but the sampling strategy is adapted both to the
modeled forward problem and to the fitted kriging interpo-
lator [35]. The method is a sequential procedure, solving
an optimization task in each cycle in order to reduce the
uncertainty of the resulted interpolator as much as possible.
Our method is a combination of the one discussed in [36]
(based on the so-called jackknife variance estimation) and
a slight improvement inspired by an idea occurring in [37].

X K K

The paper is organized as follows. In Section II, the
basic idea of surrogate modeling by means of a database
(along with the formal definition of the output-equidistant
database) is discussed. Following this, the illustrative NDT
test example —being used throughout the paper- is out-
lined. Two methods for the generation of special output-
equidistant databases are presented in Sections IV (the
mesh-based approach) and V (the meshless method, using
the kriging prediction). The use of functional kriging in-
terpolation for surrogate modeling —along with an adaptive
sampling strategy— is dealt with in Section VI. In Sec-
tion VII, the possible practical applications of the method-
ologies are highlighted. Finally, some numerical results are
given in Section VIII. Beyond the comparison of the in-
terpolation capabilities of the yielded surrogate models, a
manner of visualization of the sample distributions is pre-
sented. A simple tool is also given to draw quantitative
conclusions on the related inverse problem.

Finally, let us suggest for further reading the papers co-
authored by the authors of the present publication where

most of the topics touched here are discussed in more details
[16, 31, 38, 39, 40, 34, 41, 24, 25, 26].

II SURROGATE MODELING BY MEANS OF A DATABASE

A Terms and notations

For the sake of generality, the approach is formalized in a
general manner. Let us define a well-behaved forward op-
erator F representing a forward problem (F is usually real-
ized via a numerical simulation of the mathematical model
of the underlying physical phenomena), an input vector
X = [x1,22,.. .,:z:p]T of p real parameters, and the corre-
sponding output scalar function! y(t). They are related
as

F: X—= Y

x> y(t) =F{x}, teT, (1)
y(t) is square-integrable over the domain 7', X C R? being
the input space and the output space Y is defined as the
codomain of F{x}:

Y = {y(t) : y(t) = F{x},¥x € X}. (2)

Y is then a subset of the L2(T) space consisting of all
square-integrable functions over T'.

Let us assume that each xy (k= 1,2,..
min max

and an upper bound, z;"" and z},
then be written as

.,p) has a lower
, respectively. X can

X = [xgnin,zrlnax} X [zIQnin7x5nax] N [zmin7xmax] . (3)

p p

An appropriate norm is defined on both X and Y. In the
input space, we have

p
11, = | S 07 (e — apin)?, (4)
k=1

with the scaling factors 7 introduced to put more or less
emphasis on a priori chosen parameters. Equal emphasis
on all parameters is obtained if n, = (zkmax - zkmin)fl. In
the L2(T) space (and so, in Y) the following norm is used:

1 2
sl = |77 /T () 2at, (5)

where |T'| is the measure of the domain 7" in a certain ap-
propriate sense, i.e., the norm of an output function is equal
to its root mean square.

Let us define a database D,, as a set of n samples, each of
them being a pair of input sample (x;) and output sample
(yi(t) = F{xi}), Vi=1,2,...,n. Formally:

D, = {(leyl(t))a (XQ, yQ(t))’ Tt (Xna yn(t))} . (6)

The surrogate model G,, is based on D,, and it approximates
F everywhere in X as

Gn: X—= Y
x— Gu{x}=F{x}, Vxe{xi,...,x,} (7)
Go{x} = F{x}, VxeX/{x1,...,Xn}.

The main advantage of such sample-based surrogate mod-
eling consists in concentrating the computational burden

IThe output is not necessarily a function, it can be a (usually
high dimensional) vector as well. Moreover, even if the output is
theoretically considered as a function, in practice, only its discrete
representation can be measured.



(the forward simulations) to the first stage. The generation
of the database is needed to be performed only once, prac-
tically by “experts”, equipped with the numerical simulator
(which might be an expensive commercial software and/or
more complex than an “end-user” can use it). In the second
stage, the “end-user” must have only the tools for the in-
terpolation and the database, respectively. In other words,
the G,, surrogate model represents an “off-line” simulator of
the forward problem.

In this paper, two interpolators are dealt with. In the
case of the so-called output-equidistant databases (defined
in the next subsection, generated by one of the two methods
discussed in the sections IV and V), the Nearest Neighbour
(NN) interpolation method is used, formalized as

Gn{x} =y;(t), where j = arg ._{n;n [[x —xil[, (8)

The main advantages of NN are easy interpretability (close
inputs — supposedly similar outputs) and low computa-
tional cost. Moreover, the error of the NN interpolation is
believed to be reduced by the output-equidistant sampling.

The second interpolation method used in this paper is
the functional kriging. This tool —providing smooth and
usually more precise interpolations than NN— will briefly
be discussed in Section VI.

B Output-equidistant database

An output-equidistant database is characterized by the fol-
lowing two properties:

e For all outputs y(t) € Y, an output sample y;(t) exists
which is “not too far” from y(t). Let us define v(x) as
the distance to the nearest sample:

0= min [IFG}-ull,. )
then the first criterion is formalized as

maxy(x) < 4, (10)

with the positive constant A.

e The output samples are evenly distributed in the sense
that none of the output samples is “too close” to an
other one, and every output sample has its nearest
neighbour “not too far”. For a formal definition, let
us introduce the minimal and maximal distances be-
tween the nearest neighbours:

i = i (im0 = w501, )
o = =15 n (j—1,2r,r.1},r7lh J#i lyilt) = vs (t)lly)

(11)
Then we require —as second criterion— the equivalence
of dpin and dpax:

dmax
=1

12
dmin ( )

If D, simultaneously fulfils the criteria (10) and (12), we
call it an output-equidistant database. The algorithms pre-
sented in the sections IV and V are designed to generate
such output-equidistant databases. Beyond being adequate
for the NN interpolation, the output-equidistant databases
provide certain meta-information on the studied forward
problem, which might be used to characterize the related
inverse problem as well (Section VIII).

IIT TEST EXAMPLE

The methods and considerations are illustrated with a sim-
ple example taken from the field of eddy current test-
ing (ECT). Here we define the investigated configuration
(Fig. 1). An infinitesimally thin crack affects a non-
magnetic, homogeneous infinite metal plate with a thick-
ness of 1.25mm and an electrical conductivity of ¢ =
10S/m. An air-cored probe coil (driven by a time-
harmonic current of frequency f = 150kHz) is scanning
a centered rectangular surface of 5mm x 20 mm above the
damaged zone. The impedance change of the coil AZ (influ-
enced by the crack) is measured at 11 x 41 regularly spaced
positions along « and 3. The output signal y(¢) is then the
impedance of the coil, ¢ being related to the position of the
coil (denoted by crosses in Fig. 1).

The EM phenomenon is modeled using a surface integral
approach. The numerical simulation —representing F— is
based on the Method-of-Moments (for details, see [42]).

Table 1: Bounds of the input parameters.

Ex ‘ A (mm) ‘ B (mm) ‘ L (mm) ‘ D (%) ‘
min max min max min max min max
2-par. 0 0 1 10 5 90
3-par. —1.5 1.5 0 1 10 5 90
4-par. —1.5 1.5 —1.5 1.5 1 10 5 90

The crack is rectangular-shaped, perpendicular to the
surface of the plate and it opens to the side opposite with
the coil. The configuration can be described using four pa-
rameters: L and D are the length and the depth (in % of
the thickness of the plate) of the crack, respectively; A and
B are the co-ordinates of the center of the crack along «
and /. Three configurations are then used to illustrate our
approaches:

e 2-parameter example, where only two parameters (L
and D) are varying, A and B being both 0.

e 3-parameter example, the x co-ordinate of the center
of the crack (A) is added as input parameter.

e 4-parameter example, all four parameters are now con-
sidered as input parameters.

The minimum and the maximum values of each parameter
are defined in Table 1.

IV GENERATION OF OUTPUT-EQUIDISTANT DATABASES:
THE MESHING APPROACH

In this section a procedure for obtaining output-equidistant
sampling based on meshing methods inspired by meshes of
finite element method is discussed. The obtained database
is known to be optimal for NN interpolation, however, the
described procedure can be adapted to other interpolation
methods through the appropriate definition of the distance.
The basic idea behind the database generation method can
be explained as follows.

We introduce an auxiliary space of points £ € Z C RP.
= is called the control space. We attempt to establish a
local mapping ¢ : = — X in such a way that the projection
of the manifold F(X) onto = approximately preserves the
distances of points, at least locally within small neighbour-
hoods. This mapping is realized by the local barycentric
mapping between two corresponding meshes living in X and
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Figure 1: Tlustration of the studied benchmark problem. Probe positions are marked by crosses (X).
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Figure 2: Steps of database generation in the 2-parameter example: the seed element (a), refinement (b), growth (c) and
the final database after subsequent steps of refinement and growth (d).

in Z, respectively. The nodes of the mesh in X represent
the x; input-samples. Therefore the corresponding mesh in
= has to be generated in a way that its edge lengths reflect
the output-distances between the pairs of nodes:

1€ — &l ~ [|F(€(&:) — F &I,

for all nodes numbered ¢ and j that are connected by an
edge. The norm |[-[|, in = is defined similarly to the one in
X defined by (4).

After all, the sampling of the forward operator can be
considered optimal in the above terms if the correspond-
ing mesh in = looks isotropic and uniform. However, in
the practice we use this relationship in the opposed direc-
tion. We generate a “quasi-uniform” mesh in the control
space using adaptive refinement and smoothing. This pro-
cedure controls the appropriate sampling of the forward op-
erator, which normally yields a “quasi-optimal” sampling.

(13)

The method is described in the followings. For an illustra-
tion, see Fig. 2.

We start with p + 1 predefined or random samples,
(xi,yi(t)), ¢ = 1,...,p+ 1, which form a simplex called
the seed element (Fig. 2a). The first task is to find the
picture of the seed element in =. Having no better idea
we let all €, = x;. From this point the following iterative
procedure is carried out.

Step 1: relaxation. To let the points find their “right
places” in =, we utilize a mesh relaxation technique
based upon spring analogy, which is often applied in
the finite element solution of moving boundary prob-
lems [43]. In our implementation, the edges of the mesh
are considered as spring segments, having an equilib-
rium length equal to the output-distance between the

connected points. Point positions are updated one-by-



input space

one to satisfy the local equilibrium condition,

N O A
0=2 7% (1 & &1L, )gz & 04

where 9;; is the spring stiffness, v is the number of
points connected to the ith point in the mesh. This is
repeated until the migration of the points has an end.
Note that no constraints are placed on the boundary
nodes of the mesh.

Step 2: refinement. Each simplex having at least one edge

longer than the prescribed limit A in (10) is refined by
inserting a new point, say £, into its circumcenter
(Fig. 2b). Each point insertion has to be followed by
the evaluation of the forward problem, i.e. the com-
putation of F(£(£*)), usually by calling an external
program.

Step 3: growth. In order to explore the manifold F(X),

some new points outside the existing mesh are inserted
(Fig. 2c). Let &* be a tried point. If the output-
distance of £€* measured from any existing point is
smaller than A, or x* = /(£*) ¢ X, the point is ig-
nored. If there was no new point inserted in Step 2
and Step 3, the procedure terminates, otherwise it re-
turns to Step 1.

Remarks:

e The iteration procedure involving local equilibrium in

Step 1, which is similar to the Gauss-Seidel iteration
for solving linear systems, may exhibit poor conver-
gence properties especially in higher dimensions. More

control space
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Figure 3: Optimized database in the 3-parameter example: distribution of the input samples (left) and the corresponding
3-dimensional mesh in the control space (right).

spring constant equal the inverse of the data-distance
(vest length): 9, = 1/ |lyi(t) — y; (1), [43].

For the point insertion in Step 2 and Step 3 we use the
free software Qhull [44], which is a powerful algorithm
for creating Delaunay-meshes. However, its limitation
in dimensions to p < 9 imposes the same practical limit
for the database generation method.

The mapping ¢, which is used in Steps 2-3, is subject
to slight changes during Step 1 because of node reloca-
tions, but no critical behaviour has been experienced
in connection with this effect yet.

The method assumes that the manifold F(X) (ie.,
the output space) is continuous and relatively smooth.
Even if this is the case, the resulting mesh in X is not
necessarily valid, meaning that it contains tangles or
holes. This is not a fundamental problem if the con-
nectivity information is not used by the interpolator
(e.g. the samples of F are used for training neural
networks).

The method can be adapted to other local interpola-
tion methods (in which the refinement of the sampling
improves the quality of interpolation on a local basis)
through the condition (13) by changing its left hand
side to the maximum interpolation error estimated
along the given edge. We have successfully completed
and tested this extension for linear interpolation using
the original database generation method [16]. Note
that the mesh database optimized for linear interpo-
lation can be much more economic than the database
optimized for NN interpolation.

sophisticated solutions on spring system equilibrium

can be found in [18]. In Fig. 2, an output-equidistant database generated for

the 2-parameter example is shown, whereas in Fig. 3, the
e Node collision and the flip of simplices during relax-  final database in the case of the 3-parameter example is
ation can be more or less prevented by choosing the visualized. Both pictures show the equally distributed mesh



in the control space and the irregular sampling of the input
space.

V' GENERATION OF OUTPUT-EQUIDISTANT DATABASES:
THE KRIGING APPROACH

A Incremental distance-based sampling procedure

An other possible way of generating an output-equidistant
database is explained in this section: the sought equidis-
tant output sample distribution is attempted to achieve by
using the mazimin method. In our context, maximin means
maximizing the minimal distance between any pair of out-
put samples. In so doing, one can heuristically expect for
databases being output-equidistant in the sense discussed
in Section II. An incremental algorithm for the database
generation is proposed, consisting in two main stages:

1. at the beginning of the procedure, some initial samples
are chosen by hand (e.g., by using one of the classical
DOE tools, such as Latin hypercube sampling);

2. then, samples are inserted one-by-one, according to a
maximin criterion.

For a formal description, let us introduce the so-called dis-
tance functions:

Qr(x) = [|F(x) —yk(®)[[,, where k=1,2,....n. (15)
The database consists of n samples, and Qp(x) is related
to the kth sample. If one intends to add the next, (n +

1)th sample to the database (in the incremental loop), the
evaluation of the following expression is needed:

16
xeX [k=1,2,...,n ( )

Qk(x)] :

Xp41 = argmax { min
Since the algorithm looks only one-step ahead and no back
step is allowed, the sample distribution is not an exact solu-
tion of the maximin problem. Moreover, the initial samples
are not chosen according to the criterion (16). To over-
come these pitfalls, a sample-removing strategy must also
be included in the sampling strategy. After, say, every two
sample insertions, one sample is removed from the database

as follows. Let dg;;) the distance between the pair of the
nearest output samples if the rth sample was removed:

d(*’“) —

min

. . i
i=1 2, i <j_1,2f?},?, #m’”yZ( ) =il )Hy)
(17)

In other words, the sample which would increase the most
the dpin minimal distance (12) if it was not included in the
database, it is indeed removed.

B Realization by kriging interpolation

The optimization problem (16) is computationally expen-
sive since the forward operator F is involved in the distance
functions Qx(x). An approximate solution is proposed by
using the kriging interpolation. Some references for kriging
have already been given in the Introduction.

Kriging models the unknown Q(x) function by a £(x)
Gaussian random process. The process is assumed to be
stationary, with a known covariance function k(). The
observations of Qx(x) at the locations x1,xXa,...,X, are

considered as realizations of the Gaussian random vari-
ables £(x1),&(x2),...,&(xy). The method computes the
best linear unbiased prediction (BLUP) of £(x) in the space
spanned by these n Gaussian random variables. The pre-

o~

diction is denoted by £(x) and expressed as

n

{(x) = Z Ai(x)€(xi).

i=1

(18)

The coefficients \;(x) are computed by using the covari-
ance function k(-), via the solution of a linear system of n
equations. The unbiasedness of the prediction means that
the mean of {(x) and &(x) are equal. The term best refers
to the fact that the prediction (18) has the smallest error
(in the sense of error variance) among all unbiased linear
predictors.

Having evaluated Q(x) at the locations x1,xa,...,X,
(this is straightforward since Qr(x1) = [lyx(t) —u(?)]l,
k,0l =1,2,...,n), the mean of the predictor process (con-
sidered as the prediction for Qx(x)) is

n

Qn(x) = 3 M()Qx ().

i=1

(19)

Let us note that the coefficients \;(x) do not depend di-
rectly on the observed values of Q(x) but only on the lo-
cation of the x1,X», ..., X, input samples. This fact makes
possible to use the same &(x) process for modeling all Qy, (x)
distance functions.

The original optimization problem (16) can then be
solved approximately at a much less computational cost by
replacing Qr(x) by Qk(x) The sampling algorithm then
becomes tractable even when carrying out an exhaustive
search in X to solve (16).

Further details on this kriging-based sampling algorithm
can be found in our recent works [25, 24, 26].

VI FUNCTIONAL KRIGING INTERPOLATION

The output-equidistant sampling methods (Section IV
and V) are basically designed for the use of nearest neigh-
bour interpolation based on the final dataset. As it
will be presented in Section VIII, such output-equidistant
databases might provide additional meta-information on
the studied forward problem. However, if the main goal
is the interpolation itself, one might consider more sophis-
ticated interpolators than the NN interpolator.

We have successfully applied a certain version of kriging
interpolation to construct sample-based surrogate models.
The original kriging framework (slightly touched in Sec-
tion V) has recently been extended to the prediction of
functional data [32, 33]. Similarly to the scalar form (19),
the functional output y(t), can directly be predicted as

Fix} = Gn{x} = Z Ai(x)yi(t),

i=1

(20)

where x; and y;(¢) are the samples stored in the database.
The coefficients \;(x) are determined in a stochastic frame-
work; a Gaussian random process model (similar to (18)) is
applied. However, since the modeled data is functional, the
modeling random processes are also functional processes.
The so-called trace-covariance has to be introduced and es-
timated as well. However, these details are out of our scope
herein, see [34] for a detailed discussion.



Though the above kriging interpolator usually performs
well even when the samples are generated in a naive way
(e.g., by sampling regularly on a grid in the input space),
the precision can further be improved by the adaptive gen-
eration of the database. To this end, we have developed
a sequential sampling algorithm aiming at the generation
of databases adapted to both the modeled problem and
the subsequently used functional kriging interpolator [35].
The procedure starts with a small n number of initial in-
put samples (x1,Xa,...,Xy), chosen according to a naive
design (e.g., a regular grid in the input space). Observa-
tions of F are performed at these locations, and a tempo-
rary kriging interpolator (20) is fitted. Then, an iterative
loop starts, inserting new samples one-by-one according to
a certain criterion being related to the estimated predic-
tion error. The latter is obtained by using the so-called
jackknifing technique (a well-known tool —being similar to
cross-validation— in statistics to estimate the uncertainty
of predictors). Jackknifing provides the o3, (x) estimated
variance of the kriging predictor, which can be considered
as a measure of the expected interpolation error to a cer-
tain extent. Based on this variance, the following heuristic
sample-insertion rule can be formalized:

||X_Xi||z U?ack(x) ) (21)

)

Kot = argi|_foin
where the first factor (the minimal distance in the input
space) is involved in order to avoid clustering samples in the
input space. By sequentially repeating the above sample-
insertion, the yielded database is expected to be a balance
of input-space filling and adaptive sampling.

VII APPLICATION OF ADAPTIVE DATABASES IN

COMPUTATIONAL ELECTROMAGNETICS

The generated database together with a properly selected
interpolator can be used in various applications related to
computational electromagnetics. In this section, we would
like to highlight some of such possibilities.

Lightweight simulator. In many cases, the end user of
a particular design problem is not an expert in using general
purpose EM field calculation softwares. At the same time,
such design problems usually have only a few number of de-
gree of freedoms. As an example, in the case of the design of
a new type of eddy current testing (ECT) probe, the basic
geometry of the probe is usually fixed, only certain geo-
metric parameters are enabled to vary between pre-defined
bounds. To qualify the performance of such probes, one
needs to know the detected response of the probe for only
one or two defect prototypes. All the information needed
for the design considering the given constrains can be pro-
vided to the end-user in the form of a database and an in-
terpolator, embedded in a very simple graphical interface.
This design tool is called as “lightweight simulator”.

The generation of the database can be done indepen-
dently by an expert in EM field simulation who can apply
the most effective software and model for the calculations.
Also, during the database generation one can consider prac-
tical constrains of the design, like the noise of the measure-
ments or the manufacturing tolerances of the design param-
eters of the probe.

Teaching neural networks. An optimal database can
be used to teach neural networks. We compared the per-
formance of neural networks taught with databases being
equidistant in the input space (this is the database type
usually used for teaching in the literature) and in the out-
put space (the one we call output-equidistant database). It
was found that the neural networks perform similarly if the
input data are free from noise, however, the neural network
taught with output-equidistant database outperforms the
other one if the observations are subjected to measurement
noise [40].

Solution of inverse problems. The most important ap-
plication of the adaptive databases is, however, in the field
of the solution of inverse problems using optimization meth-
ods, direct search or interpolation in the database. Such
problems related to various different applications have re-
cently been solved. Examples can be read in [16, 39, 24, 45].

Qualification of inverse problems. In addition to
the successful solution of an inverse problem, the output-
equidistant database can also be used to gather additional
information (meta-information) on the inverse problem it-
self. We believe that this is a very important application,
having theoretical importance as well. In the following Sec-
tion we discuss this point in more details.

VIII EVALUATION OF THE DATABASES AND MEANS OF

INVERSE PROBLEM CHARACTERIZATION

In this section, the use of the generated databases is in the
focus. The precision provided by the surrogate models is
assessed in terms of the interpolation error (Subsection A)
and a method for the qualitative comparison of output sam-
ple distributions is given (Subsection B). Finally, a sim-
ple way of inverse problem characterization (enabling us to
draw quantitative conclusions on the possible ill-posedness
of the problem) is presented in Subsection C.

The two approaches of output-equidistant sampling (Sec-
tions IV and V) yield rather similar databases. A common
limitation of both methods is the number of input param-
eters: the meshing is limited by p < 9 (due to the applied
Qhull mesh generator), whereas in the kriging-based ap-
proach, our numerical studies showed that the evaluation
of the sample insertion criterion (16) becomes numerically
demanding with increasing number of input parameters.
One can say that both approaches have the same practical
upper limit for p, however, there is no theoretical limitation
in any of the two methods. An advantage of the mesh-based
methodology is the connectivity information represented by
the mesh, enabling higher order interpolation (e.g., linear)
over the simplices. On the other hand, the distance func-
tions of the kriging-based strategy make possible the quan-
titative characterization of the inverse problem in an easy
way.

The numerical studies presented herein are all based
on the test example defined in Section III. The mesh-
supported sampling has already been illustrated in Sec-
tion IV, hereafter the output-equidistant sampling is per-
formed by the kriging-based approach.



A Precision of the forward interpolation

The most plausible way to compare the different surrogate
models is to compute the discrepancy between the true out-
puts (by evaluating F) and the output of the surrogate
model, i.e., to consider the interpolation error

£(x) = [[Ga{x} — FIx}], - (22)
In Fig. 4, four surrogate models are compared in the sense
of £(x). The true output —also £(x)- is computed over a
37 x 18 grid in the input space. The worst performance is
shown by the combination of the naive grid sampling and
the NN interpolation (Fig. 4a). NN interpolation yields
smaller error when using an output-equidistant database
(Fig. 4b). The smooth functional kriging interpolators pro-
vide much finer precision even by grid-sampling (Fig. 4c),
whereas the adaptive sampling strategy of functional krig-
ing results in outstanding precision (Fig. 4d).

The distribution of the input samples in the output-
equidistant database (Fig. 4b) has an important message
concerning the modeled forward problem. In the large-
crack region, much more samples have been inserted than
in the region of small (mainly in the sense of the depth D)
cracks. Since the output sampling is output-equidistant,
one can conclude that F varies rapidly in the large-crack
region and has almost no variation in the small-crack re-
gion. This meta-information carried by the structure of the
database will be further discussed and exploited in Subsec-
tion C.

B Visualization of the output sample distribution

Since the output data lie in a function space, direct vi-
sualization is not possible, but the multidimensional scal-
ing (MDS) method [46] can be applied instead. The
method gives a low-dimensional representation of the out-
put samples whereas the distance relations remain more-
or-less unchanged. Let us consider a database including
n samples. The main idea of MDS is to space n points
(w1, Ty ..., ™,) in a k-dimensional Euclidean space so
that the pairwise distances between the new points are as
similar as possible to the distances between the original
output samples. Formally, the so-called stress

S (i)~ w1, ~lmi— 1) (23)

i=1 j=i+1

is to be minimized by the appropriate spacing of the points
7; (herein || - || stands for the Euclidean norm). Specially,
if k = 2, the resulted repartition can easily be plotted.
This plot can then be considered as the low-dimensional
representation of the original dataset.

In Fig. 5, the MDS plots of the databases in the
2 and 4-parameter cases are presented. The output-
equidistant sampling yields balanced output sample distri-
bution whereas the regular input sampling causes distorted
output sampling. In the latter case, some samples appears
to cluster in certain regions of the output space; other re-
gions are unexplored at the same time. According to the
visualized repartition of the output samples, the proposed
sampling algorithm indeed outperforms the naive grid sam-
pling approach.

C Ill-posedness and inverse-mapped noise levels

As it is well known, inverse problems (determining the con-
figuration knowing the measured EM field) might be ill-
posed: the solution might not exist, not be unique and not
be stable. The latter refers to the fact that small varia-
tions in the measured data can cause high variations in the
reconstructed configuration. This sensitivity (being a ba-
sic property of F) can be assessed to a certain extent by
using the output-equidistant databases. In Subsection A,
we have already pointed out the relation between the input
sample density and the assumed behaviour of the forward
operator.

Based on the distance functions (15), the ill-posedness of
the inverse problem can quantitatively be addressed. Let
us assume that a uniform noise level § —being an aggregated
representation of all sources of uncertainty— affects the mea-
surement at hand. For a given measured output g(¢), one
then has to consider all functions y(t), being closer to §(t)
than a distance 0, as possible real (noise-free) data. Ex-
pressively, one has to imagine a sphere with radius § and
center §(t) in the L?(T) function space. The uncertainty of
the solution of the inverse problem is in fact related to the
image of this sphere in the input space. Via the distance
functions, such inverse imaging boils down to a simple in-
equality:

o) = {x e X: | F{x} - mi(t)ll, <0} =

={xeX:Qi(x)<d}, (24)

where @? is the “inverse-mapped” noise region, if the mea-
sured data ¢(¢) is assumed to be equal to the ith sample in
the database.

The shape and the dimensions of the different ®? cells
provide valuable information about the underlying prob-
lem, since they show how the noise influences the uncer-
tainty of the solution of the inverse problem. Where F
varies rapidly, a smaller ®¢ is expected than in the regions
where F is flat, i.e., when the problem tends to be ill-posed.
This formalization gives an explicit expression of the within
reach precision at a given noise level.

Let us also mention that if the noise level § is known
when generating the database, the latter can be optimized
by using A = 24 in (10).

In the realization, due to the high computational cost,
not the exact distance functions but their kriging predic-
tions are used. Thus, the approximate noise-cells é? can
be determined as

@f:{xeX:Qi(x)gé}.

In Fig. 6, the approximate noise-cells in the 2-parameter
example for three different 0 levels are shown. Let us no-
tice that the database is approximately output-equidistant,
even so the shape and the dimensions of the different cells
¥, in the input space are very diverse. The large cells in
the region of small cracks highlight that (i) a finer sam-
pling is not needed, and (ii) the difficulty of retrieving such
small defects. On the contrary, the small cells in the region
of large cracks justify the dense sampling. These results
are in good agreement with the experience and the expla-
nation of the evaluation of the forward interpolation error
(Subsection A).

Further discussion on the inverse mapping and more nu-
merical examples can be found in [24].

(25)
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(d) Adaptive sampling + functional kriging interpolation.
(Blue squares: initial samples; red dots: sequentially added
samples.)

Figure 4: Interpolation error (¢(x) in m€) using different sampling and interpolation methods. All databases include 36

samples.

Figure 6: Inverse-mapped noise levels and input samples
for three different noise levels in the 2-parameter example,
using n = 25 samples. (Taken form [24].)

IX CONCLUSION

Different sample-based adaptive surrogate modeling ap-
proaches have been presented in the paper. The output-
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equidistant databases are combined with the nearest neigh-
bour interpolation. The use of functional kriging as in-
terpolator has also been presented, along with a sampling
algorithm which improves the precision of the surrogate
model being built.

For the generation of output-equidistant databases, two
methods are proposed. First a p-dimensional simplex mesh
has been used as a generic interpolator of the forward prob-
lem. Adaptive mesh refinement and smoothing techniques
are applied for exploring the forward operator and for learn-
ing the topological and metric relationships of its data sam-
ples. By introducing the control space, where meshing takes
place, one can avoid the usage of special mesh generators.
In the second approach, the generation of the database is
recast as an optimization problem, which is solved itera-
tively, by inserting the next input sample with respect to
the distance between points in the output space. This is an
expensive-to-compute optimization problem, thus, the use
of a kriging interpolator is proposed. In spite of the essential
difference of the working principles, the two methodologies
yield similar final databases.

In the case of functional kriging interpolation (instead
of nearest neighbour), the database generation involves the
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(d) 4-parameter example, output-equidistant sampling with 81
samples.

Figure 5: Multidimensional scaling representation of output samples in the 2 and 4-parameter cases, with 36 samples.
The output-equidistant databases have been generated by the kriging method discussed in Section V.

estimated interpolation error via the jackknife variance es-
timation. The variance of the prediction error is a natural
measure of the quality of the interpolation in the stochas-
tic framework of kriging. The resulted sampling strategy is
thus fully adapted to both the modeled forward operator
and the applied interpolator.

The efficiency of all approaches is illustrated by an eddy-
current nondestructive application using two, three and
four defect parameters.

The surrogate models involving functional kriging in-
terpolation appear to outperform the strategies based on
output-equidistant databases in the sense of interpolation
precision. However, the special structure of the output-
equidistant databases carries some meta-information on the
modeled forward problem, making possible the characteri-
zation of the related inverse problem to a certain extent. An
inverse mapping of a noise level is discussed, which results
in a quantitative assesment of the uncertainty of the recon-
structed input parameters in the presence of measurement
noise.

As a common limitation of the presented approaches, we
must note the relatively small p number of considered input
parameters. Though there is no theoretical limitation, the
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increasing computational load arises a limit of, say, p < 9.
However, we believe that further development can raise this
upper limit.

The future research will be focused on (i) the generation
of databases optimized for inverse interpolation, and (ii)
on the analysis of uncertainty propagation (from different
sources, e.g., imprecise knowledge on the material param-
eters, simulation errors, measurement noise) involving the
kriging-based tools of database generation.
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