
Te
hni
al arti
leUse of Adaptive Databases forSurrogate Modeling of Ele
-tromagneti
 Problems, Illustra-tion with NDE ExamplesAbstra
t � Numeri
al methods are frequently usedfor the analysis and design of ele
tromagneti
 devi
esor for the solution of inverse problems of 
omputationalele
tromagneti
s. The pre
ision provided by su
h sim-ulators is usually �ne but at the pri
e of 
omputational
ost. In some appli
ations this 
ost might be 
ru
ial orin some other appli
ations users might require an easy-to-use environment dedi
ated to their parti
ular prob-lem. These lead us to 
onsider 
heap surrogate modelsin order to redu
e the 
omputation time still meetingthe pre
ision requirements. Among all available surro-gate models, we deal with the generation and appli
a-tion of adaptive database of pre-
al
ulated results 
om-bined with 
ertain interpolators. In this paper, threeadaptive sampling algorithms are investigated. Two ofthem �one being based on simplex-mesh re�nement, theother is supported by the kriging interpolation� aimat generating a so-
alled output-equidistant database,i.e., the stored results are required to be equally repar-titioned in the spa
e of the measurable output data.The third sampling strategy is designed to improve di-re
tly the pre
ision of the kriging interpolator (subse-quently �tted to the samples stored in the database).The yielded databases 
an be used for the approximatesolution of both forward and inverse problems, they
an also be applied to build a problem-oriented easy-to-use simulator that 
an be operated without any pre-liminary knowledge of 
omputational ele
tromagneti
s.Beyond the mere approximations, the stru
ture of theoutput-equidistant databases 
arries 
onsiderable meta-information on the modeled forward problem. Thismeta-information 
an be exploited for the quantitative
hara
terization of the related inverse problem. All ap-proa
hes are illustrated by examples drawn from eddy-
urrent nondestru
tive evaluation.I Introdu
tionComputational ele
tromagneti
s is widely used for the solu-tion of various engineering problems. In a number of appli-
ations (e.g., 
ertain nondestru
tive tests), 
omputationalload and time 
onsumption are 
ru
ial, whereas the pre
i-sion requirements are still demanding. However, an end-user 
an neither be expe
ted to know the mathemati
almodel in details nor have time to run overlong simulations.So, nowadays more and more emphasis is being put on theemulation, or surrogate modeling, [1℄. Surrogate models in-tend to imitate the behavior of the true model as far aspossible, but at a mu
h less 
omputational 
ost, however.Many surrogate modeling te
hniques are sample-based,i.e., the true model is evaluated for 
ertain feasible 
on�g-urations (e.g., defe
t prototypes in nondestru
tive evalua-

tion), and an interpolator is �tted to the observed data.The 
on�guration is spe
i�ed by the input parameters(spanning the input spa
e), the measurable quantities are
alled the output data, and the set of 
orresponding input-output pairs is referred to as a database in the following.On
e the database is generated, the �end-user� does notneed the simulator any more, but only the database and theappropriate interpolator. Most of the 
omputational load isthen 
on
entrated into the database generation stage, per-formed only on
e and o�-line using the simulator operatedby an �expert� who is not ne
essarily the end-user of the
omputational results. Consequently, the time 
onsump-tion of the database generation is not of main interest. Onthe 
ontrary, at the end-user's stage, the originally time
onsuming issues (e.g., the solution of an inverse problemor design optimization) 
an be addressed within a redu
ed
omputational budget.The key points of su
h interpolation-like surrogate mod-eling are the 
hoi
e of the samples and the applied inter-polator. The sampling strategy 
an be 
hosen form a widerange provided in the framework of Design-Of-Experiments(DOE, or Experimental Design). DOE is the 
olle
tivename of information-gathering te
hniques related to obser-vations of a given phenomenon. At the beginning of DoE'slong history, the word �experiment� referred to 
lassi
al(e.g., physi
al, 
hemi
al) experiments, whereas nowadaysrunning a 
omputer 
ode of a simulation is also 
onsideredas a �
omputer experiment�.As DOE plays a 
entral role in our approa
hes, Subse
-tion A is devoted to some traditional sampling strategies inorder to provide a histori
al basis. Then, we give the bio-graphi
 ba
kground of the domains in whi
h our resear
he�orts are 
on
entrated. The simplex-mesh and the kriging-based meshless adaptive sampling strategies are 
on
ernedin Subse
tions B and C, respe
tively. Both method aims atgenerating a database 
onsisting of samples being �equallyspa
ed� in the spa
e of the output data. Whereas su
hequidistant sampling 
an easily be a
hieved in the inputspa
e, the output-equidistant sampling is mu
h more 
hal-lenging. In Subse
tion D, a spe
i�
 interpolation tool �thefun
tional kriging� is brie�y introdu
ed.A Traditional Design-Of-ExperimentsClassi
al approa
hes (see, e.g., [2℄, [3℄, [4℄ as re
ent text-books) are based on only geometri
al 
onsiderations relatedto the repartition of input samples. These methods do nottake the interpolator into a

ount, i.e., the sampling is in-dependent from the subsequent use of the samples. Well-known 
lassi
al designs are the full-fa
torial design (spa
ingthe input samples at the nodes of a regular grid in the in-put spa
e) and the Latin hyper
ube sampling. The latterwas introdu
ed to ensure the uniform representation of thewhole range of all input parameters in the sample-set, butat a mu
h smaller sample number than at a full-fa
torialdesign ([5℄). The essential work [6℄ gives a thorough reviewof the �rst attempts about 
omputer experiments, more-over, proposes a method for the interpolation based on thesamples. More re
ently, 
lassi
al DOE approa
hes are dis-
ussed by [7℄ and [8℄ (with appli
ations in 
ontrol theory,
iting almost 200 referen
es).A step towards adaptive DOE is to take into a

ount theinterpolator subsequently �tted to the samples (but stillnot a

ounting for the a
tually observed output values).1



An example of su
h model-oriented DOE is the approa
hof sample-pattern optimization presented in [9℄, whose goalis to redu
e the un
ertainty of the kriging predi
tion ina geostatisti
al appli
ation. Kriging �a sto
hasti
 tool forfun
tion approximation� is dealt with in more details inSubse
tion C and in Se
tions V and VI, respe
tively.Fully adaptive DOE methods a

ount not only for themodel but for the a
tually observed output samples as well.Thus, most of the adaptive methods are sequential sam-pling te
hniques, and the 
hoi
e of the subsequent sampledepends on all the previous observations. An up-to-dategeneral overview is, e.g., [10℄, with more than 100 refer-en
es. In the following three subse
tions, our spe
i�
 do-mains of adaptive DOE are introdu
ed.B Mesh-based samplingA remarkable manner of adaptive sampling is based onmeshing methods, inspired by meshes of Finite ElementMethods. Several papers deal with the optimal spatial sam-pling of multivariate s
alar fun
tions in order to interpolatethem by means of simplex meshes [11, 12℄. The key ofoptimal sampling is the equidistribution of the interpola-tion error among the mesh elements. In parti
ular, it isproved to be e�
ient to use an anisotropi
 mesh whoseedge lengths are adjusted a

ording to the dire
tions of theprin
ipal 
urvatures of the fun
tion. This is be
ause in or-der to equidistribute the error of linear interpolation, theedge length should be longer in a low 
urvature dire
tion,and shorter in a high 
urvature dire
tion. These 
riteriaare usually ta
kled by introdu
ing a spe
i�
 lo
al metri
based on the Hessian of the fun
tion, so that the triangu-lar elements of the optimal sampling are lo
ally isotropi
and their volumes are globally equidistributed under thismetri
 [13, 14℄.Sin
e our obje
tive is the interpolation of multivariatemulti
omponent fun
tions of arbitrary dimensions (or evenfun
tional data), we 
annot use the above results � derivedfor s
alar fun
tions � dire
tly. An approa
h worth men-tioning here is the so-
alled 
o-triangulation [15℄, whi
h wassu

essfully applied to 
olor image data (m = 3). However,the method seems to be 
omputationally too expensive forhigher number of data 
omponents (whi
h 
an 
ount sometens or even hundreds in e.g., a typi
al nondestru
tive test-ing appli
ation).In order to extend the above 
on
ept of optimal samplingfor multi
omponent fun
tions, we developed a spe
i�
 sam-pling method that relies on the adaptive anisotropi
 trian-gulation of the input spa
e as well [16℄. In this method, thegoal of adaptive mesh re�nement is to balan
e the distan
ebetween pairs of points 
onne
ted by an edge, all over themesh. This �distan
e� however, is asso
iated with the max-imum estimated interpolation error along the given edge,instead of being measured in a spe
i�
 lo
al metri
 basedon the Hessian, as mentioned above. It 
an be seen thatspe
i�
ally for nearest neighbour (NN) interpolation thisedge length relates to the Eu
lidean distan
e of the datastored in the 
onne
ted mesh nodes, whi
h allows us to 
allit an �output-equidistant� sampling.Among others, this paper addresses (in Se
tion IV) thete
hni
al issue of generating an optimal sampling of a mul-ti
omponent fun
tion, with respe
t to its NN interpolationover simpli
ial mesh, by using existing and available mesh-ing tools. To over
ome the problem of anisotropy, in our

improved method the mesh-based sampling is 
arried outin a hypotheti
al �
ontrol-spa
e� in whi
h the optimal meshis seen isotropi
 and quasi-uniform (see Se
tion IV). Notethat although the mapping between the input spa
e andsome 
ontrol spa
e (
omputational spa
e) is a 
on
ept al-ready introdu
ed in several papers (see e.g. [12, 13℄), upto now the 
ontrol spa
e has not been used dire
tly as the�site� of mesh generation, rather just as a useful abstra
tionto make the idea of anisotropy 
omprehensible.Furthermore, in the proposed method, we apply meshdeformation based on spring analogy to let the data points�nd their position in the 
ontrol spa
e (see Se
tion IV formore details). Very similar relaxation te
hnique based onspring equilibrium is des
ribed in [17, 18℄. Further relatedte
hniques based on parti
le system model are reportedin [19, 20℄. In this latter approa
h, proximity-based in-tera
ting for
es (both attra
tive and repulsive) are de�nedamong the data points, and a for
e-balan
ing 
on�gurationis to be found using dynami
 solution, similarly to a springsystem.Although this work was solely inspired by the authors' ex-perien
e in mesh generation and NDT, after extending thes
ope of looking for related works, it was soon realized thatvery similar te
hniques (mesh mapping, spring analogy,et
.) appear in various engineering appli
ations. As a mat-ter of fa
t, the 
ommon idea behind most of these works (in-
luding this one) 
an be designated as �generalized surfa
e�tting� or �distan
e mapping�. A

ordingly, the appliedmethods are intended to 
apture low-dimensional stru
tureof data living in high-dimensional spa
es or at least to pro-vide a low-dimensional representation of them. Popularappli
ation �elds in
lude geophysi
al modeling, 
omputergraphi
s, data visualization, data mining, 
lustering andsignal pro
essing.Two prevalent methods have to be highlighted. Oneof them is the self-organizing map (SOM), a type of ar-ti�
ial neural network invented by Kohonen. It 
onverts
omplex, nonlinear statisti
al relationships between high-dimensional data items into simple geometri
 relationshipson a low-dimensional (typi
ally two-dimensional) display.This is 
arried out through a 
ompetitive self-learning al-gorithm that develops a topologi
al ordering of the data.Its appli
ation for s
attered data interpolation and surfa
e�tting is presented in [21℄. The other method is 
alledgenerative topographi
 mapping (GTM) [22℄. GTM is astatisti
ally based approa
h intended for modeling 
ontinu-ous, intrinsi
ally low-dimensional probability distributionsembedded in high-dimensional spa
es. It 
an be seen asa non-linear form of prin
ipal 
omponent analysis (PCA),the result of whi
h is 
alled the �prin
ipal manifold�. Onerealization of GTM using elasti
 grids � based on a physi
alanalogy with elasti
 membranes � together with its appli-
ation to data visualization are presented in [23℄.C Kriging-based meshless samplingAs an other approa
h, a meshless adaptive sampling strat-egy for the generation of output-equidistant databases isalso dis
ussed in this paper (Se
tion V), [24, 25, 26℄. Theapproa
h 
onsists in an iterative optimization pro
edure,adding samples one-by-one, a

ording to a given 
riterionof optimality. The sample-insertion rule aims at spreadingout the output samples as mu
h as possible in the out-put spa
e. Sin
e the optimization problem �to whi
h the2



sample-insertion rule boils down� appears to be 
omputa-tionally demanding, the realization of the method involvesthe kriging interpolation of the auxiliary obje
tive fun
-tions.By now, kriging �invented in the domain of geostatis-ti
s in the 1960s� has be
ome a widely used tool of fun
-tion approximation. Thorough dis
ussions 
an be found inthe textbooks, e.g., [27℄, [28℄ (from the original domain,geostatisti
s), [29℄ (a rigorous mathemati
al approa
h), [3℄and [2℄ (
ontaing a short but purposive summary from anengineering viewpoint). Among the vast amount of jour-nal papers, let us mention [6℄ (�rst introdu
ing krigingto model 
omputer experiments), [30℄ as a quite re
entoverview and [31℄ dis
ussing an appli
ation for the solutionof eddy-
urrent testing inverse problems.D A novel manner of interpolation: fun
tional krigingA re
ent development of mathemati
s is the so-
alled fun
-tional kriging, being an extension of the original theory (ofs
alar fun
tion interpolation) to the interpolation of fun
-tional output data [32, 33℄. Fun
tional kriging has su

ess-fully been applied for surrogate modeling in eddy-
urrentnondestru
tive evaluation, and has been 
ompared to tradi-tional (nearest neighbour, pie
ewise linear and radial basisfun
tions (RBF)) te
hniques [34℄. However, in [34℄, thesamples were 
hosen in a naive way: a re
tangular grid wasde�ned in the input spa
e, and samples were pla
ed to thegrid-nodes.In Se
tion VI, a fun
tional kriging surrogate model isdealt with, but the sampling strategy is adapted both to themodeled forward problem and to the �tted kriging interpo-lator [35℄. The method is a sequential pro
edure, solvingan optimization task in ea
h 
y
le in order to redu
e theun
ertainty of the resulted interpolator as mu
h as possible.Our method is a 
ombination of the one dis
ussed in [36℄(based on the so-
alled ja
kknife varian
e estimation) anda slight improvement inspired by an idea o

urring in [37℄.
∗ ∗ ∗The paper is organized as follows. In Se
tion II, thebasi
 idea of surrogate modeling by means of a database(along with the formal de�nition of the output-equidistantdatabase) is dis
ussed. Following this, the illustrative NDTtest example �being used throughout the paper� is out-lined. Two methods for the generation of spe
ial output-equidistant databases are presented in Se
tions IV (themesh-based approa
h) and V (the meshless method, usingthe kriging predi
tion). The use of fun
tional kriging in-terpolation for surrogate modeling �along with an adaptivesampling strategy� is dealt with in Se
tion VI. In Se
-tion VII, the possible pra
ti
al appli
ations of the method-ologies are highlighted. Finally, some numeri
al results aregiven in Se
tion VIII. Beyond the 
omparison of the in-terpolation 
apabilities of the yielded surrogate models, amanner of visualization of the sample distributions is pre-sented. A simple tool is also given to draw quantitative
on
lusions on the related inverse problem.Finally, let us suggest for further reading the papers 
o-authored by the authors of the present publi
ation wheremost of the topi
s tou
hed here are dis
ussed in more details[16, 31, 38, 39, 40, 34, 41, 24, 25, 26℄.

II Surrogate modeling by means of a databaseA Terms and notationsFor the sake of generality, the approa
h is formalized in ageneral manner. Let us de�ne a well-behaved forward op-erator F representing a forward problem (F is usually real-ized via a numeri
al simulation of the mathemati
al modelof the underlying physi
al phenomena), an input ve
tor
x = [x1, x2, . . . , xp]

T of p real parameters, and the 
orre-sponding output s
alar fun
tion1 y(t). They are relatedas
F : X 7→ Y

x 7→ y(t) = F{x}, t ∈ T, (1)
y(t) is square-integrable over the domain T , X ⊂ R

p beingthe input spa
e and the output spa
e Y is de�ned as the
odomain of F{x}:
Y = {y(t) : y(t) = F{x}, ∀x ∈ X} . (2)

Y is then a subset of the L2(T ) spa
e 
onsisting of allsquare-integrable fun
tions over T .Let us assume that ea
h xk (k = 1, 2, . . . , p) has a lowerand an upper bound, xmin
k and xmax

k , respe
tively. X 
anthen be written as
X =

[
xmin
1 , xmax

1

]
×
[
xmin
2 , xmax

2

]
× · · · ×

[
xmin
p , xmax

p

]
. (3)An appropriate norm is de�ned on both X and Y. In theinput spa
e, we have

||x||x =

√√√√
p∑

k=1

η2k
(
xk − xmin

k

)2
, (4)with the s
aling fa
tors ηk introdu
ed to put more or lessemphasis on a priori 
hosen parameters. Equal emphasison all parameters is obtained if ηk =

(
xmax
k − xmin

k

)−1. Inthe L2(T ) spa
e (and so, in Y) the following norm is used:
||y(t)||y =

√
1

|T |

∫

T

|y(t)|2dt, (5)where |T | is the measure of the domain T in a 
ertain ap-propriate sense, i.e., the norm of an output fun
tion is equalto its root mean square.Let us de�ne a database Dn as a set of n samples, ea
h ofthem being a pair of input sample (xi) and output sample
(yi(t) = F{xi}) , ∀i = 1, 2, . . . , n. Formally:

Dn = {(x1, y1(t)), (x2, y2(t)), . . . , (xn, yn(t))} . (6)The surrogate model Gn is based on Dn and it approximates
F everywhere in X as

Gn : X 7→ Y

x 7→ Gn{x} = F{x}, ∀x ∈ {x1, . . . ,xn} (7)
Gn{x} ≈ F{x}, ∀x ∈ X/ {x1, . . . ,xn} .The main advantage of su
h sample-based surrogate mod-eling 
onsists in 
on
entrating the 
omputational burden1The output is not ne
essarily a fun
tion, it 
an be a (usuallyhigh dimensional) ve
tor as well. Moreover, even if the output istheoreti
ally 
onsidered as a fun
tion, in pra
ti
e, only its dis
reterepresentation 
an be measured.3



(the forward simulations) to the �rst stage. The generationof the database is needed to be performed only on
e, pra
-ti
ally by �experts�, equipped with the numeri
al simulator(whi
h might be an expensive 
ommer
ial software and/ormore 
omplex than an �end-user� 
an use it). In the se
ondstage, the �end-user� must have only the tools for the in-terpolation and the database, respe
tively. In other words,the Gn surrogate model represents an �o�-line� simulator ofthe forward problem.In this paper, two interpolators are dealt with. In the
ase of the so-
alled output-equidistant databases (de�nedin the next subse
tion, generated by one of the two methodsdis
ussed in the se
tions IV and V), the Nearest Neighbour(NN) interpolation method is used, formalized as
Gn{x} = yj(t), where j = arg min

i=1,2,...,n
||x− xi||x (8)The main advantages of NN are easy interpretability (
loseinputs � supposedly similar outputs) and low 
omputa-tional 
ost. Moreover, the error of the NN interpolation isbelieved to be redu
ed by the output-equidistant sampling.The se
ond interpolation method used in this paper isthe fun
tional kriging. This tool �providing smooth andusually more pre
ise interpolations than NN� will brie�ybe dis
ussed in Se
tion VI.B Output-equidistant databaseAn output-equidistant database is 
hara
terized by the fol-lowing two properties:

• For all outputs y(t) ∈ Y, an output sample yi(t) existswhi
h is �not too far� from y(t). Let us de�ne γ(x) asthe distan
e to the nearest sample:
γ(x) = min

i=1,2,...,n
||F{x} − yi(t)||y , (9)then the �rst 
riterion is formalized as

max
x∈X

γ(x) < ∆, (10)with the positive 
onstant ∆.
• The output samples are evenly distributed in the sensethat none of the output samples is �too 
lose� to another one, and every output sample has its nearestneighbour �not too far�. For a formal de�nition, letus introdu
e the minimal and maximal distan
es be-tween the nearest neighbours:

dmin = min
i=1,2,...,n

(
min

j=1,2,...,n, j 6=i
||yi(t)− yj(t)||y

)
,

dmax = max
i=1,2,...,n

(
min

j=1,2,...,n, j 6=i
||yi(t)− yj(t)||y

)
.(11)Then we require �as se
ond 
riterion� the equivalen
eof dmin and dmax:

dmax

dmin
= 1. (12)If Dn simultaneously ful�ls the 
riteria (10) and (12), we
all it an output-equidistant database. The algorithms pre-sented in the se
tions IV and V are designed to generatesu
h output-equidistant databases. Beyond being adequatefor the NN interpolation, the output-equidistant databasesprovide 
ertain meta-information on the studied forwardproblem, whi
h might be used to 
hara
terize the relatedinverse problem as well (Se
tion VIII).

III Test exampleThe methods and 
onsiderations are illustrated with a sim-ple example taken from the �eld of eddy 
urrent test-ing (ECT). Here we de�ne the investigated 
on�guration(Fig. 1). An in�nitesimally thin 
ra
k a�e
ts a non-magneti
, homogeneous in�nite metal plate with a thi
k-ness of 1.25mm and an ele
tri
al 
ondu
tivity of σ =
106 S/m. An air-
ored probe 
oil (driven by a time-harmoni
 
urrent of frequen
y f = 150kHz) is s
anninga 
entered re
tangular surfa
e of 5mm × 20mm above thedamaged zone. The impedan
e 
hange of the 
oil∆Z (in�u-en
ed by the 
ra
k) is measured at 11×41 regularly spa
edpositions along α and β. The output signal y(t) is then theimpedan
e of the 
oil, t being related to the position of the
oil (denoted by 
rosses in Fig. 1).The EM phenomenon is modeled using a surfa
e integralapproa
h. The numeri
al simulation �representing F� isbased on the Method-of-Moments (for details, see [42℄).Table 1: Bounds of the input parameters.Ex. A (mm) B (mm) L (mm) D (%)

min max min max min max min max2-par. 0 0 1 10 5 903-par. −1.5 1.5 0 1 10 5 904-par. −1.5 1.5 −1.5 1.5 1 10 5 90The 
ra
k is re
tangular-shaped, perpendi
ular to thesurfa
e of the plate and it opens to the side opposite withthe 
oil. The 
on�guration 
an be des
ribed using four pa-rameters: L and D are the length and the depth (in % ofthe thi
kness of the plate) of the 
ra
k, respe
tively; A and
B are the 
o-ordinates of the 
enter of the 
ra
k along αand β. Three 
on�gurations are then used to illustrate ourapproa
hes:
• 2-parameter example, where only two parameters (Land D) are varying, A and B being both 0.
• 3-parameter example, the x 
o-ordinate of the 
enterof the 
ra
k (A) is added as input parameter.
• 4-parameter example, all four parameters are now 
on-sidered as input parameters.The minimum and the maximum values of ea
h parameterare de�ned in Table 1.IV Generation of output-equidistant databases:the meshing approa
hIn this se
tion a pro
edure for obtaining output-equidistantsampling based on meshing methods inspired by meshes of�nite element method is dis
ussed. The obtained databaseis known to be optimal for NN interpolation, however, thedes
ribed pro
edure 
an be adapted to other interpolationmethods through the appropriate de�nition of the distan
e.The basi
 idea behind the database generation method 
anbe explained as follows.We introdu
e an auxiliary spa
e of points ξ ∈ Ξ ⊂ R

p.
Ξ is 
alled the 
ontrol spa
e. We attempt to establish alo
al mapping ℓ : Ξ → X in su
h a way that the proje
tionof the manifold F(X) onto Ξ approximately preserves thedistan
es of points, at least lo
ally within small neighbour-hoods. This mapping is realized by the lo
al bary
entri
mapping between two 
orresponding meshes living in X and4
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tively. The nodes of the mesh in X representthe xi input-samples. Therefore the 
orresponding mesh in
Ξ has to be generated in a way that its edge lengths re�e
tthe output-distan
es between the pairs of nodes:

||ξi − ξj ||ξ ≈ ||F(ℓ(ξi))−F(ℓ(ξj))||y (13)for all nodes numbered i and j that are 
onne
ted by anedge. The norm ||·||ξ in Ξ is de�ned similarly to the one in
X de�ned by (4).After all, the sampling of the forward operator 
an be
onsidered optimal in the above terms if the 
orrespond-ing mesh in Ξ looks isotropi
 and uniform. However, inthe pra
ti
e we use this relationship in the opposed dire
-tion. We generate a �quasi-uniform� mesh in the 
ontrolspa
e using adaptive re�nement and smoothing. This pro-
edure 
ontrols the appropriate sampling of the forward op-erator, whi
h normally yields a �quasi-optimal� sampling.

The method is des
ribed in the followings. For an illustra-tion, see Fig. 2.We start with p + 1 prede�ned or random samples,
(xi, yi(t)), i = 1, . . . , p + 1, whi
h form a simplex 
alledthe seed element (Fig. 2a). The �rst task is to �nd thepi
ture of the seed element in Ξ. Having no better ideawe let all ξi = xi. From this point the following iterativepro
edure is 
arried out.Step 1: relaxation. To let the points �nd their �rightpla
es� in Ξ, we utilize a mesh relaxation te
hniquebased upon spring analogy, whi
h is often applied inthe �nite element solution of moving boundary prob-lems [43℄. In our implementation, the edges of the meshare 
onsidered as spring segments, having an equilib-rium length equal to the output-distan
e between the
onne
ted points. Point positions are updated one-by-5
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ontrol spa
e (right).one to satisfy the lo
al equilibrium 
ondition,
0 =

ν∑

j=1

ϑij

(
1−

||yi(t)− yj(t)||y
||ξi − ξj ||ξ

)
(ξi − ξj) (14)where ϑij is the spring sti�ness, ν is the number ofpoints 
onne
ted to the ith point in the mesh. This isrepeated until the migration of the points has an end.Note that no 
onstraints are pla
ed on the boundarynodes of the mesh.Step 2: re�nement. Ea
h simplex having at least one edgelonger than the pres
ribed limit ∆ in (10) is re�ned byinserting a new point, say ξ∗, into its 
ir
um
enter(Fig. 2b). Ea
h point insertion has to be followed bythe evaluation of the forward problem, i.e. the 
om-putation of F(ℓ(ξ∗)), usually by 
alling an externalprogram.Step 3: growth. In order to explore the manifold F(X),some new points outside the existing mesh are inserted(Fig. 2
). Let ξ∗ be a tried point. If the output-distan
e of ξ∗ measured from any existing point issmaller than ∆, or x

∗ = ℓ(ξ∗) 6∈ X, the point is ig-nored. If there was no new point inserted in Step 2and Step 3, the pro
edure terminates, otherwise it re-turns to Step 1.Remarks:
• The iteration pro
edure involving lo
al equilibrium inStep 1, whi
h is similar to the Gauss-Seidel iterationfor solving linear systems, may exhibit poor 
onver-gen
e properties espe
ially in higher dimensions. Moresophisti
ated solutions on spring system equilibrium
an be found in [18℄.
• Node 
ollision and the �ip of simpli
es during relax-ation 
an be more or less prevented by 
hoosing the

spring 
onstant equal the inverse of the data-distan
e(rest length): ϑij = 1/ ||yi(t)− yj(t)||y [43℄.
• For the point insertion in Step 2 and Step 3 we use thefree software Qhull [44℄, whi
h is a powerful algorithmfor 
reating Delaunay-meshes. However, its limitationin dimensions to p < 9 imposes the same pra
ti
al limitfor the database generation method.
• The mapping ℓ, whi
h is used in Steps 2�3, is subje
tto slight 
hanges during Step 1 be
ause of node relo
a-tions, but no 
riti
al behaviour has been experien
edin 
onne
tion with this e�e
t yet.
• The method assumes that the manifold F(X) (i.e.,the output spa
e) is 
ontinuous and relatively smooth.Even if this is the 
ase, the resulting mesh in X is notne
essarily valid, meaning that it 
ontains tangles orholes. This is not a fundamental problem if the 
on-ne
tivity information is not used by the interpolator(e.g. the samples of F are used for training neuralnetworks).
• The method 
an be adapted to other lo
al interpola-tion methods (in whi
h the re�nement of the samplingimproves the quality of interpolation on a lo
al basis)through the 
ondition (13) by 
hanging its left handside to the maximum interpolation error estimatedalong the given edge. We have su

essfully 
ompletedand tested this extension for linear interpolation usingthe original database generation method [16℄. Notethat the mesh database optimized for linear interpo-lation 
an be mu
h more e
onomi
 than the databaseoptimized for NN interpolation.In Fig. 2, an output-equidistant database generated forthe 2-parameter example is shown, whereas in Fig. 3, the�nal database in the 
ase of the 3-parameter example isvisualized. Both pi
tures show the equally distributed mesh6



in the 
ontrol spa
e and the irregular sampling of the inputspa
e.V Generation of output-equidistant databases:the kriging approa
hA In
remental distan
e-based sampling pro
edureAn other possible way of generating an output-equidistantdatabase is explained in this se
tion: the sought equidis-tant output sample distribution is attempted to a
hieve byusing the maximin method. In our 
ontext, maximin meansmaximizing the minimal distan
e between any pair of out-put samples. In so doing, one 
an heuristi
ally expe
t fordatabases being output-equidistant in the sense dis
ussedin Se
tion II. An in
remental algorithm for the databasegeneration is proposed, 
onsisting in two main stages:1. at the beginning of the pro
edure, some initial samplesare 
hosen by hand (e.g., by using one of the 
lassi
alDOE tools, su
h as Latin hyper
ube sampling);2. then, samples are inserted one-by-one, a

ording to amaximin 
riterion.For a formal des
ription, let us introdu
e the so-
alled dis-tan
e fun
tions :
Qk(x) = ||F(x)− yk(t)||y , where k = 1, 2, . . . , n. (15)The database 
onsists of n samples, and Qk(x) is relatedto the kth sample. If one intends to add the next, (n +

1)th sample to the database (in the in
remental loop), theevaluation of the following expression is needed:
xn+1 = argmax

x∈X

[
min

k=1,2,...,n
Qk(x)

]
. (16)Sin
e the algorithm looks only one-step ahead and no ba
kstep is allowed, the sample distribution is not an exa
t solu-tion of the maximin problem. Moreover, the initial samplesare not 
hosen a

ording to the 
riterion (16). To over-
ome these pitfalls, a sample-removing strategy must alsobe in
luded in the sampling strategy. After, say, every twosample insertions, one sample is removed from the databaseas follows. Let d

(−r)
min the distan
e between the pair of thenearest output samples if the rth sample was removed:

d
(−r)
min = min

i=1,2,...,n, i6=r

(
min

j=1,2,...,n, j 6=r,i
||yi(t)− yj(t)||y

)
.(17)In other words, the sample whi
h would in
rease the mostthe dmin minimal distan
e (12) if it was not in
luded in thedatabase, it is indeed removed.B Realization by kriging interpolationThe optimization problem (16) is 
omputationally expen-sive sin
e the forward operator F is involved in the distan
efun
tions Qk(x). An approximate solution is proposed byusing the kriging interpolation. Some referen
es for kriginghave already been given in the Introdu
tion.Kriging models the unknown Qk(x) fun
tion by a ξ(x)Gaussian random pro
ess. The pro
ess is assumed to bestationary, with a known 
ovarian
e fun
tion k(·). Theobservations of Qk(x) at the lo
ations x1,x2, . . . ,xn are


onsidered as realizations of the Gaussian random vari-ables ξ(x1), ξ(x2), . . . , ξ(xn). The method 
omputes thebest linear unbiased predi
tion (BLUP) of ξ(x) in the spa
espanned by these n Gaussian random variables. The pre-di
tion is denoted by ξ̂(x) and expressed as
ξ̂(x) =

n∑

i=1

λi(x)ξ(xi). (18)The 
oe�
ients λi(x) are 
omputed by using the 
ovari-an
e fun
tion k(·), via the solution of a linear system of nequations. The unbiasedness of the predi
tion means thatthe mean of ξ(x) and ξ̂(x) are equal. The term best refersto the fa
t that the predi
tion (18) has the smallest error(in the sense of error varian
e) among all unbiased linearpredi
tors.Having evaluated Qk(x) at the lo
ations x1,x2, . . . ,xn(this is straightforward sin
e Qk(xl) = ||yk(t)− yl(t)||y,
k, l = 1, 2, . . . , n), the mean of the predi
tor pro
ess (
on-sidered as the predi
tion for Qk(x)) is

Q̂k(x) =

n∑

i=1

λi(x)Qk(xi). (19)Let us note that the 
oe�
ients λi(x) do not depend di-re
tly on the observed values of Q(x) but only on the lo-
ation of the x1,x2, . . . ,xn input samples. This fa
t makespossible to use the same ξ(x) pro
ess for modeling allQk(x)distan
e fun
tions.The original optimization problem (16) 
an then besolved approximately at a mu
h less 
omputational 
ost byrepla
ing Qk(x) by Q̂k(x). The sampling algorithm thenbe
omes tra
table even when 
arrying out an exhaustivesear
h in X to solve (16).Further details on this kriging-based sampling algorithm
an be found in our re
ent works [25, 24, 26℄.VI Fun
tional kriging interpolationThe output-equidistant sampling methods (Se
tion IVand V) are basi
ally designed for the use of nearest neigh-bour interpolation based on the �nal dataset. As itwill be presented in Se
tion VIII, su
h output-equidistantdatabases might provide additional meta-information onthe studied forward problem. However, if the main goalis the interpolation itself, one might 
onsider more sophis-ti
ated interpolators than the NN interpolator.We have su

essfully applied a 
ertain version of kriginginterpolation to 
onstru
t sample-based surrogate models.The original kriging framework (slightly tou
hed in Se
-tion V) has re
ently been extended to the predi
tion offun
tional data [32, 33℄. Similarly to the s
alar form (19),the fun
tional output y(t), 
an dire
tly be predi
ted as
F{x} ≈ Gn{x} =

n∑

i=1

λi(x)yi(t), (20)where xi and yi(t) are the samples stored in the database.The 
oe�
ients λi(x) are determined in a sto
hasti
 frame-work; a Gaussian random pro
ess model (similar to (18)) isapplied. However, sin
e the modeled data is fun
tional, themodeling random pro
esses are also fun
tional pro
esses.The so-
alled tra
e-
ovarian
e has to be introdu
ed and es-timated as well. However, these details are out of our s
opeherein, see [34℄ for a detailed dis
ussion.7



Though the above kriging interpolator usually performswell even when the samples are generated in a naive way(e.g., by sampling regularly on a grid in the input spa
e),the pre
ision 
an further be improved by the adaptive gen-eration of the database. To this end, we have developeda sequential sampling algorithm aiming at the generationof databases adapted to both the modeled problem andthe subsequently used fun
tional kriging interpolator [35℄.The pro
edure starts with a small n number of initial in-put samples (x1,x2, . . . ,xn), 
hosen a

ording to a naivedesign (e.g., a regular grid in the input spa
e). Observa-tions of F are performed at these lo
ations, and a tempo-rary kriging interpolator (20) is �tted. Then, an iterativeloop starts, inserting new samples one-by-one a

ording toa 
ertain 
riterion being related to the estimated predi
-tion error. The latter is obtained by using the so-
alledja
kkni�ng te
hnique (a well-known tool �being similar to
ross-validation� in statisti
s to estimate the un
ertaintyof predi
tors). Ja
kkni�ng provides the σ2Ja
k(x) estimatedvarian
e of the kriging predi
tor, whi
h 
an be 
onsideredas a measure of the expe
ted interpolation error to a 
er-tain extent. Based on this varian
e, the following heuristi
sample-insertion rule 
an be formalized:
xn+1 = argmax

x∈X

[
min

i=1,2,...,n
||x− xi||x σ

2Ja
k(x)] , (21)where the �rst fa
tor (the minimal distan
e in the inputspa
e) is involved in order to avoid 
lustering samples in theinput spa
e. By sequentially repeating the above sample-insertion, the yielded database is expe
ted to be a balan
eof input-spa
e �lling and adaptive sampling.VII Appli
ation of adaptive databases in
omputational ele
tromagneti
sThe generated database together with a properly sele
tedinterpolator 
an be used in various appli
ations related to
omputational ele
tromagneti
s. In this se
tion, we wouldlike to highlight some of su
h possibilities.Lightweight simulator. In many 
ases, the end user ofa parti
ular design problem is not an expert in using generalpurpose EM �eld 
al
ulation softwares. At the same time,su
h design problems usually have only a few number of de-gree of freedoms. As an example, in the 
ase of the design ofa new type of eddy 
urrent testing (ECT) probe, the basi
geometry of the probe is usually �xed, only 
ertain geo-metri
 parameters are enabled to vary between pre-de�nedbounds. To qualify the performan
e of su
h probes, oneneeds to know the dete
ted response of the probe for onlyone or two defe
t prototypes. All the information neededfor the design 
onsidering the given 
onstrains 
an be pro-vided to the end-user in the form of a database and an in-terpolator, embedded in a very simple graphi
al interfa
e.This design tool is 
alled as �lightweight simulator�.The generation of the database 
an be done indepen-dently by an expert in EM �eld simulation who 
an applythe most e�e
tive software and model for the 
al
ulations.Also, during the database generation one 
an 
onsider pra
-ti
al 
onstrains of the design, like the noise of the measure-ments or the manufa
turing toleran
es of the design param-eters of the probe.

Tea
hing neural networks. An optimal database 
anbe used to tea
h neural networks. We 
ompared the per-forman
e of neural networks taught with databases beingequidistant in the input spa
e (this is the database typeusually used for tea
hing in the literature) and in the out-put spa
e (the one we 
all output-equidistant database). Itwas found that the neural networks perform similarly if theinput data are free from noise, however, the neural networktaught with output-equidistant database outperforms theother one if the observations are subje
ted to measurementnoise [40℄.Solution of inverse problems. The most important ap-pli
ation of the adaptive databases is, however, in the �eldof the solution of inverse problems using optimization meth-ods, dire
t sear
h or interpolation in the database. Su
hproblems related to various di�erent appli
ations have re-
ently been solved. Examples 
an be read in [16, 39, 24, 45℄.Quali�
ation of inverse problems. In addition tothe su

essful solution of an inverse problem, the output-equidistant database 
an also be used to gather additionalinformation (meta-information) on the inverse problem it-self. We believe that this is a very important appli
ation,having theoreti
al importan
e as well. In the following Se
-tion we dis
uss this point in more details.VIII Evaluation of the databases and means ofinverse problem 
hara
terizationIn this se
tion, the use of the generated databases is in thefo
us. The pre
ision provided by the surrogate models isassessed in terms of the interpolation error (Subse
tion A)and a method for the qualitative 
omparison of output sam-ple distributions is given (Subse
tion B). Finally, a sim-ple way of inverse problem 
hara
terization (enabling us todraw quantitative 
on
lusions on the possible ill-posednessof the problem) is presented in Subse
tion C.The two approa
hes of output-equidistant sampling (Se
-tions IV and V) yield rather similar databases. A 
ommonlimitation of both methods is the number of input param-eters: the meshing is limited by p < 9 (due to the appliedQhull mesh generator), whereas in the kriging-based ap-proa
h, our numeri
al studies showed that the evaluationof the sample insertion 
riterion (16) be
omes numeri
allydemanding with in
reasing number of input parameters.One 
an say that both approa
hes have the same pra
ti
alupper limit for p, however, there is no theoreti
al limitationin any of the two methods. An advantage of the mesh-basedmethodology is the 
onne
tivity information represented bythe mesh, enabling higher order interpolation (e.g., linear)over the simpli
es. On the other hand, the distan
e fun
-tions of the kriging-based strategy make possible the quan-titative 
hara
terization of the inverse problem in an easyway.The numeri
al studies presented herein are all basedon the test example de�ned in Se
tion III. The mesh-supported sampling has already been illustrated in Se
-tion IV, hereafter the output-equidistant sampling is per-formed by the kriging-based approa
h.8



A Pre
ision of the forward interpolationThe most plausible way to 
ompare the di�erent surrogatemodels is to 
ompute the dis
repan
y between the true out-puts (by evaluating F) and the output of the surrogatemodel, i.e., to 
onsider the interpolation error
ε(x) = ||Gn{x} − F{x}||y . (22)In Fig. 4, four surrogate models are 
ompared in the senseof ε(x). The true output �also ε(x)� is 
omputed over a

37× 18 grid in the input spa
e. The worst performan
e isshown by the 
ombination of the naive grid sampling andthe NN interpolation (Fig. 4a). NN interpolation yieldssmaller error when using an output-equidistant database(Fig. 4b). The smooth fun
tional kriging interpolators pro-vide mu
h �ner pre
ision even by grid-sampling (Fig. 4
),whereas the adaptive sampling strategy of fun
tional krig-ing results in outstanding pre
ision (Fig. 4d).The distribution of the input samples in the output-equidistant database (Fig. 4b) has an important message
on
erning the modeled forward problem. In the large-
ra
k region, mu
h more samples have been inserted thanin the region of small (mainly in the sense of the depth D)
ra
ks. Sin
e the output sampling is output-equidistant,one 
an 
on
lude that F varies rapidly in the large-
ra
kregion and has almost no variation in the small-
ra
k re-gion. This meta-information 
arried by the stru
ture of thedatabase will be further dis
ussed and exploited in Subse
-tion C.B Visualization of the output sample distributionSin
e the output data lie in a fun
tion spa
e, dire
t vi-sualization is not possible, but the multidimensional s
al-ing (MDS) method [46℄ 
an be applied instead. Themethod gives a low-dimensional representation of the out-put samples whereas the distan
e relations remain more-or-less un
hanged. Let us 
onsider a database in
luding
n samples. The main idea of MDS is to spa
e n points(π1, πn, . . . , πn) in a k-dimensional Eu
lidean spa
e sothat the pairwise distan
es between the new points are assimilar as possible to the distan
es between the originaloutput samples. Formally, the so-
alled stress

S =

n−1∑

i=1

n∑

j=i+1

(
||yi(t)− yj(t)||y − ||πi − πj ||

)2 (23)is to be minimized by the appropriate spa
ing of the points
πi (herein || · || stands for the Eu
lidean norm). Spe
ially,if k = 2, the resulted repartition 
an easily be plotted.This plot 
an then be 
onsidered as the low-dimensionalrepresentation of the original dataset.In Fig. 5, the MDS plots of the databases in the2 and 4-parameter 
ases are presented. The output-equidistant sampling yields balan
ed output sample distri-bution whereas the regular input sampling 
auses distortedoutput sampling. In the latter 
ase, some samples appearsto 
luster in 
ertain regions of the output spa
e; other re-gions are unexplored at the same time. A

ording to thevisualized repartition of the output samples, the proposedsampling algorithm indeed outperforms the naive grid sam-pling approa
h.

C Ill-posedness and inverse-mapped noise levelsAs it is well known, inverse problems (determining the 
on-�guration knowing the measured EM �eld) might be ill-posed: the solution might not exist, not be unique and notbe stable. The latter refers to the fa
t that small varia-tions in the measured data 
an 
ause high variations in there
onstru
ted 
on�guration. This sensitivity (being a ba-si
 property of F) 
an be assessed to a 
ertain extent byusing the output-equidistant databases. In Subse
tion A,we have already pointed out the relation between the inputsample density and the assumed behaviour of the forwardoperator.Based on the distan
e fun
tions (15), the ill-posedness ofthe inverse problem 
an quantitatively be addressed. Letus assume that a uniform noise level δ �being an aggregatedrepresentation of all sour
es of un
ertainty� a�e
ts the mea-surement at hand. For a given measured output ỹ(t), onethen has to 
onsider all fun
tions y(t), being 
loser to ỹ(t)than a distan
e δ, as possible real (noise-free) data. Ex-pressively, one has to imagine a sphere with radius δ and
enter ỹ(t) in the L2(T ) fun
tion spa
e. The un
ertainty ofthe solution of the inverse problem is in fa
t related to theimage of this sphere in the input spa
e. Via the distan
efun
tions, su
h inverse imaging boils down to a simple in-equality:
Φδ

i =
{
x ∈ X : ||F{x} − yi(t)||y ≤ δ

}
=

= {x ∈ X : Qi(x) ≤ δ} , (24)where Φδ
i is the �inverse-mapped� noise region, if the mea-sured data ỹ(t) is assumed to be equal to the ith sample inthe database.The shape and the dimensions of the di�erent Φδ

i 
ellsprovide valuable information about the underlying prob-lem, sin
e they show how the noise in�uen
es the un
er-tainty of the solution of the inverse problem. Where Fvaries rapidly, a smaller Φδ
i is expe
ted than in the regionswhere F is �at, i.e., when the problem tends to be ill-posed.This formalization gives an expli
it expression of the withinrea
h pre
ision at a given noise level.Let us also mention that if the noise level δ is knownwhen generating the database, the latter 
an be optimizedby using ∆ = 2δ in (10).In the realization, due to the high 
omputational 
ost,not the exa
t distan
e fun
tions but their kriging predi
-tions are used. Thus, the approximate noise-
ells Φ̂δ

i 
anbe determined aŝ
Φδ

i =
{
x ∈ X : Q̂i(x) ≤ δ

}
. (25)In Fig. 6, the approximate noise-
ells in the 2-parameterexample for three di�erent δ levels are shown. Let us no-ti
e that the database is approximately output-equidistant,even so the shape and the dimensions of the di�erent 
ells

Ψ̂i in the input spa
e are very diverse. The large 
ells inthe region of small 
ra
ks highlight that (i) a �ner sam-pling is not needed, and (ii) the di�
ulty of retrieving su
hsmall defe
ts. On the 
ontrary, the small 
ells in the regionof large 
ra
ks justify the dense sampling. These resultsare in good agreement with the experien
e and the expla-nation of the evaluation of the forward interpolation error(Subse
tion A).Further dis
ussion on the inverse mapping and more nu-meri
al examples 
an be found in [24℄.9
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(b) Output equidistant sampling + NN interpolation.
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(d) Adaptive sampling + fun
tional kriging interpolation.(Blue squares: initial samples; red dots: sequentially addedsamples.)Figure 4: Interpolation error (ε(x) in mΩ) using di�erent sampling and interpolation methods. All databases in
lude 36samples.
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10 90Figure 6: Inverse-mapped noise levels and input samplesfor three di�erent noise levels in the 2-parameter example,using n = 25 samples. (Taken form [24℄.)IX Con
lusionDi�erent sample-based adaptive surrogate modeling ap-proa
hes have been presented in the paper. The output-

equidistant databases are 
ombined with the nearest neigh-bour interpolation. The use of fun
tional kriging as in-terpolator has also been presented, along with a samplingalgorithm whi
h improves the pre
ision of the surrogatemodel being built.For the generation of output-equidistant databases, twomethods are proposed. First a p-dimensional simplex meshhas been used as a generi
 interpolator of the forward prob-lem. Adaptive mesh re�nement and smoothing te
hniquesare applied for exploring the forward operator and for learn-ing the topologi
al and metri
 relationships of its data sam-ples. By introdu
ing the 
ontrol spa
e, where meshing takespla
e, one 
an avoid the usage of spe
ial mesh generators.In the se
ond approa
h, the generation of the database isre
ast as an optimization problem, whi
h is solved itera-tively, by inserting the next input sample with respe
t tothe distan
e between points in the output spa
e. This is anexpensive-to-
ompute optimization problem, thus, the useof a kriging interpolator is proposed. In spite of the essentialdi�eren
e of the working prin
iples, the two methodologiesyield similar �nal databases.In the 
ase of fun
tional kriging interpolation (insteadof nearest neighbour), the database generation involves the10
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(a) 2-parameter example, regular sampling with 36 samples(see Fig. 4a for the 
orresponding input sampling). −60 −40 −20 0 20 40
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(b) 2-parameter example, output-equidistant sampling with 36samples (see Fig. 4b for the 
orresponding input sampling).
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(
) 4-parameter example, regular sampling with 81 samples(input samples are spa
ed on a regular grid of 3 × 3 × 3 × 3nodes). −80 −60 −40 −20 0 20 40 60 80
−60

−40

−20

0

20

40

60

π
1
 (mΩ)

π
2
 (

m
Ω

)

(d) 4-parameter example, output-equidistant sampling with 81samples.Figure 5: Multidimensional s
aling representation of output samples in the 2 and 4-parameter 
ases, with 36 samples.The output-equidistant databases have been generated by the kriging method dis
ussed in Se
tion V.estimated interpolation error via the ja
kknife varian
e es-timation. The varian
e of the predi
tion error is a naturalmeasure of the quality of the interpolation in the sto
has-ti
 framework of kriging. The resulted sampling strategy isthus fully adapted to both the modeled forward operatorand the applied interpolator.The e�
ien
y of all approa
hes is illustrated by an eddy-
urrent nondestru
tive appli
ation using two, three andfour defe
t parameters.The surrogate models involving fun
tional kriging in-terpolation appear to outperform the strategies based onoutput-equidistant databases in the sense of interpolationpre
ision. However, the spe
ial stru
ture of the output-equidistant databases 
arries some meta-information on themodeled forward problem, making possible the 
hara
teri-zation of the related inverse problem to a 
ertain extent. Aninverse mapping of a noise level is dis
ussed, whi
h resultsin a quantitative assesment of the un
ertainty of the re
on-stru
ted input parameters in the presen
e of measurementnoise.As a 
ommon limitation of the presented approa
hes, wemust note the relatively small p number of 
onsidered inputparameters. Though there is no theoreti
al limitation, the

in
reasing 
omputational load arises a limit of, say, p < 9.However, we believe that further development 
an raise thisupper limit.The future resear
h will be fo
used on (i) the generationof databases optimized for inverse interpolation, and (ii)on the analysis of un
ertainty propagation (from di�erentsour
es, e.g., impre
ise knowledge on the material param-eters, simulation errors, measurement noise) involving thekriging-based tools of database generation.A
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