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(Semi-) analytical models for the design of high-precision 
permanent magnet actuators  
 
Abstract — This paper discusses (semi-) analytical modeling 
techniques which are applied in the analysis and design of high-
precision actuators which contain large multi-dimensional 
magnet arrays. Such high-precision actuators are being designed 
for application in the lithographic industry. The methods 
presented in this paper offer not only a significant reduction of 
the calculation time compared to three-dimensional finite element 
simulations, but also allow the calculation of force distributions 
inside the permanent magnet structures. The application of these 
models for the design of magnetically levitated planar actuators 
and for gravity compensation is discussed in detail. 
 

I. INTRODUCTION 
 
Actuators which are applied in high-precision equipment have 
to combine both a high force density and good predictability 
of this force. The high force density is needed to achieve 
sufficient acceleration and speed levels, and to gain an 
adequate throughput of products, whereas a very good 
predictability of the force is required to obtain the necessary 
accuracy. Examples of such actuators are electromagnetic 
vibration isolators (gravity compensators) and magnetically 
levitated planar actuators.  
 
Usually, these actuators have three-dimensional designs and 
lack periodicity or symmetries due to the integrated active 
magnetic bearings. The use of three-dimensional finite 
element methods is unpractical for the design of these 
actuators because electromagnetic quantities have to be 
calculated with a high spatial resolution and many design 
evaluations are required, which results in extreme calculation 
times. Moreover, for the calculation of force distributions 
inside magnet arrays, finite element methods are currently not 
suitable. Therefore, analytical and semi-analytical 
electromagnetic models and design tools are indispensable in 
the analysis and design of high-precision electromagnetic 
actuators.  
 
In this paper, an overview of the semi-analytical techniques 
used to calculate the force, torque and force distributions in 
high-precision electromagnetic actuators will be given, with a 
focus to electromagnetic vibration isolators and magnetically 
levitated planar actuators. In sections II and III both 
applications will be introduced. The magnet models based on 
surface charges are discussed in section IV. Force calculation 
methods between magnets and their application for the design 
of electromagnetic vibration isolation are explained in section 
V. In section VI the forces and torques between magnets and 
coils are presented. Harmonic models based on Fourier series, 
which can be very effectively used for the analysis and design 
of planar actuators, are discussed in section VII. With these 
models the force and torque ripples of commutated planar 
actuators can be predicted and these are shown in section VIII. 
The conclusions are given in section IX. 
 

II MAGNETICALLY LEVITATED PLANAR ACTUATORS 
 
Positioning systems in high-precision machines often consist 
of stacked linear drives which are supported by air-bearings. 
To reduce the moving mass and to make the system vacuum  

 

 
compatible, magnetically levitated planar actuators are being 
investigated as alternatives to these stacked drives. The planar 
actuators have one moving member, which is suspended above 
the stator with no support other than magnetic fields. The 
gravitational force is fully counteracted by the electromagnetic 
force. The translator of these ironless planar actuators can 
move over relatively large distances in the xy-plane (2D-plane) 
only but it has to be controlled in six degrees-of-freedom 
because of the active magnetic bearing. 
 
Planar actuators can be constructed in two ways. The actuator 
has either moving magnets and stationary coils [1,2,3,4,5,6] or 
moving coils and stationary magnets [7]. The first type of 
planar actuator does not require cables for electrical and 
mechanical (cooling) connections  to the moving part. In [5], a 
6-DOF, long-stroke, moving-magnet, planar actuator is 
investigated and realized. Fig. 1 shows an overview of the 
actuator. The stator of this actuator consists of 84 coils of 
which only 24 are simultaneously energized. The moving part 
is a carrier with a permanent magnet array having a quasi-
Halbach magnetization. During the movements in the xy-
plane, the set of active coils changes with the position of the 
translator, because only the coils below and near the edge of 
the magnet array can produce significant force and torque. As 
a result, the 2D-stroke of this planar actuator is only limited by 
the size of the array of stator coils, and can be made, 
theoretically, infinitely large. Fig. 2 shows a top view of the 
actuator. The active set of 24 coils is indicated in dark gray for 
the shown position of the magnet array. 

 
Fig. 1. Magnetically levitated moving-magnet planar actuator. 

 
Fig. 2. Top view of the planar actuator. For the shown position of the 

magnet array, the dark coils are active. 



 
Although the actuator can be classified as an AC synchronous 
motor, DQ0- decomposition cannot be used for the decoupling 
of flux and current and consequently of force, torque and 
current. Therefore, new decoupling and commutation methods 
have been developed and every coil is excited with a single-
phase current amplifier. It needs emphasizing that the current 
waveforms are non-sinusoidal [8]. 
 

III ELECTROMAGNETIC VIBRATION ISOLATORS 
 
In many applications a platform needs to be resiliently isolated 
from vibrations. This system should simultaneously exhibit 
high stiffness with respect to force or torque exerted on the 
body itself and low stiffness with respect to vibrations caused 
by unforeseen disturbances from the environment. In high-
performance suspension systems active elements are 
introduced, often being hydraulic, pneumatic or 
electromagnetic, to achieve these requirements. 
In advanced micro-lithography machines a stable platform in 
six degrees-of-freedom (DOF) is required to support and 
isolate the complex lens system of the machine from 
vibrations. To date, micro-vibration problems within these 
machines could often be solved by means of adequate 
isolation of the equipment from the floor, i.e. the main plate is 
resiliently isolated from the floor, both passively and actively. 
This isolation is performed by three high-performance air 
bearings with additional linear actuators.  
 
In order to provide an increased bandwidth solution and to 
reduce overall energy consumption, magnetic bearings are a 
possible substitute for the air bearings, e.g. in combination 
with mechanical means [9,10] or by fully magnetic means 
[11,12]. The support and vibration isolation are then achieved 
by passive gravity compensation using permanent magnets 
(PMs) and stabilization and accurate positioning by additional 
active electromagnets. In this respect, [11,12,13] describe 
similar vibration isolation systems for applications having 
smaller forces and similar or lower positioning requirements 
compared to the lithographic application.  
 
The payload of the electromagnetic vibration isolator is in the 
order of thousands of kilograms and is supported by a passive 
permanent-magnet based gravity compensator. The high 
vertical force (Fz) needs to be combined with low spring 
stiffness (tens of Newtons per millimeter) to provide a low 
resonance frequency. This results in a high disturbance 
rejection even at low frequency levels. 

 
IV. MAGNETIC SURFACE CHARGE MODEL 

 
The high-precision actuators introduced in sections II and III 
are both ironless because iron is not suitable for these 
particular magnetic bearings. Hence, the magnetic field 
distribution can be obtained by summation of the fields of the 
individual permanent magnets.  

 

 
A. Magnetic flux density distribution of cuboidal permanent 

magnets 
 
The magnetostatic magnetic field expression of the cuboidal 
permanent magnet in three dimensions is derived from 
Maxwell's equation under the assumption that the relative 
permeability is µr = 1 both inside and outside the permanent 
magnet.  Furthermore, it is assumed that the magnetization M

uur
 

of the permanent magnet is confined to its volume V with 
surface S, and falls abruptly to zero outside this volume.  
 
The Maxwell equations can be solved by the introduction of 
either a scalar magnetic potential or a vector magnetic 
potential. In the first case an equivalent charge model of the 
permanent magnet, and in the second case an equivalent 
current model is obtained. For the cuboidal permanent 
magnets studied in the actuators presented in this paper the 
charge model is considered to be most convenient.  
 
The magnetic flux density B

ur
 may be written as 
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where ρm is a volume charge distribution and σm is a surface 
charge distribution. For cuboidal magnets with uniform 
magnetization, i.e. 0,M∇⋅ =

r
only the surface charge density 

σm remains. The magnetic flux density distribution of a 
permanent magnet magnetized in the z-direction, as is shown 
in Fig. 3, is then given by [14] 
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The variable Br is the remanent magnetization of the 
permanent magnet, atan2 is a four-quadrant arctangent 
function and 
 
 2 2 2 ,R S T U= + +  (7) 
 ( 1) ,iS x a= − −  (8) 
 ( 1) ,jT y b= − −  (9) 
 ( 1) .kU z c= − −  (10) 
 
The magnet dimensions a, b and c are indicated in Fig. 3. By 
applying a four quadrant arctangent function in (6), the 
magnetic flux density is also correctly calculated inside the 
permanent magnet volume. Superposition can be used to 
model magnets with a magnetization vector which is not 
exactly along one of the Cartesian coordinate vectors albeit 
still under the assumption that the magnet has uniform 
magnetization ( 0M∇⋅ =

r
). 

 
As NdFeB permanent magnets exhibit a relative permeability 
of approximately 1.03-1.07, the assumption that µr = 1 results 

 
(a)   (b) 

 
Fig. 3. (a) Schematic representation of the surface charge model and (b) 

definition of the variables of a single permanent magnet. 



in a small modeling error. This error will be further discussed 
in section VII-A.  
 
The method of images [15] provides means to obtain a correct 
field solution when infinitely large surfaces of unsaturated soft 
magnetic materials are present in the neighborhood of the 
permanent magnets. Even when the soft magnetic materials 
have finite dimensions and the magnetic paths are such that 
the field is confined to a small volume, the method of images 
provides a relatively accurate field solution [16]. This is 
beneficial for the analytical calculation of slotless magnet 
structures with back-iron.  
 
For the ironless actuators discussed in this paper, the surface 
charge model has significant advantages with respect to other 
calculation methods. It provides accurate field expressions  
and it requires little computational effort, especially  compared 
to FEM. More specifically, these analytical solutions are not 
mesh based, and therefore exhibit their high accuracy 
especially at large magnetic field gradients. Furthermore, the 
results are fully 3D which enables the analysis of non-
repetitive structures or structures with strong end-effects. 
Another significant advantage above FEM or Fourier analysis 
is the ability to calculate the interaction force between 
individual magnets which are embedded in the same magnet 
array as will be discussed in section V. 
 

B. Magnetic flux density distribution for planar Halbach 
arrays 

 
The surface charge model allows to calculate magnetic flux 
density distributions of magnet assemblies including the edge-
effects as all permanent magnets are individually modeled. In 
Figs. 6 and 8 the magnetic flux density distributions are shown 
of two different magnet arrays with quasi-Halbach 
magnetization which are shown in Figs. 5 and 7, respectively. 
These magnet arrays can be applied in both gravity 
compensators and planar actuators.  
 
Both magnet arrays are similar, i.e. the permanent magnets in 
both arrays have the same dimensions, only the orientation of 
the magnet array with respect to the coordinate system is 
different. The magnet array in Fig. 7 has been rotated 45 
mechanical degrees about the z-axis. In both cases the 
magnetic flux density has been predicted 4 mm below the 
array.  
 
Fig. 6 shows the three components of the magnetic flux 
density distribution of the magnet array shown in Fig. 5. The 
components of the magnetic flux density distribution are sine 
waves in both the x- and y-directions. The waves of the Bx-, By- 
and Bz-components of the magnetic flux density distribution 
are shifted 90 electrical degrees with respect to each other. 
Considering this magnetic flux distribution, the obvious choice 
seems to apply square or round coils as indicated in Fig. 5 
[2,6]. The size of this square coil is limited by the pole pitch τ 
of the magnet array. Depending on the position of the coil it 
will exert forces in the x-, y-, and z-directions.  

 
However, when considering the magnetic flux distribution of 
the 45 mechanical degrees rotated magnet array (Fig. 7), 
which is shown in Fig. 8, it can be seen that also rectangular 
coils can be applied [3,4,5,7]. Due to the rotation with respect 
to the reference frame, the Bx-component of the magnetic flux 
density distribution is a sine wave in the x-direction and the 
By-component of the magnetic flux density distribution is a 
sine wave in the y-direction. Because of the rotation of the 

coordinate system, the spatial frequency of the sine waves is 
reduced. Hence, a new pole pitch τn can be introduced as 
indicated in Fig. 7 

 .
2n
ττ =  (11) 

 
If the coil length of the rectangular coil 
 
  2 ,ncl nτ=  (12) 
 
where n is an integer and the coil is not near the edge of the 
magnet array, the field in the short sides of the rectangular 
coils is equal, and no force, but only a torque is acting on the 
short side. Consequently, the force production in the x- and y-
directions can be physically decoupled for planar actuators 
with rectangular coils. Coil 1 in Fig. 7 can be displaced in the 
y-direction without change of the exerted force vector. The 
same holds for coil 2 when displaced in the x-direction. 
Because a significant higher force density can be obtained 
with these rectangular coils compared to round coils [17], this 
topology is chosen for the planar actuator which is discussed 
in this paper. 
 

C. Demagnetization 
 
Similar to fields solutions based on Fourier series and most 
FEM packages, it is also assumed in the surface charge model 
that permanent magnets operate above the knee point at the 
linear part of the demagnetization curve. The analytical 
surface charge model provides a powerful tool to calculate 
working points of the permanent magnets.  
 
Especially in Halbach arrays demagnetization of the 
permanent magnets should be monitored closely as some parts 
of the magnets operate at high working points (even in the first 
quadrant) and some at low working points (near the third 
quadrant) of the demagnetization curve. Fig 9 shows two 
permanent magnets from the center of the Halbach magnet 
array which is shown in Fig. 5. The magnetic flux density 
distribution inside these magnets have been calculated with the 
surface charge model.  The magnet parts which operate at low 
working points, i.e.  0.25TyB <  and 0.25TzB <  are 
identified in Figs. 9(a) and (b), respectively. It is observed that 
these regions occur in a thin layer near the edges of the 
magnets. To prevent demagnetization of these regions, the 
magnet material should be carefully selected for this magnet 
array.   
 

V. FORCE BETWEEN MAGNETS 
 
The analytical field expressions for PMs can be used to obtain 
fast but accurate expressions for the interaction force between 
structures with permanent magnets. These force expressions 
are used to determine the force between magnet assemblies 
and the force in a magnet assembly, as used in the applications 
which are described in this paper. 
 
A. The interaction force between cuboidal permanent magnets  
 
Using the analytical field results presented in section IV-a, it is 
possible to derive the expressions for the force between 
permanent magnets either via the Lorentz force or via the 
virtual work method.  
 



 
 

 
 

 
 

Fig. 7. Magnet array and two rectangular coils (bottom view). 
 

Fig. 8. Magnetic flux density distribution 4 mm below the magnet array 
shown in Fig. 6 predicted with the surface charge model (τ = 25 mm, 

17.7mmnτ =  τm/τ = 0.68, Br = 1.24 T, magnet height: 7 mm). 

 
 
 

Fig. 5. Magnet array and square (or round) coils (bottom view). 

Fig. 6. Magnetic flux density distribution 4 mm below the magnet array 
shown in Fig. 5 predicted with the surface charge model (τ = 25 mm, 

τm/τ = 0.68, Br = 1.24 T, magnet height: 7 mm). 



 
 
By using the Lorentz force method the force on a magnetized 
body in the presence of an external field, Bext, is given by 
 
 ( ) ( ) d ( ) ( ) d .ext extm m

V S

F r B r v r B r sρ σ= +∫ ∫
ur r ur r r ur r

 (13) 

 
Since the magnetization is assumed to be uniform the first 
term of (13) disappears [18] and only the second term remains. 
The surface charge density is written in terms of the 
remanence Br by   
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The virtual work method is based on the total interaction 
energy in the system. The gradient of this energy results in the 
analytical force expressions [14]. The resulting equations are  
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Although both methods provide unique analytical expressions 
it is observed by the authors that they provide the same results. 
Analytical expressions for the interaction force 
 between permanent magnets have been extensively described 
in [14] (virtual work) and [19] (magnetic nodes). The Lorentz 

 

force expressions for two magnets which are magnetized 
along the z-axis are given by 
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where 
Ir

B  and 
IIrB  are the respective remanent flux densities 

of both magnets and the vector ψr is an intermediate variable 
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The equations above are suitable for analyzing magnet arrays 
with magnetization along a single axis. In quasi-Halbach 
arrays there are three axes along which the magnets are 
magnetized. For simulating such a structure, the analytical 
expressions for interaction force between perpendicularly 
magnetized permanent magnets are necessary. In [20] the 
analytical force expressions for perpendicularly magnetized 
permanent magnets are derived using the virtual work method. 
In [21] the Lorentz force method is used to obtain the 
analytical expressions  
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Fig. 10. Variables used in the calculation of interaction force between two 

cuboidal permanent magnets. 

 
(a) Rectangular magnet 

 
(b) Square magnet 

 
Fig. 9. Parts within the magnets with an operating point with B < 0.25T 
when no external field is applied. The arrows indicate the magnetization 

direction and the field is sampled on a grid with 0.25mm elements. 



 
The magnet dimensions aI…cII and displacement variables α, 
β and γ are shown in Fig. 10. 
 
The analytical methods described above are based on a 
mathematical approach and therefore have no physical 
meaning. This is extensively discussed in [22] for several 
analytical and numerical calculation methodologies. As a 
result the analytical model is only globally equivalent to the 
original system and does not represent the actual distribution 
of forces within the permanent magnets.  
 
The analytical expressions derived above can be implemented 
to obtain the force between or even inside large permanent 
magnet arrays. This is elaborated on in sections V-B and V-C. 

 
B. INTERACTION FORCE IN THE GRAVITY COMPENSATOR 

 
The passive gravity compensator is part of the electromagnetic 
vibration isolator and the gravity compensation is performed 
by permanent magnet structures. A topology search focused 
on maximizing the force density of these structures was 
presented in [23]. A high force density reduces the volume of 
the gravity compensator and, in this way, creates space for 
additional electromagnetic actuators and sensors within the 
specified vibration isolator volume. The topology which 
resulted from [23] is used here to perform a number of 
simulations which characterize some of the most important 
parameters of the gravity compensator and demonstrate the 
capabilities of the surface charge model. Although the stroke 
is very small (less than 1 mm), it is important that the force 
that is exerted does not change significantly along this stroke. 
Furthermore, it is important that the spring stiffness is 
accurately calculated for reasons discussed in section III. 
 
Fig. 11 shows a layout and dimensions for a gravity 
compensator with a 6x6 quasi-Halbach magnet structure. The 
analytically obtained vertical interaction force as function of 
horizontal displacement is shown in Fig. 12. One quadrant of 
the displacement is shown (only positive x and y), since the 
other three quadrants exhibit similar behavior due to the 
symmetric structure of the device. The figure demonstrates 
 

 

that the influence of the displacement on the interaction force 
is relatively small when compared to its absolute value of 
4.4kN. 
 
The stiffness is expressed in a 3x3 Jacobian matrix which 
describes the coupling between force and displacement vectors 
along the three Cartesian directions. It is given by 
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By using (17-25) in (26) analytical expressions for the entries 
in the stiffness matrix are obtained in a single calculation. This 
is an advantage over FEM, which determines the spring 
stiffness by the numerical derivative of the force to the 
displacement. At least three individual simulations would be 
necessary to obtain 9 values for the stiffness matrix.  
 
With the two parts of the gravity compensator are not 
horizontal displaced only Kxx= ∂Fx/∂x, Kyy= ∂Fy/∂y and 
Kzz= ∂Fz/∂z are nonzero. Fig. 13 shows the influence of 
horizontal displacement on the most important stiffness value  

 

 

 
 

Fig. 11. Top view (a) and side view (b) of a double sided quasi-Halbach 
structure for the gravity compensator with mτ =11.77 mm, τ =17.65 mm 

and mh =10.00 mm. 

 
Fig. 13. Influence of horizontal displacement on the vertical spring 

stiffness Kzz which is expressed in N/mm. 

 
Fig. 12. Influence of horizontal displacement on the vertical interaction 

force Fz. 



is fully analytically obtained. The other stiffness values vary 
as well, but are not shown in this article.  
 
When compared to the requirements in section III, it can be 
concluded that the topology that is presented in this article is 
suboptimal. The force level is under specification and the 
stiffness level is over specification. Optimization of the 
structure is therefore considered necessary to obtain a design 
that is feasible for lithographic application. The fast-solving 
analytical 3D surface charge model is very suitable to be used 
in such routine.  
 

C. FORCE INSIDE A MAGNET ASSEMBLY 
 
The calculation of the forces between permanent magnets 
inside a magnet array is important to estimate the deformation 
of the magnet assembly as it will change the airgap and give 
rise to deviation of the force and torque.  
 
As FEM applies the virtual work method or the Maxwell stress 
tensor method to calculate the force on an object, it should be 
surrounded by a layer of air. As the permanent magnets in the 
planar Halbach arrays are typically positioned at 50 µm to 
100 µm from each other, the mesh size in the layer of air, 
which  should be chosen equal to or smaller than the thickness  
of the layer of air, becomes very small compared to the 
problem size. As a result, the mesh will be extremely large, 
and it is unpractical to solve this problem with FEM. 
 
Instead, the force expressions derived from the magnetic 
surface charge model are used to calculate the force inside a 
magnet assembly. Fig. 14 shows a Halbach array with the 
forces (in N) in the (x, y, z) - direction beside the arrows. Note 
that the force is not indicated for each magnet and that the 
total force acting on the permanent magnet array equals zero. 
The z-component of the force acting on the permanent 
magnets magnetized in the z-direction is most significant and 
equal to approximately 166 N. For a Halbach array consisting 
of 11x11 permanent magnets alternatively magnetized in the z-
direction (as used in the planar actuator presented in [5]), this 
force component increases with less than 0.1 %. Hence, the  
interaction force is independent of the number of magnets in 
the array. 
 
The deformation of a 5 mm thick aluminum carrier on which a 
Halbach permanent magnet array is glued, which is similar to  
 

the magnet array used in the planar actuator, is calculated by 
means of mechanical FEM simulations in Marc/Mentat [24].  
Several assumptions and simplifications are made of which the 
most important assumption was that the magnets itself do not 
contribute to the stiffness of the construction. The results are 
shown in Fig. 15. The outer edges of the magnet plate bend 
downwards by approximately 0.2 mm with respect to the 
center of the magnet plate. An impression of a cross-section of 
the deformed aluminum plate with the permanent magnets is 
shown in Fig. 16. These results are similar to the data obtained 
from measurements on the magnet assembly during 
manufacturing. This deformation is significant considering the 
accuracy demanded by the applications for which these types 
of planar actuators are being designed. To reduce the 
deformation of the magnet array glued on the 5 mm thick 
aluminum plate, the translator of the planar actuator has been 
reinforced with an aluminum structure with a high stiffness. 
  

VI. FORCE BETWEEN A MAGNET ASSEMBLY AND A COIL 
 
As the planar actuator has a coreless structure, the force acting 
on a magnet assembly due to the current in a coil is calculated 
using the Lorentz force equation 
 
 d ,

V

F J B V= − ×∫
r r r

 (27) 

where J
ur

 is the current distribution in the coil, B
ur

 is the 
magnetic flux density due to the magnet and V is the volume 
of the coil. The torque on the magnet assembly is given by 
 
 d ,

V

T r J B V= − × ×∫
r r rr  (28) 

where r
r

 is the vector to the point about which the torque is 
computed. These integrals can be solved numerically using a 
cuboidal mesh as shown in Fig. 17. By applying the 
appropriate coordinate transformations, the Lorentz force and 
torque integrals can be solved for arbitrary position and 
orientation of the magnet assembly and coil. A disadvantage 
of calculating the force and torque on a coil by numerically 
 
 
 

 

 
 

Fig. 14. Forces acting on the permanent magnets in the Halbach array, the 
numbers beside the vector indicate the force in the (x, y, z)-direction. 

 
Fig. 15. Deformation of the magnet plate. The legend indicates local 

displacement in the z-direction. 



  
evaluating the integral over its volume is the computation time 
(typically 10-20 seconds per coil).  
 
In Fig. 18, the coil of the realized planar actuator is indicated 
for which the force and torque profiles have been measured 
using a 6-DOF loadcell. The profiles have been measured with 
a DC coil current of 1 A and are shown in Figs. 19 and 20, 
respectively. The position of the magnet array is indicated by 
the vector pr , The measured force and torque are expressed in 
the coordinate system indicated in the mass centre point of the 
magnet array (with superscript m), to show the decoupling 
between the force components in the xy-plane. This 
decoupling is clearly visible in Fig. 19. Contrary to a moving-
coil planar actuator in which the coil is positioned at a fixed 
distance to the mass centre point of the translator, Fig. 20 
shows that the torque components in a moving-magnet planar 
actuator are depending on both the absolute and relative 
position of the magnet array with respect to the coil. The 
measured profiles are in good agreement with prediction with 
the surface charge based model as shown in Fig. 21 in which 
they are compared for the torque component Tx at 
py = 8.3 mm. 

 

 
 

VII. HARMONIC MODEL 
 
The surface charge model provides the user with the 
possibility to calculate the fields of permanent magnets which 
are positioned at arbitrary points in space. This is convenient 
for actuators with a small stroke such as gravity compensators, 
but in most long-stroke actuators a periodical permanent 
magnet array is present which can also be accurately described 
as a boundary value problem and Fourier series. The 
application of these harmonic models can result in significant 
reduction of the calculation time, as the calculation time is 
only dependent on the number of harmonics taken into 
account instead of the number of magnets in the magnet array. 
Furthermore, in the harmonic models the relative permeability 
of the permanent magnets can be included.  
 
The harmonic model [25] which is applied in the analysis of 
the planar actuator assume an infinitely large magnet array and 
have a limited number of degrees-of-freedom in order to 
minimize the calculation time. This results in two model 
limitations. Firstly, the edge effects of the magnet array are not 
included. However, the edge effects are of minor importance 
in many design steps, such as the optimization of the sizes of 
the magnets and coils. Secondly, the model cannot be used for 
simulation of the planar actuator with a controller for all six 
degrees-of-freedom because the rotational movements are 
fixed.  
 

A. Magnetic flux density 
 
The magnetic flux density distribution of a planar Halbach 
array is calculated by dividing the problem into three regions, 
as shown in Fig. 22. Regions 1 and 3 are in air and region 2 
contains the permanent magnets. The empty spaces in the 
magnet array are assumed to consist of unmagnetized material 
with the same relative permeability as the permanent magnets. 
The remanent magnetization vector M

r
 of the magnet array 

which is shown in Fig. 5 can be expressed as 
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where Br is the remanent flux density, k and l are the harmonic 
numbers for the x- and y-directions respectively, and the 
functions a and b are given by 
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where τ is the pole pitch and τm is the length of the side of the 
magnet magnetized in the z-direction. 

 
 

Fig. 18. Coil for which the force and torque profiles are shown in Figs. 19 
and 20. The square indicates the edge of the magnet array.

 
 

Fig. 17. Coil with cuboidal mesh. 
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Fig. 16. Impression of a cross-section of the deformed aluminum plate 
with the array of permanent magnets. 



 
 
 

TABLE 1. MAGNETIC FIELD EQUATION IN THE RESPECTIVE REGIONS OF THE 
MODEL IN FIG. 22 

Region 1 Region 2 Region 3 

1 0H∇× =
rr

 2 0H∇× =
rr

 3 0H∇× =
rr

 

1 0B∇⋅ =
r

 2 0B∇⋅ =
r

 3 0B∇⋅ =
r

 

1 0 1B Hμ=
r r

 2 0 2 0 rB H Mμ μ μ= +
r r r

 3 0 3B Hμ=
r r

 

1 1H = −∇Ψ
r

 1 2H = −∇Ψ
r

 1 3H = −∇Ψ
r

 
2

1 0∇ Ψ =  2
1 M∇ Ψ = ∇⋅

r
 2

3 0∇ Ψ =  

 
 
 
 
 

TABLE 2. BOUNDARY CONDITIONS 
z = ∞  tz m=  bz m=  z = −∞  

1, 2,x xH H=  2, 3,x xH H=  

1, 2,y yH H=  2, 3,y yH H=  1 0Ψ =  

1, 2,z zB B=  2, 3,z zB B=  
3 0Ψ =  

 
  

 

 
Fig. 20. Torque acting on the translator of the planar actuator due to a 

single coil (Fig. 18). 
 

 
Fig. 19. Force acting on the translator of the planar actuator due to a 

single coil (Fig. 18). 
 



 

 
 

 
The governing equations in the three regions and their 
boundary conditions are summarized in Tables 1 and 2. The 
scalar potential Ψ is introduced according to 
 
 H = −∇Ψ

r
 (32) 

 
to solve these equations. The solutions of the Laplace 
equations in regions 1 and 3, taking into account the boundary 
conditions  1( ) 0zΨ = ∞ =  and 3 ( ) 0zΨ = −∞ = ), and the 
Poisson equation in region 2 are given by 
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where K1, K21, K22 and K3 are constants and 
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The constants can be calculated with the boundary conditions 
given in Table 2. The resulting expression for the magnetic 
flux density in the region of interest, region 3, is equal to 
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where mt and mb are the z-coordinates of the magnets.  
 
The error which results from the assumption in the surface 
charge model that the relative permeability is equal to 1 can be 
evaluated with (37). In Fig. 23, the reduction of different 
harmonics of the z-component of the magnetic flux density is 
shown for magnet arrays with different values of the relative  
permeability with respect to a magnet array with µr=1. The 
figure shows that for an array with high quality NdFeB 
magnets with µr=1.03, the magnetic surface charge predicts a 
1.5% too high magnetic flux density. For magnets with 
µr=1.10, the error is approximately 5%. Similar results can be 

 

 
Fig. 24. Coil mesh used for the force and torque calculations with the 

harmonic model. 

 
Fig. 23. Error resulting from the error in relative permeability µr.

 
 

Fig. 21 Measurement and simulation with the surface charge model of the 
torque component Tx acting on the translator of the planar actuator due to 

a single coil (Fig. 18), py = 8.3 mm. 

 
Fig. 22. 3-D space with magnet array divided into three regions. 



obtained for the x- and y-components of the magnetic flux 
density. 
 

B. Force and torque calculation 
 
Similar to the planar actuator model based on surface charges, 
the force and torque in the harmonic model are calculated with 
the Lorentz force law. When the rotation angles of the magnet 
array are fixed, i.e. no rotations about the x- and y-axes, and 
the coils are either not rotated (Fig. 5) or 45 degrees rotated 
(Fig. 7) about the z-axis, the Lorentz force and torque 
equations can be solved mainly analytically. The integrals are  
solved analytically in the straight segments of the coils and 
only have to be approximated numerically in the corner 
segments of the coil. The numerical approximation is only 
necessary for the integrals over x and y, and hence, only a 
numerical surface integral has to be solved. This is illustrated 
in Fig. 24 which shows an example of the mesh used for the 
force and torque calculation with the harmonic model.  
 
Because of the largely analytical solution of the force and 
torque, the calculation time of the Harmonic planar actuator 
model is approximately 1 second for a full planar actuator 
topology. Such a short calculation time is very convenient for 
the evaluation of a many planar actuator topologies. For each 
topology, the force and torque is typically calculated at 2000-
5000 different positions of the magnet array.  
 

C. Analytical model 
 
The commutation algorithm of the planar actuator has to 
decouple the force and torque and the coil currents. Therefore, 
the algorithm needs a model of the force and torque in the 
actuator which evaluates on a microsecond scale and which 
incorporates all degrees-of-freedom. This analytical model is 
derived from the harmonic model and only takes into account 
the first harmonic of the magnetic flux density. The coil is 
modeled by four straight surface currents to obtain a fully 
analytical solution.  
 
Fig. 25 shows a bottom and side view of a planar magnet 
array, a coil and the coil model with surface currents. The coil 
has a length cl, a width w and a conductor bundle width cb. 
The vector pr is the vector which defines the position of the 
magnet array with respect to the coordinate system of the 
stator. The magnetic flux density expression for the magnet 
array is derived from (37) using a coordinate transformation 
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where Bxy and Bz are the amplitude of the mean value of the 
first harmonic of the magnetic flux density components in the 
cross section of the coil. It can be derived that 
 
 2 ,z xyB B=  (40) 

 
The location of the surface currents in the z-direction, zsc, can 
be determined by calculating the effective torque arm in the z-
direction and is given by [25] 
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where cb and ct are the z-coordinate of the bottom and top of 
 the coil as indicated in Fig. 25. Because only the first 
harmonic is considered 

 2 .πλ
τ

=  (42) 

 
Integration of the Lorentz force and torque over the surface 
currents for a coil which centre is located in (x, y, z = zsc = 0) 
 

 

Fig. 25. Bottom (a) and side view (b) of a planar magnet array, a coil and 
the coil model with surface currents.

 
 

Fig. 26. Switching of the coils in the planar actuator. 



 
and with w = τn, cl = 4τn, and cb = τn/2, results in 
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The torque expressions show that the torque cannot be 
expressed as an arm multiplied by a force and that the 
distribution of the force over the coil changes with the position 
of the magnet array.  
 
The model can be extended to six degrees-of-freedom by 
Taylor expansion to the rotation angles. 
 

VIII. SIMULATION OF COMMUTATED PLANAR ACTUATOR 
 
An analytical model based on surface currents, such as derived 
in the previous section, is used to commutate the planar 
actuator. The wrench wr  is the vector which contains the total 
force and torque acting on the translator 
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The wrench vector for a planar actuator with n coils is given 
by 
 
  
 
 

 
 
 

 

1, 2, ,

1, 2, , 1

1, 2, , 2

1, 2, ,

1, 2, ,

1, 2, ,

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

x x n x

y y n y

z z n z

x x n x

y y n y n

z z n z

F p F p F p
F p F p F p i
F p F p F p i

w p i
T p T p T p
T p T p T p i
T p T p T p

…⎡ ⎤
⎢ ⎥… ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥… ⎢ ⎥= = Γ⎢ ⎥ ⎢ ⎥…⎢ ⎥ ⎢ ⎥⎢ ⎥… ⎣ ⎦⎢ ⎥

…⎢ ⎥⎣ ⎦

r r r

r r r

r r r
rr r

r r r
M

r r r

r r r

,  (50) 

 
where i

r
 is the current vector containing the currents in the 

respective coils. The matrix ( )pΓ
r  is a mapping of the current 

in the coils on the force and torque exerted on the translator as 
a function of the position and the orientation of the translator 
in six DOF pr . The force and torque functions are expressed 
on a per Ampere base and calculated by the analytical model. 
 
The controller of the planar actuator calculates the desired 
wrench setpoint every sample time by inverting ( )pΓ

r . This 
wrench setpoint has to be converted to current settings for the 
power amplifier. As the system is over-actuated, i.e. a six 
degree-of-freedom wrench is made by 24 coils, there is an 
infinite number of solutions for the inverse of ( )pΓ

r . A 
convenient solution is to search for the inverse with minimum 
power dissipation in the coils. This is similar to minimizing 
the 2-norm of the current vector i

r
. Because the analytical 

model assumes an infinitely large magnet array, weighting 
functions ( )pΔ

r  are introduced to smoothly switch the coils 
near the edge of the magnet array in such way that the 
analytical model is valid for the active coil set. The resulting 
expression for the currents in the set of active coils is given 
by  [8] 

 ( ) 1
( ) ( ) ( ) ( ) ( ) ( ) .i p w p p p p p w

−−= Γ = Δ Γ Γ Δ Γ
r r r r r r r r r• •   (51) 

 
The switching of coils is illustrated in Fig. 26. In the bottom-
left part of Fig. 26, the planar actuator with 24 active coils is 
shown. The active coils are dark gray, the coils which are 
switched off are light gray. The weighting functions do not 
penalize any coil. When the translator moves in the x-
direction, the active coils in the left column will be smoothly 
switched off. After they are switched off, the adjacent coils in 
the outer right column will be smoothly switched on (not 
shown). At the transition, only 18 coils are active (bottom-
right part of Fig. 26). When the translator moves in the y-
direction only 20 coils are active at the transition between two 
different sets of coils (top-left part of Fig. 26). In the worst 
case situation (top-right part of Fig. 26), 9 coils are penalized 
by the weighting function and are switched off. As a result the 
planar actuator has 28 different sets of active coils. The 28 
sets, in which the mass centre point of the magnet array can be 
located, are illustrated in Fig. 27. 
 
The force and torque ripples in the commutated planar 
actuator have been predicted with the harmonic model. The 
planar actuator has been simulated in dark rectangular area 
shown in Fig. 27. The wrench set point was 
 
 [ ]15 N 15 N 15 N 0 Nm 0 Nm 0 Nm .w =

r •  (52) 
 
Figs. 28 and 29 show the simulated and measured wrench on 
the translator of the planar actuator. The measurements show a 
sufficient decoupling between the force and the torque. The 
measured ripples are larger than predicted, but the rms force  

 
 

Fig. 27. Sets in which the mass centre point of the magnet array can be 
located. 



 
ripples are less than 1.5% and the rms torque ripples are less 
than 15 mNm. The presented planar actuator has been fully 
designed and verified with the semi-analytical models 
discussed in the paper. A photo of the realized planar actuator 
and a part of the measurement system is shown in Fig. 30. The 
position of the planar actuator is measured contactlessly with 
inductive sensors with a range of 2 mm with respect to a 
measurement frame. This measurement frame is mounted on a 
conventional xy-positioning system with linear actuators. This 
external system follows the same trajectory as the planar 
actuator. However, there is no contact between both systems 
and the controllers of both systems are independent. 
 
 The tracking error of the planar actuator has been determined 
with six SISO quasi-PID controllers with mass and inertia 
feed-forward and with a bandwidth of 35 Hz. No MIMO 
 

 

 
controller has been implemented because the wrench is 
sufficiently linearized and decoupled as shown in Figs. 27 and 
28. When the translator is levitated 1.5 mm above the stator 
coils, the tracking error of the planar actuator is 30 μm and 
100 μrad at full speed (1.4 m/s) and full acceleration (14 m/s2).  

 

 
Fig. 29. Simulated and measured torque on the translator of the planar actuator. Fig. 28. Simulated and measured force on the translator of the planar 

actuator. 
 

 
Fig. 30. Photo of the realized planar actuator and part of the measurement 

setup. 



At standstill operation the rms tracking error is less than 0.4 
μm and 4 μrad (rms-tracking error: 0.1 μm and 1 μrad) [5]. 
The tracking error is limited by this measurement system and 
will be replaced by laser-interferometers in the near future. 
Current investigations are focused on the design of a new 
planar actuator with an accuracy in the nanometer range. 
 

IX. CONCLUSIONS 
 
Two (semi-)analytical modeling methods for the analysis and 
design of high-precision actuators have been presented and 
illustrated with practical examples. The models based on 
surface charges are very suitable to obtain fast and accurate 
three-dimensional magnetic flux density solutions of coreless 
magnet assemblies. The methods allow to calculate the forces 
between magnet assemblies and inside magnet assemblies. 
The surface charge method is very suitable for design and 
optimization of a gravity compensator. Furthermore, a 
harmonic model is presented with which both moving-magnet 
as well as moving-coil planar actuators can be designed. The 
harmonic model can be simply reduced to a fully analytical 
model which can be applied in the commutation algorithm of 
the planar actuator. The good performance of the realized 
planar actuator elucidates the capabilities of the presented 
(semi-)analytical models. 
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