
Technical Article 
 
Is it possible to solve a FEM static case without assembling 
and storing an Ax = b matrix system?  
 
Abstract — In this paper we present a technique to solve 
magnetostatic problem FEM cases where the assembling, storing 
and solving the matrix system  Ax = b is performed in a different 
way compared with the classical techniques used nowadays and 
for more than 50 years. It is a new scheme to calculate the node 
potential unknowns, much simpler than traditional techniques 
widely used in virtually all the FEM codes. With the proposed 
method, assembling and solving are considered in a single 
procedure and, if the computation time is not a concern, memory 
allocation is virtually unnecessary. We point out the difficulties 
related to this procedure, noticing that, in spite of some 
drawbacks, the new scheme is effective and provides reliable 
results.  
 

I. INTRODUCTION 
 
The FEM applied to magnetostatic cases requires the 
calculation of the elemental contribution matrices (rigidity 
matrix and source vectors). The evaluation of such matrices is 
normally performed element by element and assembled in the 
global matrix system commonly designated Ax = b. Boundary 
conditions are inserted and the system is solved by a direct 
method (as Gauss Elimination) or by an iterative one (as 
ICCG) [1] [2]. When Ax = b is solved, the magnetic field H 
and the induction B are calculated. To do so, the steps of 
assembling, storing and solving are necessary.  
 
On the other hand, when applying the FDTD method for, as 
example, wave propagation, it is possible to operate by “cells” 
around the nodes [3]. Inspired by this procedure, we 
investigate the way to act similarly for magnetostatic cases.  
The resulting procedure is iterative and relaxation techniques 
are applied on Gauss-Seidel solving method [1][16][22].  
 
As our work progressed, we noticed that this technique is quite 
effective in terms of memory allocation and, moreover, its 
implementation is much simpler compared to the regular way 
of classical FEM codes. The main reason is the fact that it is 
not necessary to assemble, store and solve an Ax = b system as 
normally done, although we use the same final matrix terms 
and equations. As a matter of fact, such procedures are 
implicitly performed in the proposed technique and it is not 
necessary to proceed with the classical “calls” for the 
corresponding subroutines. At this stage of our work, the only 
drawback is the computation time which is somewhat higher 
than traditional implementations. It will be discussed in this 
paper.  
 
For simplicity, in this work we  call “T scheme” the traditional 
one (using assembling by elements) while calling “N scheme”, 
the new proposed one, which is based on node cells. In this 
paper, we will present some examples showing the 
effectiveness of the N scheme as well as the challenges that are 
inherent to it.  
 

 II. THE CLASSICAL FEM – T SCHEME 
 
It is well established and known that quasi-static cases are 
normally solved with the main steps below:  
 

 - Do for elements: 
  Calculate the elemental and source matrices; 
  Assemble them in a matrix system Ax = b; 
  Insert boundary conditions;  
 -Solve the Ax = b system; 
 -Calculate fields. 
 
Depending on the adopted implementation, the boundary 
conditions can be inserted during the assembling step. 
Calculating the elemental contribution and source matrices is 
normally simple and commonly described in the literature. 
The major difficulties for large cases (typically 3D problems) 
occur on the assembling, storing and solving the Ax = b 
system. Normally an iterative solver must be implemented 
and, even nowadays it can be found in the public domain, 
some steps must be accomplished as: 
 
- renumbering the nodes to take into account only the 
unknowns; 
- setting an addressing array to locate the non-zero terms; 
- setting the pointers to the above array; 
- allocating memory for the non-zero terms (taking care of the 
matrix symmetry); 
- allocating memory for the pre-conditioner matrix;   
- solving the Ax = b system; 
- renumbering back the unknowns to match the original mesh 
numbering in order to calculate fields.  
 
If, for any reason, one wishes to use another solver, the arrays 
above must be possibly readapted, which increases the burden. 
Of course, each implementation has its own characteristics and 
they may differ from each other, but anyone working on 
codes, knows very well that the FEM is considered as 
“complicated” and somewhat discouraging because of the 
points above. 
 

III. THE PROPOSED TECHNIQUE – N SCHEME 
 
The N scheme requires working by nodes and the “cells” of 
elements around nodes. Even though the major interest of this 
technique is for 3D cases, for didactical purposes let us 
consider the Fig. 1, where a very small and simple 2D mesh is 
presented.  

 
 

Fig. 1 – 2D mesh 



 
In Fig. 1, the nodes are indicated by numbers while the 
elements by letters. Suppose that the nodes 3, 5, 7 and 11 are 
unknowns and the others (1, 2, 4, 6, 8, 9, 10, 12, 13 and 14) 
have imposed boundary condition values. Firstly, we work 
with the node 3. The corresponding elements are: a, b, c, g, h, 
t and u and this cell is indicated in thick lines (the cell of the 
node 7 is indicated with dashed lines). When calculating the 
elemental matrix for this element (a typical rigidity matrix for 
a linear 2D triangular element), we obtain an a(3,3) matrix; for 
the source we have a s(3) vector.  Suppose that the potential 
unknown is called v and that the element a is the only one 
acting for the node 3. If the nodes numbering created by the 
mesher has the sequence 14, 3 and 1, the elemental matrix 
system given by this sole element is: 
 

 
1,1 1,2 1,3 14 1

2,1 2,2 2,3 3 2

313,1 3,2 3,3

a a a v s
a a a v s

sva a a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

        (1) 

 
Supposing that the values of 1v  and 14v  are known (as 
Dirichlet boundary conditions, for instance) we can write, for 
the potential 3v : 

        2,2 3 2 2,1 14 2,3 1a v s a v a v= − −                  (2a) 
 
If the numbering sequence is 3, 14 and 1, the equivalent 
expression is:  
      1,1 3 1 1,2 14 1,3 1a v s a v a v= − −          (2b) 
 
and for the sequence 1, 14 and 3, we have  
 
     3,3 3 3 3,1 1 3,2 14a v s a v a v= − −          (2c) 
 
The above system ((2a), (2b) or (2c)) must interact with other 
elements surrounding the node 3 (which correspond to the 
regular assembling on the T scheme) and such equations are 
calculated for the all the elements of this cell. We proceed 
with the sum of all the diagonal terms related to the node 3. To 
generalize it, let us call  “n”  the unknown node for this cell 
(node 3) and “j” and “l” the other two nodes of the element (as 
1 and 14 for the element a). The generic diagonal term is 
called n,n

elema  ; the sum of the right hand side is defined as:  

              j,l n n,j j n,l l

elemr s a v a v= − −  
 
The sum of the diagonal terms for the example above is 
 
      n,n n,n n,n n,n n,n n,n n,n_ a b c g h u tdiag sum a a a a a a a= + + + + + +            (3) 
 
For the right hand side we have 
 
        j,l j,l j,l j,l j,l j,l j,l_ a b c g h t uright sum r r r r r r r= + + + + + +                  (4) 
 
The node 3 has interaction with the unknown nodes 5, 7 and 
11 through the common elements c, g, h and u.  Since the 
procedure is iterative, the potential of these nodes will be 
placed on the right hand side with their current values (exactly 
as the boundary condition nodes). Once diag_sum and 

right_sum are calculated by (3) and (4), we can obtain the 
value of 3v  by:  

     
3

_
_

right sum
v

diag sum
=                        (5) 

 We will perform similar operations for the unknowns 5v , 7v  

and 11v .  Once it is done, we have a first approximation for 
these unknowns. Then the second iteration starts, with 
unknown values somewhat closer to the solution. As the 
iterative procedure progresses, the convergence is reached. 
The “influence” of boundary imposed conditions and the 
sources terms are slowly spread and, because we are dealing 
exactly with the same classical elemental matrices and 
sources, the solution is, in principle, exactly the same as we 
obtain with the T scheme.  For starting the iterative procedure, 
the potential on the unknown nodes is imposed as zero.  
 

IV. IMPLEMENTATION 
 
The majority FE codes have all the necessary parts to 
implement the N scheme, except for a particular mesh table 
here presented. Generally, the pre-processors supply the array 
nodes by elements as shown in the Table I, for the example of 
mesh Fig. 1.  

TABLE I. NODES BY ELEMENTS. 
Element Nodes 

a 1,14,3 
b 1,3,2 
c 2,3,5 
d 2,5,4 
e 4,5,6 

… ….. 
u 11,3,13 

  
We need, from the Table I, to set the arrays of the Table II. 
They indicate the number of elements surrounding a node 
(array NN) and the numbering of these elements (array EN), 
as presented below:  
 

TABLE II. ELEMENTS BY NODES. 
Node  Number of 

Elements (NN) 
Elements  

(EN) 
1 2 a,b 
2 3 b,c,d 
3 7 a,b,c,g,h,t,u 
4 2 d,e 
5 5 d,e,f,g,c 

…… …… ….. 
14 2 a,t 

 
Table II arrays are easily obtained from the Table I. In the Fig. 
2 we present the main algorithm for working with the N 
scheme.  
 
We remark some points in this algorithm: 
- the loop (a) is set for the iterations necessary to reach the 
solution;  
- the loop (b) “turns” only for the unknown nodes; 
- the loop (c) takes into account the elements surrounding the 
node n. 
 
From this simple algorithm, we observe the main contribution 
of this work: the potentials are calculated without the classical   
assembling, storing and solving steps. The solution is implicit 
in the proposed scheme.  



 
 

Fig. 2. The N scheme algorithm 
 

V. CONVERGENCE 
 
The algebraic operations related to the proposed method are, 
strictly, identical to the Gauss-Seidel method ones [1]. The 
convergence with this method is slow and it is necessary to 
apply strong over-relaxation to reach the solution 
[1][16][17][18][19][20][21][22][27]. For applying it, let us 
define, for a node n, the difference between the potential n

itv  

at the current iteration it and 1
n
itv −  at the previous one.  

 
    1

n n n
it itdif v v v −= −        (6) 
 

The relaxation procedure, in code language, is defined by  
 
  n n n( 1)v v w dif v= + −           (7) 
 
where w is the relaxation factor. We prefer to work directly 
with the factor 1R w= −  and the above expression becomes  
 
  n n nv v R dif v= +           (8)  
 
Here, if  R=0, where is no relaxation. For 0 1R< < , we have 
over-relaxation and, for 1 0R− < < , under-relaxation. With the 
examples presented below, it is necessary to use 
0.8 0.99R< < .  As a matter of fact, it is difficult to determine 
the relaxation coefficient on FE, and, after tests, we noticed 
that the following expression for  R is quite effective:  
 
  /(1 )T

final
itR R e−= −                                  (9) 

 
where it  is the iteration number. A good compromise is 

0.96finalR =  and T=14.11. Therefore, the curve for R as 
function of the iterations is shown in the Fig. 3. Using these 
data, for the th20  iteration, we have R=0.75.  This equation is 
used because the potential variations are already quite large at 
the first iterations and become smaller as the iterative 
procedure progresses.   
 

     
 

Fig.3 – Relaxation factor R as function of the iterations 
 
In the algorithm of Fig. 2 at the point indicated by the letter 
(d), R is calculated according to the equation (9), Fig. 3. R is 
then employed (equation (8)) on the point (e) indicated in the 
Fig. 2. Applying over-relaxation is very simple and the 
computational effort to perform it is minimal. Without it, the 
convergence is hardly reached. As criterion for stopping the 
iterations, a relative error smaller than 1.e-5 is required for the 
unknown nodes.  
 
The proposed technique has some similarities with the 
“frontal” methods, commonly used in the 1970s [24][25][26]. 
However, these methods require partial assembling using 
direct solvers (as Gauss Elimination) [23]. In that time, 
memory allocation was the main concern. Here, such a 
assembling is not necessary and the Gauss-Seidel iterative 
solver is used. 
 

VI. STRATEGIES AND EXAMPLES 
 
Many 2D and 3Ds magnetostatic cases were treated in our 
studies with success, even though, in some cases, the numbers 
of iterations were quite high. No failure was detected in any 
case and all the induction distribution plots presented below 
were obtained with the N scheme.  
 



VI.1 An Electrical Machine (2D Vector Potential) 
 
In the Fig. 4 we have a 2D mesh of an electrical machine. This 
machine has a thin airgap. The number of elements and nodes 
are 8305 and 4387, respectively.  The classical magnetic 
vector potential formulation is used to solve it [6]. In the Fig. 5 
we have the magnetic induction distribution obtained. 
 
 

 
 

Fig.4 – Mesh of an electrical machine with thin airgap 
 

 

 
 

Fig.5 – Magnetic induction distribution 
 
For all the examples, the curve of  R related to the expression 
(9) is used and here the number of iterations is 876. More 
detailed analyses, comparisons and discussions will be 
presented in Tables III and IV at the end of this section.  
 
 
 

VI.2 A 3D linear case (source-field method) 
 
In the following examples, we use the “source-field” method. 
It is not our purpose to describe it here. Its basis are discussed 
in [7] and its full presentation is available in [8][9]. We just 
mention that, with this method, the coil current density J is 
replaced by sH  using the equation rot =sH J  [15]. The 

magnetic field H is given by grad= − ΩsH H . The main 

equation to be solved is ( ) 0div div gradμ= − Ω =sB H , 
where μ  is the magnetic permeability and Ω  is the reduced 
scalar potential [5]. Working with first order tetrahedra, the 
elemental matrices a(4,4) and s(4) are, with classical notations 
[2]:  
 
 i,j

n

t
i jVol

grad N grad N dva μ ⋅= ∫                    (10)  

 
 i

t
i

n
scVol

grad N H dvs μ⋅= ∫ w                     (11) 

 
where N is here the nodal shape function and w is the edge 
shape functions of the tetrahedron n of volume nVol ;  scH  is 
the circulation of the source-field on the edges of the element.   
 
When dealing with large meshes, the evaluation of elemental 
matrices requires numerical integration and are, therefore, 
time consuming. The algorithm of Fig. 2 can be slightly 
modified to save computation time. The elemental matrices 
can be calculated outside the loop (a) and can be kept in 
memory by using the three-dimensional array a(elem, 4,4) and 
s(elem,4). Notice that, in the step (f), inside the internal loop 
(c), the matrices a(4,4) and s(4) are, normally, calculated  4 
times, since each tetrahedron has four unknown nodes 
(excepting few boundary conditions nodes). Then, we perform 
the calculations of the block A shown in the Fig. 6 below: 
 

 
 

          Fig. 6 – Block A for elemental matrices kept in memory 
 
In the main algorithm of Fig. 2 the step (f) is suppressed and 
the block A above is inserted in the point (g), outside the 
iterations loop (a). The expressions (3) and (4) can be applied 
directly in (h) using the three-dimensional array a(iel, 4,4) and 
s(iel,4). It saves much computation time. This procedure needs 
memory allocation but in a much simpler way (block A, Fig. 
6) than the classical assembling, as commented in the 
beginning of this paper.  
 
The 3D domain, shown in the Fig. 7, has 7895 nodes and 
40615 elements. It corresponds to ¼ of a “U” magnetic circuit 
domain. It is necessary 140 iterations to reach convergence.  
   



 
 

Fig.7 – Mesh of a linear 3D case 
 

VI.3 A 3D non-linear case (source-field method) 
 
The same domain of the previous example is used here to 
solve a non-linear case. The iron has a typical B(H) with 
saturation induction around 1.6 Tesla [6].  
 
Using our proposed N scheme, we point out another relevant 
advantage compared with the classical T scheme. The value of 
the permeability can be modified along the iterations, in the 
loop (a). When using an iterative method (as ICCG) in the 
regular T scheme, the whole matrix A can not be modified 
during the iterations procedure.  In this case, the block A 
presented in the previous example (for a(iel,4,4) and s(iel,4)) 
“moves” from the point (g) to the point (i) in Fig. 2. Again, (f) 
is excluded. We obtained convergence in 175 loops, a good 
performance.   
 
Observing the algorithm, there is one more possible 
simplification for non-linear problems, which will speed up 
the calculation: the elemental contributions (10) and (11) can 
be calculated without considering the permeability μ . In the 
loop (b) at the point (i), the fields on all the elements are 
evaluated as well as their permeability. μ  is then introduced 
on expressions (3) and (4) (step (h) of Fig. 2). It is faster than 
calculating the whole the elemental contributions (it needs 
numerical integrations).  The Fortran code of this modified 
algorithm is indicated at the end of this paper.  
 

 
 
 

Fig.8 – Mesh and magnetic induction distribution in a non-linear case 
 

As for this non-linear case, the magnetic induction distribution 
is plotted in Fig. 8.   
 
VI.4 A 3D linear case with permanent magnets (source-
field method) 
 
Finally, the aim of this example is to demonstrate that the 
proposed scheme can be applied in a relatively large mesh. 
This case is related to an axial flux electrical motor having 
coils and permanent magnets [28]. The same source-field 
method is employed. As for the permanent magnet source, the 
source term is given by [8]: 
 
  

n

t

i iVol
sp gradN dv= ⋅∫ rB                    (12) 

 
where rB  is the permanent magnet remnant induction. The 
corresponding source term sp(iel,4) must be added to the coil 
source term s(iel,4). The mesh of this case has 63053 nodes 
and 361007 elements; it is shown in the Fig. 9, where the 
superior iron piece is removed to show the coils and the 
permanent magnets.  The magnetic induction distribution is 
shown in Fig. 10a (for the permanent magnet only) and Fig 
10b (permanent magnets and active coils).  
 

 
 
 

Fig.9 – mesh of a 3D case having coils and permanent magnets 
(permanent magnets in purple and coils in red). 

 

 
Fig 10a. Magnetic induction distribution due to the permanent magnets. 
 
 



 
 
Fig 10b. Magnetic induction distribution due to coils and permanent magnets 
(iron top piece also shown). 
 
VI.5 Results and discussion 
 
In this section we will present some comparisons between the 
N and the T schemes. We point out that the T scheme solvers, 
belonging to the FEECAD 3D system, have been regularly 
used and tested [10][11][12]. Therefore, for this comparison, 
we consider its results as correct. The ICCG method is used on 
the T scheme solvers [29].   

 
TABLE III. T SCHEME DATA 

Case Mesh ICCG 
iter. 

Magnetic 
energy (J) 

Time 
(sec) 

Ex. VI.1: 2D 
motor 

4387 nodes 
8305 elem. 

522 0.9951 0.4 

Ex. VI.2: 3D 
(linear) 

7895 nodes 
40165 elem. 

46 0.040825 1.3 

Ex. VI.3: 3D 
(non-linear)  

7895 nodes 
40165 elem.  

46 (x 10 
iter. non-
linearity) 

0.41258 
0.51914 (co-

energy) 

10.9 

Ex. VI.4: 3D  
PM motor 

63053 nodes 
361007 elem.  

91 .034537 10.2 

 
TABLE IV.  N SCHEME DATA 

Case iterations Magnetic 
Energy 

Time 
(sec) 

Energy 
Error

% 

|B| 
Error% 

Ex. VI.1 876 0.9957 9.3 0.06 0.08 
Ex. VI.2  140 .040826 4.6 0.002 0.37 
Ex. VI.3  175 0.41258 

0.51925 
28.7 0.00 

0.02      
0.27 

Ex. VI.4 1317  0.033891 380 1.8 0.34 
 

We compared the effectiveness of the N scheme based in two 
quantities: the magnetic energy and the |B| average relative 
errors. The latter is obtained by calculating, element by 
element, the errors on B magnitude and averaging them. It is 
clear that the N scheme conducts to correct solutions, a 
relevant result of this work.  One interesting point: the non-
linearity is very well solved with the N scheme and it provides 
very accurate fields.  
 
Initially, the case presenting major difficulties, among all our 
tests (not only the cases here presented) is the Example VI.1. 
It is the 2D electrical motor, whose thin air-gap leads to these 
difficulties.  Even for the T scheme, ICCG needs the largest 
ratio=(number iterations)/(number nodes) of our tests. It is 
also observed with the N scheme.  In this example, the 
algorithm presented in the Fig. 2 was used, without 
considering the elemental contributions storage (the use of the 
Block A  of Fig. 6).  The use of this storage would speed up 
the calculation.  
 

The drawback of the N scheme is the fact that the number of 
iterations is larger compared to the T scheme. Also a single 
iteration on the proposed method, in spite of the scheme 
simplicity, is longer than an ICCG iteration.  Therefore, the 
computational time is larger, although, in absolute terms, they 
are quite reasonable, excepted for the last example, whose 
main goal is to show that the N scheme can handle large 
meshes. Notice also that such calculation times were obtained 
with an average performance notebook (AMD Turion 64 
Mobile, 2.00 GHz, 1GB RAM).  
 
This particular timing comparison must be taken with the 
precautions commented now. We are not comparing similar 
techniques. The complex tasks of the T scheme (commented in 
the beginning of this work) are not present in the N scheme. 
Secondly, we must observe some historical aspects. In the 
1970s and 1980s, when 3D calculations become recurrent in 
our area, an immense effort was devoted to improve the 
performance of Ax = b solvers. Impressive papers were 
presented and proposed outstanding algorithms to solve        
Ax = b systems with very high precision, fast calculation and 
low number of iterations. We mention in the bibliography 
section two landmark papers, but certainly dozens of papers 
could be listed [13][14]. This area is still an important trend of 
research and more work has been accomplished on it for about 
30 years. Our proposed N scheme is, at our best knowledge, a 
new way to solve FEM problems and, as explained in this 
paper, it conducts to numerical operations similar to the 
Gauss-Seidel procedure whose performance is quite equivalent 
to the Conjugate Gradient method without preconditioning [1]. 
Clearly, it is an open research area whose challenge is to 
improve the convergence of Gauss-Seidel method (or another 
possible alternative) keeping the simplicity of the N scheme. 
We estimate that improvements on this particular problem 
would be beyond the scope of this single work. Nevertheless, 
with the relaxation technique here presented the N scheme is 
already totally applicable. It is also robust: different initial 
values for the unknown nodes were tried and the final result 
was virtually the same, as well as the number of iterations. 
And, certainly, the community working in numerical analysis 
and particularly on solvers may provide improvements on this 
direction. In our research group, we will keep working on this 
particular topic and hopefully, some progress will be 
accomplished by us or colleagues.     

 
VII. FINAL CONSIDERATIONS 

 
We presented in this work a totally different way to handle 
FEM static cases. With the N scheme it is possible to handle 
FEM cases with a technique immensely simpler compared 
with the traditional FEM method.  
 
In the discussion above presented, it was pointed out that some 
improvements, upon effective research, can be proposed in the 
future and, as said, this matter is an open research subject.  
 
Some other aspects can be also noticed: 

- the N scheme handles, without any distinction, 
symmetrical and non-symmetrical A matrices; 

- a new and effective way to handle non-linearity is 
possible; using it, the permeability can be changed 
during the iterations; 

- parallelization techniques may be  also considered in 
a different way. 

 



It can certainly be also applied on quasi-static cases and 
formulations based on vector potential. It will be investigated 
in a near future. 

 
We believe that N scheme is an elegant way to handle FEM 
cases compared to the classical method. This statement is 
based on its overwhelming simplicity on implementing codes 
and on the fact that handling the Ax = b system is much easier.  
We would say that with the traditional method, once the 
elemental matrices are calculated, the “most difficult part has 
to be done”. With the proposed N scheme, once such matrices 
are obtained, “it is already done”. The results are encouraging 
and, at this stage of our work, already satisfying and fully 
applicable.  
 
Finally, for colleagues interested on trying this method, we 
provide the Fortran code of the algorithm of Fig. 2 (with the 
modifications presented in the section VI) by the Internet 
access:  
            www.grucad.ufsc.br/download/nscheme.txt  
 
Its reading is certainly helpful for clarifying the method 
implementation.  
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