
Tehnial artileUse of Adaptive Databases forSurrogate Modeling of Ele-tromagneti Problems, Illustra-tion with NDE ExamplesAbstrat � Numerial methods are frequently usedfor the analysis and design of eletromagneti deviesor for the solution of inverse problems of omputationaleletromagnetis. The preision provided by suh sim-ulators is usually �ne but at the prie of omputationalost. In some appliations this ost might be ruial orin some other appliations users might require an easy-to-use environment dediated to their partiular prob-lem. These lead us to onsider heap surrogate modelsin order to redue the omputation time still meetingthe preision requirements. Among all available surro-gate models, we deal with the generation and applia-tion of adaptive database of pre-alulated results om-bined with ertain interpolators. In this paper, threeadaptive sampling algorithms are investigated. Two ofthem �one being based on simplex-mesh re�nement, theother is supported by the kriging interpolation� aimat generating a so-alled output-equidistant database,i.e., the stored results are required to be equally repar-titioned in the spae of the measurable output data.The third sampling strategy is designed to improve di-retly the preision of the kriging interpolator (subse-quently �tted to the samples stored in the database).The yielded databases an be used for the approximatesolution of both forward and inverse problems, theyan also be applied to build a problem-oriented easy-to-use simulator that an be operated without any pre-liminary knowledge of omputational eletromagnetis.Beyond the mere approximations, the struture of theoutput-equidistant databases arries onsiderable meta-information on the modeled forward problem. Thismeta-information an be exploited for the quantitativeharaterization of the related inverse problem. All ap-proahes are illustrated by examples drawn from eddy-urrent nondestrutive evaluation.I IntrodutionComputational eletromagnetis is widely used for the solu-tion of various engineering problems. In a number of appli-ations (e.g., ertain nondestrutive tests), omputationalload and time onsumption are ruial, whereas the prei-sion requirements are still demanding. However, an end-user an neither be expeted to know the mathematialmodel in details nor have time to run overlong simulations.So, nowadays more and more emphasis is being put on theemulation, or surrogate modeling, [1℄. Surrogate models in-tend to imitate the behavior of the true model as far aspossible, but at a muh less omputational ost, however.Many surrogate modeling tehniques are sample-based,i.e., the true model is evaluated for ertain feasible on�g-urations (e.g., defet prototypes in nondestrutive evalua-

tion), and an interpolator is �tted to the observed data.The on�guration is spei�ed by the input parameters(spanning the input spae), the measurable quantities arealled the output data, and the set of orresponding input-output pairs is referred to as a database in the following.One the database is generated, the �end-user� does notneed the simulator any more, but only the database and theappropriate interpolator. Most of the omputational load isthen onentrated into the database generation stage, per-formed only one and o�-line using the simulator operatedby an �expert� who is not neessarily the end-user of theomputational results. Consequently, the time onsump-tion of the database generation is not of main interest. Onthe ontrary, at the end-user's stage, the originally timeonsuming issues (e.g., the solution of an inverse problemor design optimization) an be addressed within a reduedomputational budget.The key points of suh interpolation-like surrogate mod-eling are the hoie of the samples and the applied inter-polator. The sampling strategy an be hosen form a widerange provided in the framework of Design-Of-Experiments(DOE, or Experimental Design). DOE is the olletivename of information-gathering tehniques related to obser-vations of a given phenomenon. At the beginning of DoE'slong history, the word �experiment� referred to lassial(e.g., physial, hemial) experiments, whereas nowadaysrunning a omputer ode of a simulation is also onsideredas a �omputer experiment�.As DOE plays a entral role in our approahes, Subse-tion A is devoted to some traditional sampling strategies inorder to provide a historial basis. Then, we give the bio-graphi bakground of the domains in whih our researhe�orts are onentrated. The simplex-mesh and the kriging-based meshless adaptive sampling strategies are onernedin Subsetions B and C, respetively. Both method aims atgenerating a database onsisting of samples being �equallyspaed� in the spae of the output data. Whereas suhequidistant sampling an easily be ahieved in the inputspae, the output-equidistant sampling is muh more hal-lenging. In Subsetion D, a spei� interpolation tool �thefuntional kriging� is brie�y introdued.A Traditional Design-Of-ExperimentsClassial approahes (see, e.g., [2℄, [3℄, [4℄ as reent text-books) are based on only geometrial onsiderations relatedto the repartition of input samples. These methods do nottake the interpolator into aount, i.e., the sampling is in-dependent from the subsequent use of the samples. Well-known lassial designs are the full-fatorial design (spaingthe input samples at the nodes of a regular grid in the in-put spae) and the Latin hyperube sampling. The latterwas introdued to ensure the uniform representation of thewhole range of all input parameters in the sample-set, butat a muh smaller sample number than at a full-fatorialdesign ([5℄). The essential work [6℄ gives a thorough reviewof the �rst attempts about omputer experiments, more-over, proposes a method for the interpolation based on thesamples. More reently, lassial DOE approahes are dis-ussed by [7℄ and [8℄ (with appliations in ontrol theory,iting almost 200 referenes).A step towards adaptive DOE is to take into aount theinterpolator subsequently �tted to the samples (but stillnot aounting for the atually observed output values).1



An example of suh model-oriented DOE is the approahof sample-pattern optimization presented in [9℄, whose goalis to redue the unertainty of the kriging predition ina geostatistial appliation. Kriging �a stohasti tool forfuntion approximation� is dealt with in more details inSubsetion C and in Setions V and VI, respetively.Fully adaptive DOE methods aount not only for themodel but for the atually observed output samples as well.Thus, most of the adaptive methods are sequential sam-pling tehniques, and the hoie of the subsequent sampledepends on all the previous observations. An up-to-dategeneral overview is, e.g., [10℄, with more than 100 refer-enes. In the following three subsetions, our spei� do-mains of adaptive DOE are introdued.B Mesh-based samplingA remarkable manner of adaptive sampling is based onmeshing methods, inspired by meshes of Finite ElementMethods. Several papers deal with the optimal spatial sam-pling of multivariate salar funtions in order to interpolatethem by means of simplex meshes [11, 12℄. The key ofoptimal sampling is the equidistribution of the interpola-tion error among the mesh elements. In partiular, it isproved to be e�ient to use an anisotropi mesh whoseedge lengths are adjusted aording to the diretions of theprinipal urvatures of the funtion. This is beause in or-der to equidistribute the error of linear interpolation, theedge length should be longer in a low urvature diretion,and shorter in a high urvature diretion. These riteriaare usually takled by introduing a spei� loal metribased on the Hessian of the funtion, so that the triangu-lar elements of the optimal sampling are loally isotropiand their volumes are globally equidistributed under thismetri [13, 14℄.Sine our objetive is the interpolation of multivariatemultiomponent funtions of arbitrary dimensions (or evenfuntional data), we annot use the above results � derivedfor salar funtions � diretly. An approah worth men-tioning here is the so-alled o-triangulation [15℄, whih wassuessfully applied to olor image data (m = 3). However,the method seems to be omputationally too expensive forhigher number of data omponents (whih an ount sometens or even hundreds in e.g., a typial nondestrutive test-ing appliation).In order to extend the above onept of optimal samplingfor multiomponent funtions, we developed a spei� sam-pling method that relies on the adaptive anisotropi trian-gulation of the input spae as well [16℄. In this method, thegoal of adaptive mesh re�nement is to balane the distanebetween pairs of points onneted by an edge, all over themesh. This �distane� however, is assoiated with the max-imum estimated interpolation error along the given edge,instead of being measured in a spei� loal metri basedon the Hessian, as mentioned above. It an be seen thatspei�ally for nearest neighbour (NN) interpolation thisedge length relates to the Eulidean distane of the datastored in the onneted mesh nodes, whih allows us to allit an �output-equidistant� sampling.Among others, this paper addresses (in Setion IV) thetehnial issue of generating an optimal sampling of a mul-tiomponent funtion, with respet to its NN interpolationover simpliial mesh, by using existing and available mesh-ing tools. To overome the problem of anisotropy, in our

improved method the mesh-based sampling is arried outin a hypothetial �ontrol-spae� in whih the optimal meshis seen isotropi and quasi-uniform (see Setion IV). Notethat although the mapping between the input spae andsome ontrol spae (omputational spae) is a onept al-ready introdued in several papers (see e.g. [12, 13℄), upto now the ontrol spae has not been used diretly as the�site� of mesh generation, rather just as a useful abstrationto make the idea of anisotropy omprehensible.Furthermore, in the proposed method, we apply meshdeformation based on spring analogy to let the data points�nd their position in the ontrol spae (see Setion IV formore details). Very similar relaxation tehnique based onspring equilibrium is desribed in [17, 18℄. Further relatedtehniques based on partile system model are reportedin [19, 20℄. In this latter approah, proximity-based in-terating fores (both attrative and repulsive) are de�nedamong the data points, and a fore-balaning on�gurationis to be found using dynami solution, similarly to a springsystem.Although this work was solely inspired by the authors' ex-periene in mesh generation and NDT, after extending thesope of looking for related works, it was soon realized thatvery similar tehniques (mesh mapping, spring analogy,et.) appear in various engineering appliations. As a mat-ter of fat, the ommon idea behind most of these works (in-luding this one) an be designated as �generalized surfae�tting� or �distane mapping�. Aordingly, the appliedmethods are intended to apture low-dimensional strutureof data living in high-dimensional spaes or at least to pro-vide a low-dimensional representation of them. Popularappliation �elds inlude geophysial modeling, omputergraphis, data visualization, data mining, lustering andsignal proessing.Two prevalent methods have to be highlighted. Oneof them is the self-organizing map (SOM), a type of ar-ti�ial neural network invented by Kohonen. It onvertsomplex, nonlinear statistial relationships between high-dimensional data items into simple geometri relationshipson a low-dimensional (typially two-dimensional) display.This is arried out through a ompetitive self-learning al-gorithm that develops a topologial ordering of the data.Its appliation for sattered data interpolation and surfae�tting is presented in [21℄. The other method is alledgenerative topographi mapping (GTM) [22℄. GTM is astatistially based approah intended for modeling ontinu-ous, intrinsially low-dimensional probability distributionsembedded in high-dimensional spaes. It an be seen asa non-linear form of prinipal omponent analysis (PCA),the result of whih is alled the �prinipal manifold�. Onerealization of GTM using elasti grids � based on a physialanalogy with elasti membranes � together with its appli-ation to data visualization are presented in [23℄.C Kriging-based meshless samplingAs an other approah, a meshless adaptive sampling strat-egy for the generation of output-equidistant databases isalso disussed in this paper (Setion V), [24, 25, 26℄. Theapproah onsists in an iterative optimization proedure,adding samples one-by-one, aording to a given riterionof optimality. The sample-insertion rule aims at spreadingout the output samples as muh as possible in the out-put spae. Sine the optimization problem �to whih the2



sample-insertion rule boils down� appears to be omputa-tionally demanding, the realization of the method involvesthe kriging interpolation of the auxiliary objetive fun-tions.By now, kriging �invented in the domain of geostatis-tis in the 1960s� has beome a widely used tool of fun-tion approximation. Thorough disussions an be found inthe textbooks, e.g., [27℄, [28℄ (from the original domain,geostatistis), [29℄ (a rigorous mathematial approah), [3℄and [2℄ (ontaing a short but purposive summary from anengineering viewpoint). Among the vast amount of jour-nal papers, let us mention [6℄ (�rst introduing krigingto model omputer experiments), [30℄ as a quite reentoverview and [31℄ disussing an appliation for the solutionof eddy-urrent testing inverse problems.D A novel manner of interpolation: funtional krigingA reent development of mathematis is the so-alled fun-tional kriging, being an extension of the original theory (ofsalar funtion interpolation) to the interpolation of fun-tional output data [32, 33℄. Funtional kriging has suess-fully been applied for surrogate modeling in eddy-urrentnondestrutive evaluation, and has been ompared to tradi-tional (nearest neighbour, pieewise linear and radial basisfuntions (RBF)) tehniques [34℄. However, in [34℄, thesamples were hosen in a naive way: a retangular grid wasde�ned in the input spae, and samples were plaed to thegrid-nodes.In Setion VI, a funtional kriging surrogate model isdealt with, but the sampling strategy is adapted both to themodeled forward problem and to the �tted kriging interpo-lator [35℄. The method is a sequential proedure, solvingan optimization task in eah yle in order to redue theunertainty of the resulted interpolator as muh as possible.Our method is a ombination of the one disussed in [36℄(based on the so-alled jakknife variane estimation) anda slight improvement inspired by an idea ourring in [37℄.
∗ ∗ ∗The paper is organized as follows. In Setion II, thebasi idea of surrogate modeling by means of a database(along with the formal de�nition of the output-equidistantdatabase) is disussed. Following this, the illustrative NDTtest example �being used throughout the paper� is out-lined. Two methods for the generation of speial output-equidistant databases are presented in Setions IV (themesh-based approah) and V (the meshless method, usingthe kriging predition). The use of funtional kriging in-terpolation for surrogate modeling �along with an adaptivesampling strategy� is dealt with in Setion VI. In Se-tion VII, the possible pratial appliations of the method-ologies are highlighted. Finally, some numerial results aregiven in Setion VIII. Beyond the omparison of the in-terpolation apabilities of the yielded surrogate models, amanner of visualization of the sample distributions is pre-sented. A simple tool is also given to draw quantitativeonlusions on the related inverse problem.Finally, let us suggest for further reading the papers o-authored by the authors of the present publiation wheremost of the topis touhed here are disussed in more details[16, 31, 38, 39, 40, 34, 41, 24, 25, 26℄.

II Surrogate modeling by means of a databaseA Terms and notationsFor the sake of generality, the approah is formalized in ageneral manner. Let us de�ne a well-behaved forward op-erator F representing a forward problem (F is usually real-ized via a numerial simulation of the mathematial modelof the underlying physial phenomena), an input vetor
x = [x1, x2, . . . , xp]

T of p real parameters, and the orre-sponding output salar funtion1 y(t). They are relatedas
F : X 7→ Y

x 7→ y(t) = F{x}, t ∈ T, (1)
y(t) is square-integrable over the domain T , X ⊂ R

p beingthe input spae and the output spae Y is de�ned as theodomain of F{x}:
Y = {y(t) : y(t) = F{x}, ∀x ∈ X} . (2)

Y is then a subset of the L2(T ) spae onsisting of allsquare-integrable funtions over T .Let us assume that eah xk (k = 1, 2, . . . , p) has a lowerand an upper bound, xmin
k and xmax

k , respetively. X anthen be written as
X =

[
xmin
1 , xmax

1

]
×
[
xmin
2 , xmax

2

]
× · · · ×

[
xmin
p , xmax

p

]
. (3)An appropriate norm is de�ned on both X and Y. In theinput spae, we have

||x||x =

√√√√
p∑

k=1

η2k
(
xk − xmin

k

)2
, (4)with the saling fators ηk introdued to put more or lessemphasis on a priori hosen parameters. Equal emphasison all parameters is obtained if ηk =

(
xmax
k − xmin

k

)−1. Inthe L2(T ) spae (and so, in Y) the following norm is used:
||y(t)||y =

√
1

|T |

∫

T

|y(t)|2dt, (5)where |T | is the measure of the domain T in a ertain ap-propriate sense, i.e., the norm of an output funtion is equalto its root mean square.Let us de�ne a database Dn as a set of n samples, eah ofthem being a pair of input sample (xi) and output sample
(yi(t) = F{xi}) , ∀i = 1, 2, . . . , n. Formally:

Dn = {(x1, y1(t)), (x2, y2(t)), . . . , (xn, yn(t))} . (6)The surrogate model Gn is based on Dn and it approximates
F everywhere in X as

Gn : X 7→ Y

x 7→ Gn{x} = F{x}, ∀x ∈ {x1, . . . ,xn} (7)
Gn{x} ≈ F{x}, ∀x ∈ X/ {x1, . . . ,xn} .The main advantage of suh sample-based surrogate mod-eling onsists in onentrating the omputational burden1The output is not neessarily a funtion, it an be a (usuallyhigh dimensional) vetor as well. Moreover, even if the output istheoretially onsidered as a funtion, in pratie, only its disreterepresentation an be measured.3



(the forward simulations) to the �rst stage. The generationof the database is needed to be performed only one, pra-tially by �experts�, equipped with the numerial simulator(whih might be an expensive ommerial software and/ormore omplex than an �end-user� an use it). In the seondstage, the �end-user� must have only the tools for the in-terpolation and the database, respetively. In other words,the Gn surrogate model represents an �o�-line� simulator ofthe forward problem.In this paper, two interpolators are dealt with. In thease of the so-alled output-equidistant databases (de�nedin the next subsetion, generated by one of the two methodsdisussed in the setions IV and V), the Nearest Neighbour(NN) interpolation method is used, formalized as
Gn{x} = yj(t), where j = arg min

i=1,2,...,n
||x− xi||x (8)The main advantages of NN are easy interpretability (loseinputs � supposedly similar outputs) and low omputa-tional ost. Moreover, the error of the NN interpolation isbelieved to be redued by the output-equidistant sampling.The seond interpolation method used in this paper isthe funtional kriging. This tool �providing smooth andusually more preise interpolations than NN� will brie�ybe disussed in Setion VI.B Output-equidistant databaseAn output-equidistant database is haraterized by the fol-lowing two properties:

• For all outputs y(t) ∈ Y, an output sample yi(t) existswhih is �not too far� from y(t). Let us de�ne γ(x) asthe distane to the nearest sample:
γ(x) = min

i=1,2,...,n
||F{x} − yi(t)||y , (9)then the �rst riterion is formalized as

max
x∈X

γ(x) < ∆, (10)with the positive onstant ∆.
• The output samples are evenly distributed in the sensethat none of the output samples is �too lose� to another one, and every output sample has its nearestneighbour �not too far�. For a formal de�nition, letus introdue the minimal and maximal distanes be-tween the nearest neighbours:

dmin = min
i=1,2,...,n

(
min

j=1,2,...,n, j 6=i
||yi(t)− yj(t)||y

)
,

dmax = max
i=1,2,...,n

(
min

j=1,2,...,n, j 6=i
||yi(t)− yj(t)||y

)
.(11)Then we require �as seond riterion� the equivaleneof dmin and dmax:

dmax

dmin
= 1. (12)If Dn simultaneously ful�ls the riteria (10) and (12), weall it an output-equidistant database. The algorithms pre-sented in the setions IV and V are designed to generatesuh output-equidistant databases. Beyond being adequatefor the NN interpolation, the output-equidistant databasesprovide ertain meta-information on the studied forwardproblem, whih might be used to haraterize the relatedinverse problem as well (Setion VIII).

III Test exampleThe methods and onsiderations are illustrated with a sim-ple example taken from the �eld of eddy urrent test-ing (ECT). Here we de�ne the investigated on�guration(Fig. 1). An in�nitesimally thin rak a�ets a non-magneti, homogeneous in�nite metal plate with a thik-ness of 1.25mm and an eletrial ondutivity of σ =
106 S/m. An air-ored probe oil (driven by a time-harmoni urrent of frequeny f = 150kHz) is sanninga entered retangular surfae of 5mm × 20mm above thedamaged zone. The impedane hange of the oil∆Z (in�u-ened by the rak) is measured at 11×41 regularly spaedpositions along α and β. The output signal y(t) is then theimpedane of the oil, t being related to the position of theoil (denoted by rosses in Fig. 1).The EM phenomenon is modeled using a surfae integralapproah. The numerial simulation �representing F� isbased on the Method-of-Moments (for details, see [42℄).Table 1: Bounds of the input parameters.Ex. A (mm) B (mm) L (mm) D (%)

min max min max min max min max2-par. 0 0 1 10 5 903-par. −1.5 1.5 0 1 10 5 904-par. −1.5 1.5 −1.5 1.5 1 10 5 90The rak is retangular-shaped, perpendiular to thesurfae of the plate and it opens to the side opposite withthe oil. The on�guration an be desribed using four pa-rameters: L and D are the length and the depth (in % ofthe thikness of the plate) of the rak, respetively; A and
B are the o-ordinates of the enter of the rak along αand β. Three on�gurations are then used to illustrate ourapproahes:
• 2-parameter example, where only two parameters (Land D) are varying, A and B being both 0.
• 3-parameter example, the x o-ordinate of the enterof the rak (A) is added as input parameter.
• 4-parameter example, all four parameters are now on-sidered as input parameters.The minimum and the maximum values of eah parameterare de�ned in Table 1.IV Generation of output-equidistant databases:the meshing approahIn this setion a proedure for obtaining output-equidistantsampling based on meshing methods inspired by meshes of�nite element method is disussed. The obtained databaseis known to be optimal for NN interpolation, however, thedesribed proedure an be adapted to other interpolationmethods through the appropriate de�nition of the distane.The basi idea behind the database generation method anbe explained as follows.We introdue an auxiliary spae of points ξ ∈ Ξ ⊂ R

p.
Ξ is alled the ontrol spae. We attempt to establish aloal mapping ℓ : Ξ → X in suh a way that the projetionof the manifold F(X) onto Ξ approximately preserves thedistanes of points, at least loally within small neighbour-hoods. This mapping is realized by the loal baryentrimapping between two orresponding meshes living in X and4
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Ξ has to be generated in a way that its edge lengths re�etthe output-distanes between the pairs of nodes:

||ξi − ξj ||ξ ≈ ||F(ℓ(ξi))−F(ℓ(ξj))||y (13)for all nodes numbered i and j that are onneted by anedge. The norm ||·||ξ in Ξ is de�ned similarly to the one in
X de�ned by (4).After all, the sampling of the forward operator an beonsidered optimal in the above terms if the orrespond-ing mesh in Ξ looks isotropi and uniform. However, inthe pratie we use this relationship in the opposed dire-tion. We generate a �quasi-uniform� mesh in the ontrolspae using adaptive re�nement and smoothing. This pro-edure ontrols the appropriate sampling of the forward op-erator, whih normally yields a �quasi-optimal� sampling.

The method is desribed in the followings. For an illustra-tion, see Fig. 2.We start with p + 1 prede�ned or random samples,
(xi, yi(t)), i = 1, . . . , p + 1, whih form a simplex alledthe seed element (Fig. 2a). The �rst task is to �nd thepiture of the seed element in Ξ. Having no better ideawe let all ξi = xi. From this point the following iterativeproedure is arried out.Step 1: relaxation. To let the points �nd their �rightplaes� in Ξ, we utilize a mesh relaxation tehniquebased upon spring analogy, whih is often applied inthe �nite element solution of moving boundary prob-lems [43℄. In our implementation, the edges of the meshare onsidered as spring segments, having an equilib-rium length equal to the output-distane between theonneted points. Point positions are updated one-by-5
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0 =

ν∑

j=1

ϑij

(
1−

||yi(t)− yj(t)||y
||ξi − ξj ||ξ

)
(ξi − ξj) (14)where ϑij is the spring sti�ness, ν is the number ofpoints onneted to the ith point in the mesh. This isrepeated until the migration of the points has an end.Note that no onstraints are plaed on the boundarynodes of the mesh.Step 2: re�nement. Eah simplex having at least one edgelonger than the presribed limit ∆ in (10) is re�ned byinserting a new point, say ξ∗, into its irumenter(Fig. 2b). Eah point insertion has to be followed bythe evaluation of the forward problem, i.e. the om-putation of F(ℓ(ξ∗)), usually by alling an externalprogram.Step 3: growth. In order to explore the manifold F(X),some new points outside the existing mesh are inserted(Fig. 2). Let ξ∗ be a tried point. If the output-distane of ξ∗ measured from any existing point issmaller than ∆, or x

∗ = ℓ(ξ∗) 6∈ X, the point is ig-nored. If there was no new point inserted in Step 2and Step 3, the proedure terminates, otherwise it re-turns to Step 1.Remarks:
• The iteration proedure involving loal equilibrium inStep 1, whih is similar to the Gauss-Seidel iterationfor solving linear systems, may exhibit poor onver-gene properties espeially in higher dimensions. Moresophistiated solutions on spring system equilibriuman be found in [18℄.
• Node ollision and the �ip of simplies during relax-ation an be more or less prevented by hoosing the

spring onstant equal the inverse of the data-distane(rest length): ϑij = 1/ ||yi(t)− yj(t)||y [43℄.
• For the point insertion in Step 2 and Step 3 we use thefree software Qhull [44℄, whih is a powerful algorithmfor reating Delaunay-meshes. However, its limitationin dimensions to p < 9 imposes the same pratial limitfor the database generation method.
• The mapping ℓ, whih is used in Steps 2�3, is subjetto slight hanges during Step 1 beause of node reloa-tions, but no ritial behaviour has been experienedin onnetion with this e�et yet.
• The method assumes that the manifold F(X) (i.e.,the output spae) is ontinuous and relatively smooth.Even if this is the ase, the resulting mesh in X is notneessarily valid, meaning that it ontains tangles orholes. This is not a fundamental problem if the on-netivity information is not used by the interpolator(e.g. the samples of F are used for training neuralnetworks).
• The method an be adapted to other loal interpola-tion methods (in whih the re�nement of the samplingimproves the quality of interpolation on a loal basis)through the ondition (13) by hanging its left handside to the maximum interpolation error estimatedalong the given edge. We have suessfully ompletedand tested this extension for linear interpolation usingthe original database generation method [16℄. Notethat the mesh database optimized for linear interpo-lation an be muh more eonomi than the databaseoptimized for NN interpolation.In Fig. 2, an output-equidistant database generated forthe 2-parameter example is shown, whereas in Fig. 3, the�nal database in the ase of the 3-parameter example isvisualized. Both pitures show the equally distributed mesh6



in the ontrol spae and the irregular sampling of the inputspae.V Generation of output-equidistant databases:the kriging approahA Inremental distane-based sampling proedureAn other possible way of generating an output-equidistantdatabase is explained in this setion: the sought equidis-tant output sample distribution is attempted to ahieve byusing the maximin method. In our ontext, maximin meansmaximizing the minimal distane between any pair of out-put samples. In so doing, one an heuristially expet fordatabases being output-equidistant in the sense disussedin Setion II. An inremental algorithm for the databasegeneration is proposed, onsisting in two main stages:1. at the beginning of the proedure, some initial samplesare hosen by hand (e.g., by using one of the lassialDOE tools, suh as Latin hyperube sampling);2. then, samples are inserted one-by-one, aording to amaximin riterion.For a formal desription, let us introdue the so-alled dis-tane funtions :
Qk(x) = ||F(x)− yk(t)||y , where k = 1, 2, . . . , n. (15)The database onsists of n samples, and Qk(x) is relatedto the kth sample. If one intends to add the next, (n +

1)th sample to the database (in the inremental loop), theevaluation of the following expression is needed:
xn+1 = argmax

x∈X

[
min

k=1,2,...,n
Qk(x)

]
. (16)Sine the algorithm looks only one-step ahead and no bakstep is allowed, the sample distribution is not an exat solu-tion of the maximin problem. Moreover, the initial samplesare not hosen aording to the riterion (16). To over-ome these pitfalls, a sample-removing strategy must alsobe inluded in the sampling strategy. After, say, every twosample insertions, one sample is removed from the databaseas follows. Let d

(−r)
min the distane between the pair of thenearest output samples if the rth sample was removed:

d
(−r)
min = min

i=1,2,...,n, i6=r

(
min

j=1,2,...,n, j 6=r,i
||yi(t)− yj(t)||y

)
.(17)In other words, the sample whih would inrease the mostthe dmin minimal distane (12) if it was not inluded in thedatabase, it is indeed removed.B Realization by kriging interpolationThe optimization problem (16) is omputationally expen-sive sine the forward operator F is involved in the distanefuntions Qk(x). An approximate solution is proposed byusing the kriging interpolation. Some referenes for kriginghave already been given in the Introdution.Kriging models the unknown Qk(x) funtion by a ξ(x)Gaussian random proess. The proess is assumed to bestationary, with a known ovariane funtion k(·). Theobservations of Qk(x) at the loations x1,x2, . . . ,xn are

onsidered as realizations of the Gaussian random vari-ables ξ(x1), ξ(x2), . . . , ξ(xn). The method omputes thebest linear unbiased predition (BLUP) of ξ(x) in the spaespanned by these n Gaussian random variables. The pre-dition is denoted by ξ̂(x) and expressed as
ξ̂(x) =

n∑

i=1

λi(x)ξ(xi). (18)The oe�ients λi(x) are omputed by using the ovari-ane funtion k(·), via the solution of a linear system of nequations. The unbiasedness of the predition means thatthe mean of ξ(x) and ξ̂(x) are equal. The term best refersto the fat that the predition (18) has the smallest error(in the sense of error variane) among all unbiased linearpreditors.Having evaluated Qk(x) at the loations x1,x2, . . . ,xn(this is straightforward sine Qk(xl) = ||yk(t)− yl(t)||y,
k, l = 1, 2, . . . , n), the mean of the preditor proess (on-sidered as the predition for Qk(x)) is

Q̂k(x) =

n∑

i=1

λi(x)Qk(xi). (19)Let us note that the oe�ients λi(x) do not depend di-retly on the observed values of Q(x) but only on the lo-ation of the x1,x2, . . . ,xn input samples. This fat makespossible to use the same ξ(x) proess for modeling allQk(x)distane funtions.The original optimization problem (16) an then besolved approximately at a muh less omputational ost byreplaing Qk(x) by Q̂k(x). The sampling algorithm thenbeomes tratable even when arrying out an exhaustivesearh in X to solve (16).Further details on this kriging-based sampling algorithman be found in our reent works [25, 24, 26℄.VI Funtional kriging interpolationThe output-equidistant sampling methods (Setion IVand V) are basially designed for the use of nearest neigh-bour interpolation based on the �nal dataset. As itwill be presented in Setion VIII, suh output-equidistantdatabases might provide additional meta-information onthe studied forward problem. However, if the main goalis the interpolation itself, one might onsider more sophis-tiated interpolators than the NN interpolator.We have suessfully applied a ertain version of kriginginterpolation to onstrut sample-based surrogate models.The original kriging framework (slightly touhed in Se-tion V) has reently been extended to the predition offuntional data [32, 33℄. Similarly to the salar form (19),the funtional output y(t), an diretly be predited as
F{x} ≈ Gn{x} =

n∑

i=1

λi(x)yi(t), (20)where xi and yi(t) are the samples stored in the database.The oe�ients λi(x) are determined in a stohasti frame-work; a Gaussian random proess model (similar to (18)) isapplied. However, sine the modeled data is funtional, themodeling random proesses are also funtional proesses.The so-alled trae-ovariane has to be introdued and es-timated as well. However, these details are out of our sopeherein, see [34℄ for a detailed disussion.7



Though the above kriging interpolator usually performswell even when the samples are generated in a naive way(e.g., by sampling regularly on a grid in the input spae),the preision an further be improved by the adaptive gen-eration of the database. To this end, we have developeda sequential sampling algorithm aiming at the generationof databases adapted to both the modeled problem andthe subsequently used funtional kriging interpolator [35℄.The proedure starts with a small n number of initial in-put samples (x1,x2, . . . ,xn), hosen aording to a naivedesign (e.g., a regular grid in the input spae). Observa-tions of F are performed at these loations, and a tempo-rary kriging interpolator (20) is �tted. Then, an iterativeloop starts, inserting new samples one-by-one aording toa ertain riterion being related to the estimated predi-tion error. The latter is obtained by using the so-alledjakkni�ng tehnique (a well-known tool �being similar toross-validation� in statistis to estimate the unertaintyof preditors). Jakkni�ng provides the σ2Jak(x) estimatedvariane of the kriging preditor, whih an be onsideredas a measure of the expeted interpolation error to a er-tain extent. Based on this variane, the following heuristisample-insertion rule an be formalized:
xn+1 = argmax

x∈X

[
min

i=1,2,...,n
||x− xi||x σ

2Jak(x)] , (21)where the �rst fator (the minimal distane in the inputspae) is involved in order to avoid lustering samples in theinput spae. By sequentially repeating the above sample-insertion, the yielded database is expeted to be a balaneof input-spae �lling and adaptive sampling.VII Appliation of adaptive databases inomputational eletromagnetisThe generated database together with a properly seletedinterpolator an be used in various appliations related toomputational eletromagnetis. In this setion, we wouldlike to highlight some of suh possibilities.Lightweight simulator. In many ases, the end user ofa partiular design problem is not an expert in using generalpurpose EM �eld alulation softwares. At the same time,suh design problems usually have only a few number of de-gree of freedoms. As an example, in the ase of the design ofa new type of eddy urrent testing (ECT) probe, the basigeometry of the probe is usually �xed, only ertain geo-metri parameters are enabled to vary between pre-de�nedbounds. To qualify the performane of suh probes, oneneeds to know the deteted response of the probe for onlyone or two defet prototypes. All the information neededfor the design onsidering the given onstrains an be pro-vided to the end-user in the form of a database and an in-terpolator, embedded in a very simple graphial interfae.This design tool is alled as �lightweight simulator�.The generation of the database an be done indepen-dently by an expert in EM �eld simulation who an applythe most e�etive software and model for the alulations.Also, during the database generation one an onsider pra-tial onstrains of the design, like the noise of the measure-ments or the manufaturing toleranes of the design param-eters of the probe.

Teahing neural networks. An optimal database anbe used to teah neural networks. We ompared the per-formane of neural networks taught with databases beingequidistant in the input spae (this is the database typeusually used for teahing in the literature) and in the out-put spae (the one we all output-equidistant database). Itwas found that the neural networks perform similarly if theinput data are free from noise, however, the neural networktaught with output-equidistant database outperforms theother one if the observations are subjeted to measurementnoise [40℄.Solution of inverse problems. The most important ap-pliation of the adaptive databases is, however, in the �eldof the solution of inverse problems using optimization meth-ods, diret searh or interpolation in the database. Suhproblems related to various di�erent appliations have re-ently been solved. Examples an be read in [16, 39, 24, 45℄.Quali�ation of inverse problems. In addition tothe suessful solution of an inverse problem, the output-equidistant database an also be used to gather additionalinformation (meta-information) on the inverse problem it-self. We believe that this is a very important appliation,having theoretial importane as well. In the following Se-tion we disuss this point in more details.VIII Evaluation of the databases and means ofinverse problem haraterizationIn this setion, the use of the generated databases is in thefous. The preision provided by the surrogate models isassessed in terms of the interpolation error (Subsetion A)and a method for the qualitative omparison of output sam-ple distributions is given (Subsetion B). Finally, a sim-ple way of inverse problem haraterization (enabling us todraw quantitative onlusions on the possible ill-posednessof the problem) is presented in Subsetion C.The two approahes of output-equidistant sampling (Se-tions IV and V) yield rather similar databases. A ommonlimitation of both methods is the number of input param-eters: the meshing is limited by p < 9 (due to the appliedQhull mesh generator), whereas in the kriging-based ap-proah, our numerial studies showed that the evaluationof the sample insertion riterion (16) beomes numeriallydemanding with inreasing number of input parameters.One an say that both approahes have the same pratialupper limit for p, however, there is no theoretial limitationin any of the two methods. An advantage of the mesh-basedmethodology is the onnetivity information represented bythe mesh, enabling higher order interpolation (e.g., linear)over the simplies. On the other hand, the distane fun-tions of the kriging-based strategy make possible the quan-titative haraterization of the inverse problem in an easyway.The numerial studies presented herein are all basedon the test example de�ned in Setion III. The mesh-supported sampling has already been illustrated in Se-tion IV, hereafter the output-equidistant sampling is per-formed by the kriging-based approah.8



A Preision of the forward interpolationThe most plausible way to ompare the di�erent surrogatemodels is to ompute the disrepany between the true out-puts (by evaluating F) and the output of the surrogatemodel, i.e., to onsider the interpolation error
ε(x) = ||Gn{x} − F{x}||y . (22)In Fig. 4, four surrogate models are ompared in the senseof ε(x). The true output �also ε(x)� is omputed over a

37× 18 grid in the input spae. The worst performane isshown by the ombination of the naive grid sampling andthe NN interpolation (Fig. 4a). NN interpolation yieldssmaller error when using an output-equidistant database(Fig. 4b). The smooth funtional kriging interpolators pro-vide muh �ner preision even by grid-sampling (Fig. 4),whereas the adaptive sampling strategy of funtional krig-ing results in outstanding preision (Fig. 4d).The distribution of the input samples in the output-equidistant database (Fig. 4b) has an important messageonerning the modeled forward problem. In the large-rak region, muh more samples have been inserted thanin the region of small (mainly in the sense of the depth D)raks. Sine the output sampling is output-equidistant,one an onlude that F varies rapidly in the large-rakregion and has almost no variation in the small-rak re-gion. This meta-information arried by the struture of thedatabase will be further disussed and exploited in Subse-tion C.B Visualization of the output sample distributionSine the output data lie in a funtion spae, diret vi-sualization is not possible, but the multidimensional sal-ing (MDS) method [46℄ an be applied instead. Themethod gives a low-dimensional representation of the out-put samples whereas the distane relations remain more-or-less unhanged. Let us onsider a database inluding
n samples. The main idea of MDS is to spae n points(π1, πn, . . . , πn) in a k-dimensional Eulidean spae sothat the pairwise distanes between the new points are assimilar as possible to the distanes between the originaloutput samples. Formally, the so-alled stress

S =

n−1∑

i=1

n∑

j=i+1

(
||yi(t)− yj(t)||y − ||πi − πj ||

)2 (23)is to be minimized by the appropriate spaing of the points
πi (herein || · || stands for the Eulidean norm). Speially,if k = 2, the resulted repartition an easily be plotted.This plot an then be onsidered as the low-dimensionalrepresentation of the original dataset.In Fig. 5, the MDS plots of the databases in the2 and 4-parameter ases are presented. The output-equidistant sampling yields balaned output sample distri-bution whereas the regular input sampling auses distortedoutput sampling. In the latter ase, some samples appearsto luster in ertain regions of the output spae; other re-gions are unexplored at the same time. Aording to thevisualized repartition of the output samples, the proposedsampling algorithm indeed outperforms the naive grid sam-pling approah.

C Ill-posedness and inverse-mapped noise levelsAs it is well known, inverse problems (determining the on-�guration knowing the measured EM �eld) might be ill-posed: the solution might not exist, not be unique and notbe stable. The latter refers to the fat that small varia-tions in the measured data an ause high variations in thereonstruted on�guration. This sensitivity (being a ba-si property of F) an be assessed to a ertain extent byusing the output-equidistant databases. In Subsetion A,we have already pointed out the relation between the inputsample density and the assumed behaviour of the forwardoperator.Based on the distane funtions (15), the ill-posedness ofthe inverse problem an quantitatively be addressed. Letus assume that a uniform noise level δ �being an aggregatedrepresentation of all soures of unertainty� a�ets the mea-surement at hand. For a given measured output ỹ(t), onethen has to onsider all funtions y(t), being loser to ỹ(t)than a distane δ, as possible real (noise-free) data. Ex-pressively, one has to imagine a sphere with radius δ andenter ỹ(t) in the L2(T ) funtion spae. The unertainty ofthe solution of the inverse problem is in fat related to theimage of this sphere in the input spae. Via the distanefuntions, suh inverse imaging boils down to a simple in-equality:
Φδ

i =
{
x ∈ X : ||F{x} − yi(t)||y ≤ δ

}
=

= {x ∈ X : Qi(x) ≤ δ} , (24)where Φδ
i is the �inverse-mapped� noise region, if the mea-sured data ỹ(t) is assumed to be equal to the ith sample inthe database.The shape and the dimensions of the di�erent Φδ

i ellsprovide valuable information about the underlying prob-lem, sine they show how the noise in�uenes the uner-tainty of the solution of the inverse problem. Where Fvaries rapidly, a smaller Φδ
i is expeted than in the regionswhere F is �at, i.e., when the problem tends to be ill-posed.This formalization gives an expliit expression of the withinreah preision at a given noise level.Let us also mention that if the noise level δ is knownwhen generating the database, the latter an be optimizedby using ∆ = 2δ in (10).In the realization, due to the high omputational ost,not the exat distane funtions but their kriging predi-tions are used. Thus, the approximate noise-ells Φ̂δ

i anbe determined aŝ
Φδ

i =
{
x ∈ X : Q̂i(x) ≤ δ

}
. (25)In Fig. 6, the approximate noise-ells in the 2-parameterexample for three di�erent δ levels are shown. Let us no-tie that the database is approximately output-equidistant,even so the shape and the dimensions of the di�erent ells

Ψ̂i in the input spae are very diverse. The large ells inthe region of small raks highlight that (i) a �ner sam-pling is not needed, and (ii) the di�ulty of retrieving suhsmall defets. On the ontrary, the small ells in the regionof large raks justify the dense sampling. These resultsare in good agreement with the experiene and the expla-nation of the evaluation of the forward interpolation error(Subsetion A).Further disussion on the inverse mapping and more nu-merial examples an be found in [24℄.9
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(b) Output equidistant sampling + NN interpolation.
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(d) Adaptive sampling + funtional kriging interpolation.(Blue squares: initial samples; red dots: sequentially addedsamples.)Figure 4: Interpolation error (ε(x) in mΩ) using di�erent sampling and interpolation methods. All databases inlude 36samples.
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equidistant databases are ombined with the nearest neigh-bour interpolation. The use of funtional kriging as in-terpolator has also been presented, along with a samplingalgorithm whih improves the preision of the surrogatemodel being built.For the generation of output-equidistant databases, twomethods are proposed. First a p-dimensional simplex meshhas been used as a generi interpolator of the forward prob-lem. Adaptive mesh re�nement and smoothing tehniquesare applied for exploring the forward operator and for learn-ing the topologial and metri relationships of its data sam-ples. By introduing the ontrol spae, where meshing takesplae, one an avoid the usage of speial mesh generators.In the seond approah, the generation of the database isreast as an optimization problem, whih is solved itera-tively, by inserting the next input sample with respet tothe distane between points in the output spae. This is anexpensive-to-ompute optimization problem, thus, the useof a kriging interpolator is proposed. In spite of the essentialdi�erene of the working priniples, the two methodologiesyield similar �nal databases.In the ase of funtional kriging interpolation (insteadof nearest neighbour), the database generation involves the10



−20 0 20 40 60 80
−15

−10

−5

0

5

10

15

π
1
 (mΩ)

π
2
 (

m
Ω

)

(a) 2-parameter example, regular sampling with 36 samples(see Fig. 4a for the orresponding input sampling). −60 −40 −20 0 20 40
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(b) 2-parameter example, output-equidistant sampling with 36samples (see Fig. 4b for the orresponding input sampling).
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() 4-parameter example, regular sampling with 81 samples(input samples are spaed on a regular grid of 3 × 3 × 3 × 3nodes). −80 −60 −40 −20 0 20 40 60 80
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(d) 4-parameter example, output-equidistant sampling with 81samples.Figure 5: Multidimensional saling representation of output samples in the 2 and 4-parameter ases, with 36 samples.The output-equidistant databases have been generated by the kriging method disussed in Setion V.estimated interpolation error via the jakknife variane es-timation. The variane of the predition error is a naturalmeasure of the quality of the interpolation in the stohas-ti framework of kriging. The resulted sampling strategy isthus fully adapted to both the modeled forward operatorand the applied interpolator.The e�ieny of all approahes is illustrated by an eddy-urrent nondestrutive appliation using two, three andfour defet parameters.The surrogate models involving funtional kriging in-terpolation appear to outperform the strategies based onoutput-equidistant databases in the sense of interpolationpreision. However, the speial struture of the output-equidistant databases arries some meta-information on themodeled forward problem, making possible the harateri-zation of the related inverse problem to a ertain extent. Aninverse mapping of a noise level is disussed, whih resultsin a quantitative assesment of the unertainty of the reon-struted input parameters in the presene of measurementnoise.As a ommon limitation of the presented approahes, wemust note the relatively small p number of onsidered inputparameters. Though there is no theoretial limitation, the

inreasing omputational load arises a limit of, say, p < 9.However, we believe that further development an raise thisupper limit.The future researh will be foused on (i) the generationof databases optimized for inverse interpolation, and (ii)on the analysis of unertainty propagation (from di�erentsoures, e.g., impreise knowledge on the material param-eters, simulation errors, measurement noise) involving thekriging-based tools of database generation.AknowledgementAuthors would like to aknowledge the signi�ant on-tribution of Mar Lambert, Dominique Lesselier (Labo-ratoire des Signaux et Systèmes, CNRS-SUPELEC-UnivParis-Sud, Frane), Yann Le Bihan (Laboratoire de GénieEletrique de Paris, Frane) and Emmanuel Vazquez(SUPELEC, Frane) to the results of the researh madein ooperation in the �eld overed by this paper.11
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