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Phenomenological modeling of magnetic hysteresis  
 
Abstract — This paper deals with the modeling of vector fields 
that exhibit hysteresis. A general class of models of vector 
magnetizations with hysteresis that overpass some drawbacks of 
the Preisach-type models is defined. After reviewing some general 
properties of conservative fields, the particular case of unit 
magnitude vector fields is discussed. The paper focuses on a 
discussion of the properties of a general vector hysteresis 
operator (hysteron). In the Appendix sections some examples of 
vector hysterons deduced from the general definition are 
presented, and their properties are indicated and analyzed. 
 

I. INTRODUCTION 
 
Three-dimensional modeling has many applications in the 
analysis of practical devices and components, such as 
transformers, electric motors, magnetic transducers, etc. 
However, the modeling of magnetic hysteresis in 3-
dimensions has several open questions.  Many physical 
approaches at micro- or even nano-magnetic scale [1] - [13] 
are difficult to use. This list is indicative but not exhaustive. 
Due to the extensive amount of computer time and memory to 
compute the behavior for dimensions typical of practical 
devices the approaches above have limited usefulness. 
Phenomenological approaches [14] - [20], on the other hand, 
have been proposed on a macro magnetic scale for the 
modeling of magnetic materials with hysteresis. They have 
been used successfully to extend this analysis to vector 
hysteresis problems, since real devices are three-dimensional.  
The principal other vector models are: the Stoner-Wohlfart 
model [21], the Vector Preisach Model proposed by 
Mayergoyz [22] and the Coupled  Hysterons Model proposed 
by Della Torre [23]. 
The Stoner-Wohlfart model has some very attractive features 
dealing with the physics of magnetism, but is limited to 
ellipsoidal, single-domain, uniaxial magnetic particles.  The 
Mayergoyz model computes the total magnetization as the 
vector sum of the responses to a continuum of components of 
magnetization in each direction. The magnetization along each 
direction is obtained via a scalar hysteresis model, whose 
parameters are function of the direction. This model has the 
advantage of greater generality than the previous one, but does 
not compute observed dissipations due to a rotating applied 
field correctly.  The Coupled Hysterons Model has the correct 
saturation and dissipation properties, but is only able to handle 
materials that are ellipsoidally magnetizable, and requires 
rotational and orientation corrections.   
Other recent phenomenological approaches to the vector 
hysteresis that try to overpass the technical inadequacies of the 
previous models were presented in papers [24] – [33].  
Among these, in papers [30], [31], and [32] a generalized 
vector model of magnetic hysteresis was introduced.  
 

II. BASIC FEATURES OF THE MODEL 
 
The model is based on the definition of a vector hysteron, 
described in the H- space by a closed critical surface. Each 
vector hysteron has a unique critical surface, described by a 
suitable set of parameters, indicated here with the parameter 
vector Ω. The normalized component of the magnetization for 
each hysteron has unit magnitude everywhere.  For fields 
inside the critical surface the magnetization is frozen in the 

direction that it had just before it entered the critical surface, 
and it remains constant until it exits the critical surface.  When 
exiting the critical surface the irreversible magnetization 
instantly rotates so as to align itself along a new direction. 
This direction depends upon the different model strategies, as 
described above. 
 

 
Fig. 1. Elementary circular hysteron and variation of magnetization with 

applied field for a particular applied field trajectory. Figure in 2-D. 
 
The magnetization state vector of the hysteron can be denoted 
by Q(Ω,H). This means that the direction of unit 
magnetization given by the vector hysteron is a function of  
the parameter vector Ω for any point of the H-space.  The total 
magnetization is the vector sum of the magnetization due to all 
the hysterons. The total magnetic field that the hysteron sees is 
the applied field plus an interaction field HI, due to the 
presence of the other hysterons, and the effect is a vector 
displacement by HI from the origin of the hysteron.  
In the case of Fig. 1 the components of Ω, i.e. the model 
parameters, are the components of the interaction field and the 
radius of the hysteron.  The hysterons are distributed in the H-
plane, and their density distribution can be described by a 
distribution function P(Ω), in analogy with the CSPM case.  
This paper presents a general discussion of conservative unit 
magnitude vector fields, which is an integral part of this 
model. This leads to a definition of a 3-D basic vector 
hysteron, which is used as a basis for a general analysis of 
vector models with magnetic hysteresis. 
This paper also discuss the general properties of these vector 
hysterons, including the energy exchanges, and the possible 
set of parametric systems of coordinates that define in 
mathematical form the general vector hysteron.  These are 
useful as tools for numerical analysis. The properties 
discussed and defined in rigorous way can be generalized to 
any vector field with hysteresis, and are not limited to the 
magnetic case. Finally, some examples show that the general 
definition of the vector hysteron includes all the previously 
mentioned generalized vector models [30], [31] and [32] . 
 

III. CONSERVATIVE VECTOR FIELDS 
 
In this paper is discussed a 2-D model for the sake of 
simplicity, but the theory can be easily generalized to the 3-D 
case.  In this section some basic concepts and some definitions 
about the conservative vector fields useful for the discussion 
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of the next sections will be reviewed. 
In general a vector magnetization, M , due to an applied field, 
H , can be defined in 2-D using  a regular H-Cartesian frame: 

),( yxx HHM  and ),( yxy HHM . A vector field is defined 
here as weakly conservative if it is conservative for a given 
regular coordinates system. If the vector field is a continuous 
function of a given regular system of coordinates, with 
continuous derivatives, it can be shown that it is weakly 
conservative if in the given system of coordinates there exists 
a potential W, such that 
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In addition the vector field is defined here as weakly closed if 
in the given system of coordinates it has equal mixed 
derivatives 
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If the vector field is weakly closed and it is defined on a 
simply connected domain of H, the line integral along any 
closed line γ inside the domain 
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γ

yyxx dHMdHM                                                            (4) 

is zero, and the vector field  is weakly conservative.  The 
adjective weakly is used here because the conservative 
property of the vector field is not general but depends upon the 
coordinates system.  In other words, a regular transformation 
of coordinates can be used, whose Jacobian is non zero, and 
whose components in the H- plane can be expressed terms of a 
new system of coordinates, indicated as u and v. Then 
 
 )),(),,((),( yxyxxyxx HHvHHuMHHM =                         (5) 
 
with an analogous expression for My . 
Symmetrically  
 

)),(),,((),( vuHvuHMvuM yxxx =                                        (6) 
 
with an analogous expression for My. .In Appendix I, some 
examples of these transformations are presented. 
Using the rules for the derivative of composite functions, it 
follows that the necessary and sufficient conditions for the 
conservative vector field in the H-plane can be expressed as 
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Or, more usefully as 
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IV. UNIT MAGNITUDE VECTOR FIELDS 

 
Some useful considerations about the properties of vector 
fields having unitary absolute magnitude of magnetization are 
introduced in this section.  These field properties will be used 
in the discussion about a general class of models of vector 
hysteresis presented in the next sections.  
In view of the above considerations, if the following 
assumptions are made 

• the magnetic field must be expressed by a regular (u, 
v) coordinates frame;  

• the curves for u = constant must be the equipotential 
curves of the vector field. 

• the curves for v = const must be the lines of force of 
the vector field; 

the fact that equipotential curves and lines of forces must be 
perpendicular can be used and the magnetization in general 
can be written as 
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Now it will be proved that the conservative condition, 
discussed in the previous section, leads to the condition that 
for v = const the abscissa of the curvilinear coordinates must 
be independent by v. 
This necessary and sufficient condition can be expressed in 
mathematical form as follows 
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Equation (11) implies that the length of two segments of lines 
of forces between a pair of equipotential curves must be equal 
for any v. 
The proof of the above statement is deduced in the following 
of this section. 
The orthogonality condition can be expressed mathematically 
as follows 
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with the assumptions made, the curvilinear abscissa of the 
generic equipotential surface is given by 
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where f is a regular function of the only component u. 
If (12) is differentiated with respect to u 



 

0
2

2

22

2

2

=
∂∂

∂

∂

∂

+
∂

∂

∂

∂
+

∂∂
∂

∂
∂

+
∂
∂

∂
∂

vu
H

u
H

v
H

u

H
vu

H
u

H
v

H
u
H

yy

yyxxxx

                        (14) 

 
and if (13) is differentiated with respect to v 
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Therefore 
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Taking into account (13) the derivatives of the magnetization 
are 
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If the conservativeness (8) is applied, using (20) the left side 
part becomes 
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and it is zero, according with (15). Again, the right side part of 
(8) becomes 
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This again is zero, using (12) and (16).  Therefore it has been 
shown that a unit vector field whose magnetization is 
perpendicular to the equipotential surface is always 
conservative if and only if (11) is satisfied. 
Now the attention will be focused on the conditions that must 
be satisfied by the parametric regular coordinates system (u, 

v), in order to fulfill the condition (11), and consequently the 
conditions (12) and (13). First of all, it must be shown that for 
any fixed magnitude of u a fixed equipotential surface for the 
considered vector field is obtained. In addition, for a fixed 
magnitude of v is obtained a straight line (constant slope), 
perpendicular to the equipotential surface in the intersection 
point. The lines for v = constant are lines of force of the vector 
field. 
This is shown as follows: if the partial differential system (12) 

and (16) is again taken into account, and 
v
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family of the coordinate curves must be a regular system. 
Therefore the determinant of the system must be zero, and this 
can be written as 
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This means that 
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consequently written 
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Integrating,  
 

)(),()(),( vkvuHvhvuH xy
((

+=                                             (25) 
 
This shows that for a fixed magnitude v0, the curve 
( )),(),,( 00 vuHvuH yx  is a segment of straight line (for  
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u
H x  it is a vertical segment). It can be also deduced that 

the function ( )uf can be set equal to a constant: if the change 

of variable )(** ufu = is made, where )()(* uf
u
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1)( =uf   in (13) and in the following. 
In the remainder of this section it will be shown that the 
coordinates curves (equipotential curves, or surfaces in 3-d) 
obtained for u = constant are circles (spheres), if the definition 
domain is the entire H-plane )0( ≥u . 
Substituting (24) in (13)  
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Assuming, for the sake of simplicity, the positive sign in (26), 
and integrating with respect to u  
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where )(vφ  is an arbitrary function. From (25) and (27) 
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Using (29) and the orthogonality condition (12) the result 
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v
vφ  is derived, therefore 
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This describes the Cartesian coordinate’s frame, which 
obviously fulfills the conditions (12) and (13). 
Getting back to the general case, and introducing a change of 
variable ( ))(arctan vhw

(
=  the following result is obtained 
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where )(w∗φ  and )(w∗ψ  are suitable regular functions. If the 
orthogonality condition (14) is again applied in the 

),( wu coordinates this leads to 
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If a regular coordinates system is searched where u = constant 
is a family of equipotential curves (surfaces) defined in the 
whole H-plane from (31) and (32) the only possible solution is 

)(w∗φ  = h and )(w∗ψ = k, where h and k are arbitrary 
constants and the equipotential curves (surfaces) are circles 
(spheres).  In Appendix II some examples of magnetization for 
this case are presented. 
On the other hand, if the domain is limited to the family of 
equipotential curves of a part of the H-plane there are 
solutions of (32) that originate for u = 0 equipotential surfaces 
described by a closed curve. In this case the function )(w∗ψ is 
selected as an odd real function, defined in (-π, π), continuous 
with its first and second derivative. The function )(w∗ψ is 
positive only if π<< w0  and it must have one only 
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2
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* ψψ , where a is an arbitrary real number 
individuates the starting (and ending) point of the 
equipotential curve corresponding to u=0. 
The properties of the signs of the functions defined, and of 
their derivatives ensure that the equipotential curve found is a 

regular curve. If the functions 
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polar coordinates 
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The condition (32) becomes 
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and ( 0)( =wρ  is obviously a not interesting solution) 
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In the interval (0, 2π) is 
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By integrating the (36), and taking into account (31)  
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where A and B are arbitrary real constants. 
These are the more general expressions of a conservative and 
orthogonal unit vector field defined by means of a regular 
parametric system of coordinates (u,w). 
It is interesting to note that the equipotential curves defined in 
the theory of Stoner and Wohlfart [21] are included in the 
family described by (31) and (32). See Appendix III. 
The explicit formulas of the magnetization given by this 
vector field are deduced by (12)  
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Moreover from (31)  
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It is also easy to see that the magnetic scalar potential as 
defined in (1) and (2) for this class of unit magnetization 
vector fields is equal to u. 
Using the rules of the derivation for the change of variables, 
from (1) and (2) 
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And, taking into account the orthogonality condition (12) 
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It follows 1=
∂
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u
W  and W = u.            

In conclusion, if a regular real function )(* wφ  is selected the 

function )(* wψ is found by integrating (32), or vice versa. 
Finally the expressions for M as a function of H are found by 
(38), (39) and (40). The equipotential curves and the related 
lines of force are described by the parametric equations in u 
and w (31), where the value of u is the scalar potential of the 
vector field. 
The discussion about the properties of unit magnitude 
conservative vector fields presented in the previous sections 
allows us to define in rigorous way the general class of vector 
hysterons. Any critical surface must be an equipotential 
surface, because the vector field must be conservative out of 
the critical surface. Therefore the family of the critical 
surfaces must satisfy the conditions (31) and (32). 
 
 

V. OTHER ENERGY REQUIREMENTS OF THE GENERAL 
HYSTERESIS OPERATOR  

 
The general hysteresis operator defined in the previous 
sections must be congruent with the second principle of the 
thermodynamics: in other words the energy of any closed path 
crossing the hysteron must be dissipative. 

 
Fig. 2. Discussion of the congruence of convex critical surfaces of the vector 

hysteron model with the second principle of the thermodynamics.  
Figure in 2-D. 

 
Referring to fig. 2, the energy exchange for any path γ-ext 
external to the any hysteron between any couple of points P1 
(starting point) and P2 (end point) of the hysteron is zero, 
because the critical surface is an equipotential surface. 
Therefore the condition above can be expressed in 
mathematical way as follows: for any internal path γ-int of any 
hysteron between any couple of points P1 and P2 of the 
hysteron it can be written 
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If the parametric description of the equipotential 

surface illustrated in the previous sections is used (43) 
becomes 
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Where w1 is the value of the parameter w of the point P1.  

)),(( 1wuHM xx and  )),(( 1wuHM xy  are constant with 
respect to  the variable of integration. Thus   
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If the conditions (38) and (39) are applied to (45)  
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Where w2 is the value of the parameter w of the point P2. 
First of all the congruency with the second principle of the 
thermodynamics will be discussed when  u ≥ 0. It is easy to 
see that the magnitude of )1sinsincos(cos 2121 −− wwwwu  in 
this case is always less or equal to zero, therefore the condition 
(43) becomes 
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It follows that (47) is a necessary and sufficient condition for 
the second principle of the thermodynamics. 
If )(* wφ  and )(* wψ are constant in the domain of definition 
of w the condition (43) is verified. If )(* wφ is constant, in 
fact, )(* wψ is constant too, and vice versa. Moreover, in this 
case  
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where –γ-int means the inverse path of γ-int. 
Now a more explicit expression for the condition (43) will be 
derived, and the following statement will be proved. A 
necessary and sufficient condition for (43) is that 
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for any v. The prove of this statement can be given as follows. 
If 0cos 1 =w  the first part of (47) is equal to zero. If 

0cos 1 >w , the first part of (47) is less or equal to zero if, and 

only if 
1
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If the contrary is supposed, and (47) is divided by 
112 cos))(*)(*( www ψψ − , where w2 is in the domain where  
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For the property of the derivable functions (Cauchy theorem) 
there is at least a point w(  in the interval between 1w  and 2w  
where it can be written 
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In addition, from (32)  
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Therefore 
 

ww (tantan 1 −≤− .                                                                (53) 
 
Equation (53) can not be true, because the tangent function is 
monotonically increasing. So it has been proved that if  

0cos 1 >w , the first part of (47) is less or equal to zero if, and 

only if 
1

)(*

www
w

=∂
∂ψ  ≥ 0 . Analogously it can be shown that if 

0cos 1 <w , the first part of (47) is less than or equal to zero if, 

and only if 
1

)(*

www
w

=∂
∂ψ  ≤ 0 . 

Following the same procedure for the second part of (47), it 

can be seen that the sign of 1sin w  and 
1

)(*

www
w

=∂
∂φ must be 

opposite. Thus statement (49) is a necessary condition. 
To show that the condition (49) is also a sufficient condition, it 
will assumed that (47) is not verified.  Then  
 

0sin))(*)(*(cos))(*)(*( 112112 ≥−+− wwwwww ψψφφ  (54) 
 
at least for the two magnitudes 1w  and 2w , with 1w  < 2w  
and with 0cos 1 ≠w and 0sin 1 ≠w . In this case it must be 
either 0))(*)(*( 12 ≠− ww φφ  or 0))(*)(*( 12 ≠− ww ψψ . If, 
for example, 0))(*)(*( 12 >− ww ψψ , then it is also 

0cos 1 >w . Therefore, since (49) is verified (54) can be 
divided by ))(*)(*( 12 ww ψψ −  and  
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If it is again used the Cauchy theorem, using the fact that  

w
w

∂
∂ )(*φ and 

w
w

∂
∂ )(*φ  are not zero simultaneously, it is again 

obtained  the absurd condition (53) for 1w  < w( .  
The other cases can be treated in analogous way. 
The congruency with the second principle of the 
thermodynamics can be discussed in weak form, if the value of 
u is assigned. 
It will be proved in the following that the congruency with the 
second principle of the thermodynamics is guaranteed 
(sufficient condition) for any family of curves described by 
(31) and (32) if the curves are convex. 
If the equipotential curves for 0uu ≥  are convex it follows 

that the angle (φ in fig. 2) between the vector 
→

21PP and the 
vector magnetization, perpendicular to the curve is always 

2
π

≥  and 
2

3π
≤ , therefore the scalar product between the 

vector  
→

21PP and the vector magnetization is always 0≤ . This 
scalar product is equal to (45), therefore the statement above 
about the condition of weak congruency with the second 
principle of the thermodynamics is proved. 

 
VI- SATURATION PROPERTY 

 
The saturation property can be enunciated as follows 
“The total magnetization due to an assembly of vector 
hysterons must be always less than or equal to the saturation 
value, that occurs when the value of the applied magnetic field 
go to the infinite”. 
Any assembly of hysterons, defined as above, obeys this 
property: Referring for more convenience to the Fig. 3 it is 
easy to check that from the Schwarz’s inequality the sum of 
vectors comes that the maximum value of the magnetization is 
achieved when all the contributions to the magnetization of the 



assembly of hysterons are oriented in the same direction: this 
occurs only when the applied field is far from the assembly of 
hysteron considered and tends to the infinite. 
 

 
Fig. 4. Graphic representation of the saturation and loss property 

 
 

VII- LOSS PROPERTY 
 
The loss property can be enunciated as follows 
“The magnetic losses for any applied rotating magnetic field 
tends to zero when the magnitude of the applied rotating 
magnetic field go to the infinite” . Any, obeys this property: 
Referring again to the Fig. 4 it is easy to check that the lag 
angle between magnetization and magnetic field goes to zero 
when the applied field is far from the assembly of hysteron 
considered and tends to the infinite. Therefore the change of 
the magnetic energy density in one rotation ∫ • dHM , that 

means the magnetic losses in a turn, goes to zero. 
 

VIII- VIRGIN STATE 
 
We want now that any assembly of vector hysterons must 
reproduce the virgin state, or zero-magnetization state, that 
means that the total magnetization must be zero for a magnetic 
material previously demagnetized.  This can be achieved with 
the additional condition that the hysteron distribution in the H-
space must be symmetrical respect to the origin and that the 
direction of the magnetization is in frozen state for the 
hysterons whose critical surface contains the origin must be 
toward the origin. Fig. 4 explains the concept graphically. 
 

 
Fig. 5. Graphic representation of the virgin state property 

 
IX. THE CONGRUENCY PROPERTY  

 
We now show that an assembly of vector hysterons, as we 
discussed, has the vector congruency property: “Let γ be a 
directed closed curve in the applied H-space, and let Γ be the 
corresponding curve traced in the M-space by the vector 
hysteron model.   Then all the Γ curves are congruent, and 
their displacement in the M-space is a vector function of the 
path from the origin of the H-space to γ”. Figure 3 shows a 
typical curve γ and two possible input paths from the origin O 
to two different points A and B on γ. As shown in Fig. 3, we 
can divide the total population of possible hysterons in five 
classes: Class 1 are those completely internal to γ; Class 2 are 
those intersected by γ; Class 3 are those completely external to 
γ; Class 4 are those intersected by γ and by the input path from 
the origin to γ; Class 5 are those containing γ. The components 
of the total magnetization, at a generic point P of γ, produced 
by the hysterons of the class 1, 2 and 3 are independent of the 
input path. The components produced by the hysterons of the 
class 4, after one turn on γ, are also independent of the input 
path. On the other hand, for the hysterons of class 5 the 
magnetization produced is dependent on the input path, 
because these hysterons have a unit magnetization that is 
frozen in the direction that it had at the enter point. For 
example, in Fig. 3 the unit vector magnetization M5-OA for 
the input path that passes through A, and the vector unit 
magnetization M5-OB for the input path that passes through B 
are different. We can conclude that the two curves ΓA and ΓB 
produced in the M-space for the two input paths are congruent, 
and that ΓA is displaced respect to ΓB of the difference of the 
two integrals of M5-OA and M5-OB in the H-space,  as shown 
in Fig. 4. 
 

 
 
FIG. 3. An example in 2-D of classification of the hysterons (dotted lines) in 
the H-space and the typical contribution to the magnetization for the five 
classes of hysterons. 
 

 
 
FIG. 4. Example in 2-D of the congruency property of closed paths traced in 
the M-space by the vector hysteron model with an input closed curve in the H-
space. 
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X. THE DELETION PROPERTY  

 
We will now show that the model has the vector deletion 

property: “Let α be a generic path from the origin to a given 
point P1 in the H-space. A necessary and sufficient condition, 
in order to cancel the magnetic memory created by the vector 
hysteron model in the M-space due to the input of α, is to trace 
in the H-space a generic path β from P1 to P2 such that all 
hysterons that contain β also contain α”. The condition above 
is necessary, since if this condition is violated, for example 
tracing a path β1 from P1 to P1’ shown in the figure 6, there 
exists at least one hysteron that contains β1 and not contains 
α.  Thus, the magnetization produced by this hysteron in the 
point P1’ depends on the path α. This condition is also 
sufficient, since if this condition is violated, for example by 
tracing a path β2 from P1 to P2 shown in the figure 6, there 
are no hysterons that cross α and also contain β2.  Thus, the 
magnetization at the point P2 is independent of the path α. We 
can note that another way to express a sufficient condition in 
order to cancel the magnetic memory created by the input of α 
is to trace in the H-space a generic closed path β3 that 
surrounds α (see Fig. 5). This way is very effective and 
practical, either from the computational point of view, or from 
the experimental one. 

 

 
 
FIG. 5. Example in 2-D of the deletion property of the magnetic memory due 
to a generic path α from the origin to the point P1. 
 
In the APPENDIX III and IV two choices of vector hysterons 
interesting for possible applications to anisotropic magnetic 
materials are presented and their particular properties are 
discussed.  
 

XI. EXAMPLES 
 

Here are illustrated typical results computed by the proposed 
vector hysteresis model.  

 We refer here to hysteron density function expressed in 
Lorentian form 
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where σx , σy , and σu are the standard deviations identified for the 
given material. In order to keep the presentation the more general 
possible, the magnetization and the magnetic field are expressed in 
arbitrary units (a.u.). 

Fig. 6 illustrates the family of symmetric loops for a scalar 
magnetization in the x-direction. 
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Fig. 6.  The family of symmetric loops for a scalar magnetization in the x-direction. 
 
In Fig. 7 is shown in detail the virgin curve for the scalar 
magnetization above. 
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Fig. 7. The virgin curve for the scalar magnetization of Fig.6. 
 
 
In Fig. 8 is pictured the family of the first reversal curves from 
the ascending branch of the major loop of the scalar 
magnetization above.  
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Fig. 8.  The family of the first reversal curves from the ascending branch of 
the major loop of  Fig.5. 
 
Fig. 9 shows the family of asymmetric loops attained applying 
a scalar magnetic field )sin1(5.0 tH x += . 
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Fig. 9. The family of asymmetric loops for a sinusoidal magnetization plus a 
DC bias. 

 
Fig. 10 deals with a typical magnetic path attained applying a 
two-harmonic scalar magnetic field. 
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Fig. 10.  Typical magnetic path for a two-harmonic scalar magnetic 
polarization. 
 
Fig. 11 illustrates the family of the magnetization loci for a circular 
polarized magnetic excitation. In this case the material is quasi-
hysotropic.
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Fig. 11. Typical family of the magnetization loci for a circular polarized 
magnetic excitation and  quasi-hysotropic material. 
 
Fig. 12 shows a typical magnetization path for a spiroidal  polarized 
magnetic excitation and the same material of the previous figure.  
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Fig. 12. Typical magnetization path for a spiroidal  polarized magnetic excitation and 
the same material of Fig. 11.  
 
Finally, in Fig. 13 and 14 are respectively represented the static 
losses in case of scalar alternate and circular excitation. 
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Fig. 13.  Static losses for an alternate scalar excitation. 
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Fig. 14.  Static losses for a circular vector excitation. 
 
 

XII. CONCLUSION 
 

• The concept of conservative unit magnitude vector 
fields has been introduced, and some properties of 
this vector fields have been discussed and defined in 
rigorous way. 

• This properties have been applied in order to obtain 
the general mathematical expressions for 



conservative unit vector fields as a function of a 
regular parametric coordinates frame, where the 
equipotential surfaces are traced when one parameter 
is constant and the lines of force are traced when the 
other parameter is constant. It has been proved that 
the lines of force of the conservative vector unit 
magnetic field are always straight lines. 

• A necessary and sufficient condition for the 
conservative property of unit vector fields as a 
function of the parametric coordinates frame has also 
been derived. 

•  The results above have been used to define in 
general way a unit vector hysteresis operator.  It has 
been proved that the equipotential curves of this 
operator are circles (spheres in 3-D) if their existence 
is extended to the entire H-plane, but it has also been 
proved that they are a set of nested closed curves 
(surfaces), if the domain of definition of the model is 
limited to the entire H-plane minus a region around 
the origin, that can be minimized as wanted. A couple 
of general conditions for these families of closed 
curves has been derived in rigorous way. 

• An additional necessary and sufficient condition for 
the congruency of the unit vector hysteresis operator 
with the second principle of the thermodynamics has 
been given as a function of the parametric 
coordinates frame. It has been proved that the 
congruency of the unit vector hysteresis operator with 
the second principle of the thermodynamics is always 
verified in weak form for the vector hysteresis 
operator proposed.  

• Some examples of possible choices for the vector 
hysteron as a function of two parameters have been 
presented. The conservative condition has been 
proved in explicit form for these examples. The 
explicit mathematical expressions derived for the 
lines of force and for the equipotential curves of the 
examples presented are useful in the numeric 
implementation of these models. 

• Other general properties of vector magnetic 
hysteresis models based on this class of unit vector 
hysteresis operator (deletion, congruency, virgin 
state) have been introduced and discussed. 

• Finally an overview about numerical outputs possible 
using the vector hysteresis operator proposed has 
been given.  
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APPENDIX I 
 

As an example it can be consider the vector field 
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And it can be easily obtained 
 

22
yx HHKW +=              (I-2) 

 
Thus, the condition (3) is satisfied, and the vector field  is 
conservative in the plane ),( yx HH . 

On the other hand, if the some vector  field is 
expressed in the system of coordinates (u, v): 

 
vuH x cos= , vuH y sin=              (I-3) 

 
It follows that 
 

vKM x cos= ,    vKM y sin=             (I-4) 
 
and the given field is not closed, nor  conservative in the 
system of coordinates (u, v). 
Again, if it is taken into account the following vector field 

uM x 2= ,    vM y cos=   (I-5) 
It is easy to show that in the plane (u, v) this vector field is 
conservative and it follows that 

vuW sin2 +=     (I-6) 
However, the vector field above can be written in the H-plane 
as follows 
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And it is easy to see that it is not conservative in this system of 
coordinates. 
 

APPENDIX II 
 

If  )(w∗φ  = h  and )(w∗ψ = k  then  
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In this case the equipotential curves are circles whose 

center is at the point ),( kHhH cycx == and the lines of force 
are the radii of these circles. 

In Fig. II-1, II-2 and II-3  are the graphs of   the x-and 
y-components of the magnetic field, and the magnetization 
when the magnetic field is directed along a line at 45 degrees 
and varies from -30 to 30 (in arbitrary units). For h = k there is 
a scalar magnetic polarization, i.e. the vectors H and M are 
parallel and directed along the line-path, as in the theoretical 
case of isotropic linear magnetic material, but when the values 
of the two parameters are different there is a half-plane 
rotating polarization of M, i.e. vector M turns progressively 
from one sense of the direction of the line to the other.  
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Fig. II-1 – X-components of magnetization and magnetic field for a generic 
conservative field with unit magnitude of magnetization as a function of the 
parameters h and k. The magnetic field is directed  along a 45 degrees line. 
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Fig. II-2 – Y-components of magnetization and magnetic field for a generic 
conservative field with unit magnitude of magnetization as a function of the 
parameters h and k. The magnetic field is directed  along a 45 degrees line. 
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Fig. II-3 – Locii of the x- and y-component of magnetization for a generic 

conservative field with unit magnitude of magnetization as a function of the 
parameters h and k. The magnetic field is directed  along a 45 degrees line. 

 
In Fig. II-4, II-5 and II-6  are graphs of   the x-and y-
components of the magnetic field and the magnetization when 
the magnetic field rotates along a circle having the center in 
the origin and radius equal to 30.  
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Fig. II-4 – X-components of magnetization and magnetic field for a generic 
conservative field with unit magnitude of magnetization as a function of the 

parameters h and k. The magnetic field rotates along a circle having the center 
in the origin and radius equal to 30. 
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Fig. II-5 – Y-components of magnetization and magnetic field for a generic 
conservative field with unit magnitude of magnetization as a function of the 

parameters h and k. The magnetic field rotates along a circle having the center 
in the origin and radius equal to 30. 
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Fig. II-6 – Locii of the x- and y-component of magnetization for a generic 

conservative field with unit magnitude of magnetization as a function of the 
parameters h and k. The magnetic field rotates along a circle having the center 

in the origin and radius equal to 30. 
 
In general, when the magnetic field is directed along a line 
passing trough the center of the equipotential curves there is 
scalar polarization, in the other cases there is half-plane 
rotating polarization. In addition, in case of rotating applied 
field along any circular path with the same center of the 
equipotential curves there is circular rotation of the 
magnetization and the lag angle (between M and H) is always 
zero.  
In case of rotating applied field along a circular path with 
center different from the center of the equipotential curves 
there is again a complete rotation of the magnetization if the 
length of the radius of the circular path is higher than the 
distance between the center of the circular path and the center 
of the equipotential circles, but the lag angle oscillates around 
zero. Finally, if the length of the radius of the circular path is 
lower than the distance between the center of the circular path 
and the center of the equipotential circles, there is a partial 
rotation of M, and the lag angle oscillates around zero.  
It is easy to see that the energy exchange condition (49) is 
verified. 
 

APPENDIX III 
 
An interesting choice of hysterons is given by 
 

ww 3* sin)( =ψ ,  www 3coscos3)( −=∗φ         (III-1) 
 
The Figures III-1, III-2, III-3, III-4 and III-5 show some of the 
equipotential curves obtained with this choice of variables, 
and the related lines of force.  
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Fig. III-1 - Example of equipotential curves and lines of force generated by 

the (III-1) for u≥0. 
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Fig. III-2 - Degeneration of the equipotential curve generated by the (III-1) 

for u = -0.5. 
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Fig. III-3 – Lines of force generated by the (III-1) for the equipotential curve 

with  u = -0.5. 
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Fig. III-4 - Degeneration of the equipotential curve generated by the (III-1) 

for u = -1. 
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Fig. III-5 –Lines of force generated by the (III-1) for the equipotential curve 

with  u = -1. 
 
It is noted that these curves are not circles, nor ellipses. 
Moreover, for negative values of u the curves obtained are not 
more regular, and have singularities and double value points. 
Thus, the practical usability of the hysterons derived is limited 
to the case for 0≥u , and therefore the hysterons cannot be 
used in the space between the origin and the critical surface 
for u = 0. This is not a problem, because it is sufficient to 
introduce a simple auxiliary variable H’ = c H, with c is an 
arbitrary constant that can minimize this region. A check about 
the conservativeness of the vector magnetic field (intrinsically 
verified by definition) can be also given in this way. 
If it is examined the closed curve γ in the H-plane, it follows 
that  γ1 is a portion of equipotential curve defined for u=u0  and 
limited by the points (u0, w0) and (u0, w1); (see also Fig. III-6). 
Then γ2 is the straight line defined for w=w1  and limited by 
the points (u0, w1) and (u1, w1); γ3 is a portion of critical curve 
defined for u=u1  and limited by the points (u1, w1) and (u1, 
w0); and γ4 is the straight line defined for w=w0  and limited by 
the points (u1, w0) and (u0, w0). Then 
   

0=+∫
γ

dyMdxM yx            (III-2) 
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Fig. III-6 – Portions of lines of force and equipotential curves used to prove 

the conservativeness of the hysterons originated by (III-1). 
 



 If the energy exchange condition (49) is applied to 
this case 

 

0sincos3cos)(* 22 ≥=
∂

∂ www
w

wψ  and 

 

0cossin3sin3sin)(* 222
1 ≤−−=

∂
∂ wwww

w
wφ          (III-3)   

 
and  the condition is always verified in strong way. 
 

APPENDIX IV 
 

Another possible choice of hysterons is given by 
 

wDw y sin)(* =ψ ,  wDw x cos)( =∗φ         (IV-1) 
 
where xD and yD are suitable constant, and it is described the 
family of hysterons of the kind shown in Fig. IV-1, calculated 
for 1.0=xD  and 45.0=yD . In Fig. IV-2  are shown the lines 
of force of this family of hysterons.  
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Fig. IV-1 Hysterons of the family 1.0=xD  and 45.0=yD . 
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Fig. IV-2 Lines of force calculated for a family of hysterons having 

1.0=xD  and 45.0=yD . 

 
As |H| increases the hysterons become more spherical, and the 
lag angle tends to zero. 
Let us write 

 
wDuH xx cos)( +=  

wDuH yy sin)( +=                   (IV-2) 
 

Equation (IV-2) proves that the equipotential curves 
in this case are ellipses (ellipsoids in 3-D) having the principal 
half-axis length equal to xDu +  and yDu +  respectively. We 
will show in the following that the vector M, as defined in this 
example, has slope closer to the minor axis of the critical 
curve (easy axis) with respect to the slope of the vector H . 

Let we assume, for example, the case of easy axis 
corresponding to x axis; in this case xy DD > and from (IV-1) 
and (IV-2)  
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H tantantan >
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+
=α          (IV-3) 

 
where Hα  is the slope of the vector magnetic field. In case of 
easy axis corresponding to y-axis, with analogous way, we get 
the same result. When H goes to infinity Hα  goes to w . 
Another system of parametric coordinates interesting for 
numerical applications can be obtained for  v = tan w  and it 
follows 
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v
vDDvHH xyxy
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−+=  (IV-4) 

 
and  
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1

v
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+
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21 v

vM y
+

=                                    (IV-5) 

 
If (IV-4) is solved with respect to v it can be seen that the 

implicit function   ( )
21

1
)(

v

v

H

HDDvF
+

−=  makes weakly 

closed the vector field expressed by (IV-5), in all the domains 
outside the equipotential  curve (surface in 3-D). 
The change of coordinates system used here can be rewritten 
as 
 

uH x = ,       ( )
21

1 v

vDDuvH y
+

−+=            (IV-6) 

The curves (IV-6) with v= const are again straight lines in the 
H-plane but not perpendicular to the equiparametric lines with 
u= const. This can be proved by the fact that is in general  
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dH yyyyxx (IV-7)    

  
In Fig. IV-3 equiparametric lines with u=const and v=const 
that can be used to handle the model are plotted.  
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Fig. IV-3 – Portions of equiparametric lines (u=const and v = const) generated 

by (IV-2). 
 
Now it will be checked that the vector magnetic field as 
defined using (IV-2) is conservative (Remember that the 
conservativeness condition is intrinsically verified). The 
condition (8) becomes 
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and this condition is verified because 
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As an example the system of parametric coordinates u,v can be 
used in order to prove the conservativity of the vector 
magnetic field more explicitly. If the closed curve γ in the H-
plane defined as in Fig. IV-4 is taken into account, where γ1 is 
a portion of critical curve defined for u=u0  and limited by the 
points (u0, v0) and (u0, v1); γ2 is the straight line defined for 
v=v1  and limited by the points (u0, v1) and (u1, v1); γ3 is a 
portion of critical curve defined for u=u1  and limited by the 
points (u1, v1) and (u0, v0); and γ4 is the straight line defined for 
v=v0  and limited by the points (u1, v0) and (u0, v0); it can be 
written 
 

0=+∫
γ

dyMdxM yx          (IV-10) 

It can be derived, in analogy with the theory presented in the a 
previous section a useful parametric representation of the 
vectors M and H.  For the sake of simplicity it will be treated 
the case in which H and M lie in the first quadrant. From (IV-
3)  

( ) ( )222 tan yx

y
x

DuwDu

Du
M

+++

+
=       (IV-11) 

 

( ) ( )222 tan

tan)(

yx

x
y

DuwDu

wDuM
+++

+
=        (IV-12) 

 

Hy(Hx)

0

0,5

1

1,5

2

2,5

3

3,5

4

1 1,5 2 2,5 3 3,5 4
Hx (a.u.)

H
y(

a.
u.

)

 u=u0  u=u1

 v=v1  v=0

 
Fig. IV-4 – Portions of lines of force and equipotential curves used to prove 

the conservativeness of the hysteron generated by (IV-2). 
 
And from (IV-2)  
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and, therefore 
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Equation (IV-14) can be split in the components 
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The mathematical expressions (IV-11), (IV-12) (IV-15) and 
(IV-16) describe the vectors M and H as a function of the two 
parameters u and wtan . 
It is easy to see that the congruency with the second principle 
of the thermodynamic in this case is verified in strong way for 

0≥xD  and 0≥yD . 
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