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The Boundary Element Method in Full-wave Electromagnetics

Abstract — The Boundary Element Method, usually called the
Method of Moments in full-wave electromagnetics, has a long his-
tory which is briefly reviewed. Recent developments are extend-
ing the range of applicability in two directions: to overlap with
quasi-static methods for electrically small objects and to overlap
with asymptotic methods for large objects.

I. I NTRODUCTION

The use of the boundary element method (BEM) in electromag-
netics is a long-established subject with a vast literature that is
still growing through current research. This short article can-
not be comprehensive, so the aim here is provide brief historical
background and an introduction to some aspects of the current
work that is widening the applicability of the method.

The original area of application of the BEM was to frequency-
domain modelling of thin-wire antennas, in the frequency regime
where the full Maxwell’s equations are required. In this context,
it is usually called the Method of Moments (MoM). Harring-
ton [1] has provided an introduction and Jones [2] gives a more
comprehensive development with an emphasis on the mathemat-
ical details.

The method is developed by deriving from Maxwell’s equa-
tions surface integral equations which capture the underlying
physics. The advantages of this approach are that the frequency
domain gives a more natural way of describing narrow-band res-
onant antennas, the radiation boundary condition at infinity is
built in to the method via the Green’s function and only the con-
ducting structures need to be represented in the model; there is
no need for a space-filling mesh.

The method solves for the current induced on the conduc-
tors by an applied field, which may be an incident plane wave
for scattering calculations or receiving antennas, or a localised
source at the feed-point of a transmitting antenna. Parameters of
interest, such as the antenna input impedance, radiation pattern
or the bistatic radar cross-section (RCS) are derived from these
currents in a post-processing step.

The most widely used thin-wire MoM code is the Numerical
Electromagnetics Code (NEC) written by Burke and Poggio [3]
NEC is still available and has been used in many commercial
products which add value by providing user-friendly pre- and
post-processing tools.

The method of moments has developed in various ways from
these beginnings in thin-wire modelling. First, extended surfaces
were modelled for RCS predictions using a description of the
surfaces as grids of thin wires. This technique amounts to crude
finite-element approximation of the surface currents.

The developments in finite-element theory presented by
Nédélec [4] and Raviart and Thomas [5] introduce div- and curl-
conforming representations of vector fields. These ideas were
applied without acknowledgement to electromagnetic BEM (or
perhaps were independently discovered?) by Rao, Wilton and
Glisson (RWG) [6], who described a lowest-order triangular
patch boundary element method. This work was the starting
point for a large effort in improved surface modelling which con-
tinues today.

The use of boundary descriptions and surface currents can
be extended to include regions of homogeneous, isotropic and
linear dielectric and magnetic materials by means of Huygens’
principle and a vector Green’s theorem, as described by Stratton
and Chu [7, 8], Poggio and Miller [9] and Harrington [10].

Inhomogeneous and anisotropic (but still linear) materials can
be included using volume integral equations, as described by
Schaubertet al. [11].

The use of integral equations has the great advantage of sim-
plifying the mesh generation requirements and reducing the
number of elements. However, the penalty for this is the pro-
duction of fully-populated system matrices after discretisation.

Traditionally, directLU solution has been used, leading to an
O(N3) computational cost andO(N2) storage requirement for
N degrees of freedom (DoFs). More recently, fast solvers such
as the multi-level fast multipole algorithm (MLFMA) [12, 13]
have improved this cost toO(N log N) storage and operation
count.

Work continues on fast solvers to push the full-wave MoM to
higher frequencies to close the frequency gap and overlap with
the domain of applicability of asymptotic, approximate methods
such as ray-tracing.

There is also a frequency gap at the low frequency limit where
traditional MoM suffers from poor matrix conditioning. This is
addressed by the explicit use of solenoidal DoFs, that is loop
basis functions, allowing the quasi-static limit to be approached.

The remainder of this article summarises the various types of
integral equations that are used, and introduces the developments
that have extended the accuracy of the MoM and its applicabil-
ity to higher frequency, lower frequency and mixed scale-length
problems

II. BASIC EQUATIONS

Consider first the simplest case of a perfectly conducting object
in an infinite, homogeneous medium, typically free space with
constitutive parametersε0 andµ0.

The starting point for the development of the MoM is an in-
tegral representation of the potentials and hence the fields. The
source of the potentials is the surface currentj induced on the ob-
ject by the externally imposed incident fieldEi andHi, which
could be a plane wave for a scattering calculation or a localised
source for a transmitting antenna.

Exploiting linearity, the usual convention is to employ com-
plex quantities and an implicit time dependence ofexp(+iωt),
which is always omitted from expressions. The taking of the real
part to obtain physical quantities should always be understood.

The total field is the sum of the incident field and a scattered
field Es andHs, derived from the potentials using

Es = −∇φ− iωA,

A(r) = µ0

∫
Gj(r′) dr′,

G(r; r′) = exp(−ikR)/4πR,

µ0Hs = ∇×A

φ(r) =
i

ωε0

∫
G∇′ · j(r′) dr′

R = |r− r′|
The integral equations then follow by inserting these field rep-

resentations into the physical boundary conditions at the surface



of the conductor. The electric field integral equation (EFIE) en-
forces zero tangential electric field, while the magnetic field in-
tegral equation (MFIE) relates the tangential magnetic field to
the surface current density:

n̂× (Ei + Es) = 0 n̂× (Hi + Hs) = j

Note that the boundary condition on the magnetic field is a
jump condition. The MFIE can be used only on closed surfaces
with the additional information that the fields are identically zero
inside perfect conductors, so that the jump condition produces a
specific statement about the magnetic field just outside the con-
ductor.

In contrast, the EFIE can be used on laminae with free edges
and on thin wires. In the latter case the azimuthal fields are ig-
nored and only the longitudinal field is tested.

It is well-known that both the EFIE and the MFIE are not fully
equivalent to the Maxwell differential equations. They each suf-
fer failures at a discrete set of frequencies that can be interpreted
physically as the resonant frequencies of the cavity formed by
regarding the conducting surface as hollow. Jones [2, pp. 324–
357] provides a clear mathematical explanation of these failures.

These problems can be avoided by using the combined field
integral equation (CFIE), which is equivalent to Maxwell’s equa-
tions at all frequencies. The CFIE is formed by linearly combin-
ing the left and right-hand sides of the EFIE and MFIE: schemat-
ically, “CFIE = αEFIE + Z0(1 − α)MFIE”. Jones [2, pp. 348–
350] establishes the existence and uniqueness proofs for all real
α ∈ (0, 1).

III. B OUNDARY ELEMENT APPROXIMATION

The numerical model is derived in two steps of discretisation.
First, the continuously-varying surface current is approximated
by a boundary element representation with a finite number of
DoFs. Second, the integral equations are tested with a finite set
of weight functions. The Galerkin method results from using the
basis functions as the weight functions.

With test functionsfE for the electric field andfM for the
magnetic field, the tested integral equations can be written com-
pactly as
EFIE: 〈fE , n̂×Es〉 = −〈fE , n̂×Ei〉
MFIE: 〈fM , j− n̂×Hs〉 = 〈fM , n̂×Hi〉

The tested right-hand side of the EFIE produces a vector of
“voltages”,V from the incident field,Ei, so the numerical sys-
tem of equations is conventionally written asZI = V , whereI
is the vector of unknown, complex current amplitudes for the
DoFs. Consequently, the full, complex system matrix,Z is
called the impedance matrix.

The cavity resonance failures of the EFIE and MFIE ap-
pear in the numerical approximations as ill-conditioning of the
impedance matrix over a range of frequencies in the neighbour-
hood of each resonant frequency. This is not a problem for small
scattering bodies, but becomes more significant as the size (in
wavelengths) of the body increases, since the density of reso-
nances also increases with frequency. Use of the CFIE for large
closed surfaces produces better conditioning of the impedance
matrix.

IV. SOLVING THE L INEAR SYSTEM

The practical utility of the method of moments depends critically
on the feasibility of solving the dense system of linear equations

just described. Consider the scaling of the computational com-
plexity of this solution.

For a perfectly conducting body, the basis functions used to
describe the surface current must give sufficient resolution of the
phase variation, so for a typical dimensionL and wavelengthλ
the number of DoFs isN ∝ (L/λ)2.

A. Direct Solution

The use of a direct solution method such asLU decomposition
needs the explicit computation of the full impedance matrix with
O(N2) storage requirement and a significant amount of arith-
metic for each element of the matrix. The matrix factorisation
requiresO(N3) complex multiplications and additions.

Subsequently, the solution for the currents requires a further
O(N2) complex multiplications and additions for each excita-
tion.

For some applications, such as monostatic RCS computations,
the same impedance matrix is used with many different exci-
tation vectors. Then the high cost of the factorisation can be
worthwhile.

However, thisO(L/λ)6 cost provides a very steeply rising
barrier to the computation for large objects. Remember that
21/6 ≈ 1.12 so a doubling of processing speed yields only a
marginal 12% increase in the size of calculation tractable in a
fixed time. Similarly,21/4 ≈ 1.19 so a doubling of storage ca-
pacity yields only a 19% increase in the size of the maximum
feasible calculation.

B. Iterative Solution

The high cost of the factorisation step can be avoided by using an
iterative solver such as BiCGstab or GMRES [14]. Note that the
impedance matrix is not Hermitian, so the conjugate gradient
method itself is not applicable and convergence is not guaran-
teed.

Each iteration requires the computation of one or twoZI
matrix-vector products, so a straightforward implementation still
requiresO(N2) storage and computation.

In contrast to the direct method, each excitation vector is a
fresh calculation for an iterative solver. When the excitation vec-
tors change systematically from one calculation to the next, as in
a monostatic RCS sweep, some savings in the number of itera-
tions can be made by using one solution as the starting vector for
the next.

V. FAST SOLUTION METHODS

The above considerations motivated the development of fast
solvers such as the MLFMA, which dominates the subject be-
cause of the work of Chewet al. [15].

The objective of fast methods is to calculate approximately the
ZI product without the need to compute all the matrix elements
explicitly and with fewer operations thanO(N2). Then iterative
solvers can run faster.

An integral equation such as the EFIE describes a balance of
fields at each point on the surface of the scatterer with contri-
butions from every other point, hence theO(N2) scaling of the
coupling.

A. The Fast Multipole Method

The basic concept of the fast multipole method is to group the
couplings between distant parts of the surface. The original elec-



tromagnetic fast multipole method with one level of grouping is
described in an accessible form by Coifmanet al. [16]. The con-
cept of grouping and the origin of the computational savings it
generates are illustrated schematically in Fig. 1.
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Figure 1: Grouping distant interactions reduces computational
complexity.

The complexity is further reduced by repeating the grouping
recursively to generate nested groups of increasing size, leading
to the MLFMA.

The scattering object is embedded in a regular oct-tree of cells
and the individual geometrical elements are assigned to cells at
the smallest level. Interactions between nearby elements must be
computed explicitly, but more distant interactions are computed
in three steps: aggregate contributions in a source cell, trans-
late to a target cell, and distribute contributions to test elements
within the target cell. In the MLFMA, the aggregation and distri-
bution steps are repeated so that the translation step transfers the
largest possible collection of contributions between the largest
possible pair of cells.

The name of the method originates from considering the out-
going contributions from a cell as a series of spherical waves, or
multipoles. However, this description cannot be used directly,
because the translation operator for spherical waves is dense.
Then there would be no improvement in the computational com-
plexity.

The method becomes feasible when plane wave expansions
are used to describe the transfer of fields from source cells to
target cells. Then the translation operator is diagonal; each plane
wave just requires a phase shift to displace its point of reference.

However, even this technique is not sufficient to deliver the
computational savings. The final insight is that small cells need
fewer plane-wave directions than large cells to describe the out-
going fields adequately. At each level of the MLFMA, the ag-
gregation of field contributions from child cells to their parent
requires the interpolation of the plane wave amplitudes to yield
the larger number of directions used by the parent cell. In the
distribution of incoming contributions from a parent cell to its
children the inverse process is required. The description must be

coarsened to fewer plane wave directions.
The resulting complexity for the MLFMA is an arithmetic cost

ofO(N log N) operations perZI product and a storage require-
ment which also scales asO(N log N).

There are various implementation issues to be addressed when
the MLFMA is used in practice. It is usual to assume that the
computer has sufficient main memory to store all the data de-
scribing the plane wave amplitudes, the sparse impedance ma-
trix for the near interactions, the current amplitudes and the other
vectors required for the iterative solution. This requirement can
be satisfied with modern parallel, distributed-memory systems
for problem sizes up to millions of DoFs.

The implementation needs careful housekeeping to ensure
that all the pairwise interactions are accounted for, and none is
counted twice.

B. The Adaptive Integral Method

The adaptive integral method (AIM) described by Bleszynskiet
al. [17, 18] provides a different way of accelerating the solution
of the integral equations. As in the FMM, the fields produced by
a distribution of currents are split into near and far contributions
and the near contributions are calculated using selected elements
of the MoM impedance matrix.

In the AIM, the far contributions are calculated by approxi-
mating the current distribution by a distribution of currents on a
regular cartesian lattice. The approximation is chosen so that the
original current distribution for a DoF and its regular replace-
ment have matched multipole moments to some chosen level.
This ensures that the far fields are well matched.

The regular lattice combined with the translational invariance
of the Green’s function allow the use of the Fast Fourier Trans-
form (FFT) to compute theZI product for the far contributions.

The computational complexity of the AIM depends on the
type of problem being analysed. For a volume distribution of
sources, where the regular lattice of approximating sources is
well populated, both the operation count per iteration and storage
scale favourably asO(N log N). However, for perfectly con-
ducting objects the sources are concentrated on the scatterer’s
surface and this non-uniform distribution degrades the scaling to
O(N3/2 log N).

C. The Block P3M Method

The P3M method, described by Eastwood in [19, 20, 21] and
the article in this issue, also uses a splitting between explicit
pairwise calculation of the near interactions and a mesh method
for the far interactions.

This method deals efficiently with non-uniform distributions
of sources by using nested levels of mesh refinement and also
uses the FFT to achieveO(N log N) computational cost per it-
eration. The storage requirement is reduced toO(N).

VI. V OLUME SCATTERERS

The discussion so far has concerned the MoM being used to
solve for surface distribution of currents on perfectly conduct-
ing objects or the surfaces of homogeneous regions of penetrable
material.

Volume integral equations can also be formulated for inho-
mogeneous regions of both dielectrics and magnetic materials.
A recent description of the available choices of equations has
been given by Botha [22], who also describes the conformity
requirements of the finite elements.



For the simplest case of the volume EFIE applied to a dielec-
tric medium with background permeability, the method uses a
modified electric flux,D as the unknown field. This field is
solenoidal, so there is a requirement for the basis functions to
be solenoidal as well as div-conforming. Such basis functions
have been discussed, for example, by Mendes and Carvalho [23].
At lowest order, they are piecewise-constant on tetrahedral ele-
ments and their assembly requires that the support of a single
DoF should be continued from tetrahedron to tetrahedron until
a closed loop is formed or the chain of tetrahedra terminates on
free surfaces.

Closed loops can be identified around every internal edge of
the mesh and open chains occur around every edge of free sur-
faces. On each tetrahedron, the constant flux is directed parallel
to the edge opposite the edge hosting the DoF. Examples of
these DoFs are shown in Fig. 2.
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Figure 2: (a) a whole loop surrounding an internal edge (b) a
partial loop at an edge on a free surface.

It is non-trivial to ensure that these DoFs are linearly inde-
pendent. In the case of a single body without holes or internal
cavities, Scheichl [24] has established (for a different applica-
tion) that the loops associated with a spanning tree of the mesh’s
edges form a linearly-independent subset. The issue is more in-
volved for general topologies. There can be macroscopic loops
threading the handles of tori, and chains are required to connect
the surfaces of cavities to the external space [25].

The DoFs are required to describe a volume distribution of
sources and so many more are required than for surface sources
of the same electrical size. The computational complexity of
direct solution methods is prohibitive, but fast solvers make the
volume methods practical.

VII. STRENGTHS AND ISSUES

The MoM offers several advantages over volume-filling mesh
methods and, of course, also has some limitations. These
strengths and issues are now briefly described. Then the remain-
der of this article gives an indication of some areas of current
work that are addressing these issues.

A. Strengths

The principal strength of the MoM is that it is a boundary ele-
ment method. Only the field sources need to be meshed. There
is no requirement to place a volume-filling mesh in a computa-
tional volume surrounding the sources. This greatly simplifies
the CAD requirements. Consider, for example, the challenge of

generating a mesh in the space surrounding a thin-wire helical
antenna!

The radiation condition at infinity is automatically built into
the MoM via the Green’s function. The MoM is well-suited to
antenna and scattering calculations. There is no need for an arti-
ficial termination of a finite computational box.

The lack of a volume-filling mesh also greatly reduces the
number of DoFs needed in a computation. Now, with fast
solvers, theO(N log N) operation count (per iteration) and
O(N) storage is attractive.

The MoM allows general formulations that include thin wires,
surface currents on perfect conductors, surface-equivalent cur-
rents on the surfaces of homogeneous materials and volume po-
larisation currents in inhomogeneous materials. These may all
be mixed in a general-purpose code.

B. Issues

The formulation of the FMM (and hence the MLFMA) is based
on a mathematical abuse of Gegenbauer’s addition theorem. The
theorem states that

e−ik|X+d|

|X + d|
= ik

∞∑
l=0

(−1)l+1(2l + 1)jl(kd)h(2)
l (kX)Pl(d̂ · X̂)

and it is used to displace the source point for the Green’s function
by an offsetd which is small compared with the distanceX from
the centre of the source cell to the field point. The convergence
of the infinite sum relies on|d| < |X| so that the decay ofjl(kd)
defeats the growth ofh(2)

l (kX) and their product becomes small
asl → ∞. However, the next step of the development replaces
the Bessel function by its plane-wave representation and inter-
changes the order of the summation and the integral over the
plane wave directions. This operation is legitimate only if the
sum is truncated at some upper limit,l = L. Consequently, the
FMM suffers from a low-frequency breakdown when the cell
size at the bottom of the oct-tree becomes small compared with
the wavelength and the growth of the Hankel function causes
rounding error to dominate.

This problem with the FMM is avoided in the Block P3M
method which does not suffer from such a low-frequency break-
down and has a continuous quasi-static limit tending to the solu-
tion of Laplace’s equation.

There is another low-frequency problem with any variant of
the MoM that uses the EFIE. The contribution toE from ∇φ
dominatesiωA asω → 0. This can lead to local rounding-error
problems with the evaluation of the elements of the impedance
matrix. However, there is a more serious difficulty. Any dis-
crete representation of the EFIE should be sufficiently accurate
to yield a zero integral of∇φ around a closed loop. (Early ones
were not.) Hence any DoFs that can be arranged to form a closed
loop yield a set of rows of the impedance matrix that are almost
linearly dependent andZ is ill-conditioned.

This problem can be avoided by recognising solenoidal, loop
basis functions as the basic unknowns, rather than carrying them
as sums of other non-solenoidal basis functions. More explana-
tion of this technique is provided in Sec. VIII below.

The fast methods achieve their speed-up by accelerating the
ZI product. This calculation is just one part of an iterative solu-
tion process and the overall performance depends on an efficient
iterative scheme. The number of iterations depends critically on
the conditioning of the impedance matrix,Z. The CFIE should
be used when it is applicable (i.e., for closed surfaces) since it
has a lower condition number than the EFIE and avoids the in-
ternal resonance problem for large bodies.



In practice, some form of preconditioning is essential to im-
prove the rate of convergence. The choice of preconditioner is
greatly constrained since the fast methods do not provide access
to the entire matrixZ. The explicitly available elements ofZ for
near interactions can be used to produce a sparse approximate
inverse preconditioner that is more effective than the simplest
use of only the diagonal elements ofZ.

The MoM is commonly implemented using the lowest-order
RWG basis functions which employ a piecewise-linear descrip-
tion of the surface current and have a piecewise-constant surface
charge density. This level of description is widely observed to
be acceptable in practice, although the rigorous numerical anal-
ysis by Bendali [26, 27] fails to prove consistency and conver-
gence. Improved accuracy and convergence with refinement of
the mesh can be achieved by using higher-order representations
of the geometry and the surface current, as described in Sec. IX
below. Then Bendali’s analysis does prove consistency and con-
vergence.

VIII. M OM AT LOW FREQUENCY: LOOP-TREE DOFS

As indicated in the previous section, the low-frequency break-
down of the MoM due to ill-conditioning of the impedance ma-
trix can be avoided by adopting solenoidal, loop basis functions
as DoFs. Every internal vertex of a triangulated surface can host
a simple loop. The RWG basis functions give the correct number
of DoFs, so each loop requires the discarding of a RWG DoF.

The process of identifying which RWG DoFs to discard in-
volves global aspects of the model and cannot be approached
naïvely. The surviving RWGs must visit every triangle to allow
a distribution of surface charge, but cannot be allowed to form
closed loops; they must form a spanning tree connecting triangle
centres. So the surviving subset of RWGs are called tree basis
functions.

The identification of the loop and tree basis functions can be
achieved using standard graph theory algorithms: the identifica-
tion of spanning trees and their fundamental cycle bases. Eib-
ert [28] described the simplest case of a surface homeomorphic
to a disc. Recently, Morgan [29] has summarised extensions to
more complex topologies, including multiple junctions.

The transformation from RWG to loop-tree basis functions
can be regarded as a change of basis (in the vector-space sense)
in the finite element space used to approximate the surface cur-
rent. The transformation can be applied retrospectively to the
impedance matrix and current and excitation vectors in an ex-
isting MoM code, but it is preferable to employ the loop basis
functions directly, so that the∇φ terms can be omitted entirely
when it is known that they are not needed.

When loop and tree basis functions are used, the system of
linear equations can be partitioned into a2 × 2 block system
in which the blocks ofZ exhibit different scalings with fre-
quency [30, 31]. Then a rescaling of these blocks and cor-
responding parts of the current and excitation vectors demon-
strates an approximate Helmholtz decomposition into quasi-
magnetostatic and quasi-electrostatic parts.

In this way, a good condition number forZ can be obtained
from the EFIE down to very low frequencies, producing a con-
tinuous limit asω → 0.

IX. H IGHER-ORDERELEMENTS

The use of higher-order elements in wire and surface MoM mod-
els offers improvements in two distinct aspects of the method.

First, the use of curvilinear elements, rather than straight wire
segments and flat, faceted triangulations gives a more accurate
representation of the physical geometry. This offers improved
accuracy in two ways: the positions of the current sources are
better matched to their true positions, improving the accuracy of
the phase of the fields produced by the sources, and the direction
of the surface currents varies with position in a more accurate
manner, improving the contributions to the vector fields. Ben-
dali [27] identified the latter point as the weakest aspect of the
lowest-order RWG approximation.

Second, the use of higher-order shape functions to describe
the variation of current along wires and over surfaces allows a
more accurate representation of the true current distribution.

Hierarchical elements allow the selective use of higher-order
descriptions on critical parts of the model, with easy matching
to lower-order descriptions on less-critical parts. Their use has
recently been described by Eastwood and Morgan [32].

They obtain curl- and div-conforming elements following the
criteria identified by Nédélec [4]: the curl- (div-) conforming
elements have continuous tangential (normal) component; the
highest-order irrotational (solenoidal) terms in the polynomial
representation of the current are set to zero; and the curl- (div-
) conforming shape functions are complete polynomials only to
the same order as their curl (div).

They regard surface and wire elements as limiting cases of
3D elements. This simplifies the concept of element assembly
to obtain the correct continuity of the current, particularly in the
mixed-dimensional case of a wire attached to a surface. This
viewpoint also allows the use of standard finite-element termi-
nology: the div-conforming elements are “face” elements while
the curl-conforming elements are “edge” elements.

The detailed development in [32] starts from curvilinear co-
ordinate transformations to describe the higher-order geometry.
Then the shape functions describing the variation of current over
the surface are defined in terms of polynomials in the paramet-
ric coordinates. This clearly separates the geometry definition
from the shape functions. Finally, judicious use of scaling by
the Jacobian of the coordinate transformation greatly simplifies
the integrals occurring in the definition of the MoM impedance
matrix elements.

The RWG basis functions are zeroth-order div-conforming;
they have piecewise constant divergence on flat elements. Their
normal current is constant along the edge (“face”) of the element.
The first-order generalisation has a linearly-varying divergence
and a normal current which varies linearly along the edge of the
element.

The integrals occurring in the MoM impedance matrix ele-
ments are singular whenever source and test functions overlap
because of the singularity in the Green’s function. These singu-
larities require careful numerical treatment. One standard tech-
nique is singularity subtraction [33], in which a simpler singular
integrand with known closed-form integral is subtracted from the
required integrand to leave a less-singular remainder which can
be integrated adequately with a numerical scheme.

Polynomial shape functions of any order can be integrated
over flat triangular elements using the recurrence relations pro-
vided by Järvenpääet al. [34], but these do not generalise di-
rectly to curved elements. This problem can be resolved by us-
ing the known integral on the tangent plane at the point of closest
approach between the source element and the field point. The ra-
dius vector occurring in the required integrand is then different
from that in the integrand for the tangent plane integral, and care
is needed to ensure that the match between the two integrands is
sufficiently close for the singularity subtraction to be effective.



X. FINAL REMARKS

The boundary element method for full-wave electromagnetics
has a long history. Initially it was limited to the niche where
scatterers were composed of conducting wires and surfaces, and
had sizes of the order of the wavelength. Its strengths were the
relative simplicity of meshing only surfaces and its automatic
treatment of isolated boundary conditions. The absence of vol-
ume meshes also made the treatment of moving conductors rel-
atively simple.

It was not without limitations. It could not handle electrically
very small objects because it became ill-conditioned at very low
frequency. It could not handle electrically very large objects or
extensive volume scatterers because of steeply rising computa-
tional costs at high frequency.

The more recent developments have built on its strengths and
greatly reduced its limitations. At high frequency, fast solvers
have reduced the operation count and storage requirements to
make BEM superior to other methods for large scatterers. At
low frequency, application of graph theory to identify loop basis
functions has led to well-conditioned matrices all the way down
to statics. The introduction of Block-P3M allows the same fast
solver to be used for all frequencies, simplifying the treatment
of multi-scale problems. Faster computers and developments of
improved preconditioners for the Krylov iterative schemes used
in these fast solvers continue to extend the range of feasible cal-
culations.

The widening range of accessible frequencies has been com-
plemented by an increase in the accuracy of the method. Con-
sistent usage of higher-order div- and curl-conforming elements
and the higher-order treatment of singular integrals allows higher
accuracy treatment of both geometry and function support, mak-
ing possible the introduction ofhp-refinement in the MoM.

The results of the developments in boundary integral methods
over the past decade have led to the BEM moving from its orig-
inal niche to become the first choice for an increasingly wide
range of electromagnetic calculations.

XI. REFERENCES

[1] R.F. Harrington. Field computation by moment methods.
McMillan, New York, 1968.

[2] D.S. Jones. Methods in electromagnetic wave propaga-
tion. Oxford University Press, 2nd edition, 1994. ISBN
0 19 856262 4.

[3] G.J. Burke and A.J. Poggio. Numerical Electromagnet-
ics Code (NEC)—Method of Moments, Parts I, II and III.
Technical Report UCID-18834, Lawrence Livermore Lab-
oratory, January 1981.

[4] J.C. Nédélec. Mixed finite elements inR3. Numer. Math.,
35:315–341, 1980.

[5] P.A. Raviart and J.M. Thomas. A mixed finite element
method for 2nd order elliptic problems. InLecture notes
in mathematics, volume 606, pages 292–315. Springer-
Verlag, New York, 1977.

[6] S.M. Rao, Wilton D.R., and A.W. Glisson. Electromag-
netic scattering by surfaces of arbitrary shape.IEEE Trans.
Antennas Propag., AP-30(3):409–418, May 1982.

[7] J.A. Stratton and L.J. Chu. Diffraction theory of electro-
magnetic waves.Phys. Rev., 56(1):99–107, 1 July 1939.

[8] J.A. Stratton.Electromagnetic theory. McGraw-Hill, New
York, 1941.

[9] A.J. Poggio and E.K. Miller. Integral equation solutions of
three-dimensional scattering problems. In R. Mittra, edi-
tor, Computer techniques for electromagnetics, chapter 4,
pages 159–264. Pergamon Press, New York, 1973.

[10] R.F. Harrington. Boundary integral formulations for homo-
geneous material bodies.J. EM Waves and Appl., 3(1):1–
15, 1989.

[11] D.H. Schaubert, D.R. Wilton, and A.W. Glisson. A tetra-
hedral modeling method for electromagnetic scattering by
arbitrarily shaped inhomogeneous dielectric bodies.IEEE
Trans. Antennas Propag., 32(1):77–85, January 1984.

[12] C.-C. Lu and W.C. Chew. A multilevel algorithm for solv-
ing a boundary integral equation of wave scattering.Mi-
crowave Opt. Tech. Lett., 7(10):466–470, July 1994.

[13] J. Song, C.-C. Lu, and W.C. Chew. Multilevel fast multi-
pole algorithm for electromagnetic scattering by large com-
plex objects.IEEE Trans. Antennas Propag., 45(10):1488–
1493, October 1997.

[14] H.A. van der Vorst. BI-CGSTAB: a fast and smoothly con-
verging variant of BI-CG for the solution of nonsymmetric
linear systems.SIAM J. Sci. Stat. Comput., 13(2):631–644,
March 1992.

[15] W.C. Chew, J.-M. Jin, E. Michielssen, and J. Song, editors.
Fast and efficient algorithms in computational electromag-
netics. Artech House, Boston, 2001. ISBN 1 58053 152 0.

[16] R. Coifman, V. Rokhlin, and S. Wandzura. The fast mul-
tipole method for the wave equation: a pedestrian descrip-
tion. IEEE Antennas Propag. Mag., 35(3):7–12, June 1993.

[17] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. A
fast integral-equation solver for electromagnetic scattering
problem. IEEE AP-S Int. Symp. Dig., 1:416–419, June
1994.

[18] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. AIM:
adaptive integral method for solving large-scale electro-
magnetic scattering and radiation problems.Radio Sci.,
31(5):1225–1251, September-October 1996.

[19] R.W. Hockney and J.W. Eastwood.Computer simulation
using particles. McGraw-Hill, New York, 1981. (Student
Ed., Adam-Hilger, Bristol, 1988).

[20] J.W. Eastwood. The Block-P3M algorithm for fast
MoM calculations. InComputation in Electromagnetics
CEM2008, pages 30–31, Brighton, April 2008. IET.

[21] J.W. Eastwood. The Block-P3M algorithm.Comput. Phys.
Commun., doi:10.1016/j.cpc.2008.01.043, 2008. article in
press.

[22] M.M. Botha. Solving the volume integral equations of elec-
tromagnetic scattering.J. Comput. Phys., 218(1):141–158,
10 October 2006.

[23] L.S. Mendes and S.A. Carvalho. Scattering of EM waves
by homogeneous dielectrics with the use of the method of
moments and 3D solenoidal basis functions.Microwave
Opt. Tech. Lett., 12(6), 20 August 1996.



[24] R Scheichl. Decoupling three-dimensional mixed prob-
lems using divergence-free finite elements.SIAM J. Sci.
Comput., 23(5):1752–1776, 2002.

[25] S. Suuriniemi, T. Tarhasaari, and L. Kettunen. Generaliza-
tion of the spanning-tree technique.IEEE Trans. Magnet-
ics, 38(2):525–528, March 2002.

[26] A. Bendali. Numerical analysis of the exterior boundary
value problem for the time-harmonic Maxwell equations
by a boundary finite element method. Part 1: The continu-
ous problem.Math. Comput., 43(167):29–46, July 1984.

[27] A. Bendali. Numerical analysis of the exterior boundary
value problem for the time-harmonic Maxwell equations
by a boundary finite element method. Part 2: The discrete
problem.Math. Comput., 43(167):47–68, July 1984.

[28] T.F. Eibert. Iterative-solver convergence for loop-star and
loop-tree decompositions in method-of-moments solutions
of the electric-field integral equation. IEEE Antennas
Propag. Mag., 46(3):80–85, June 2004.

[29] J.G. Morgan. On loops and the low-frequency breakdown
of MoM. In Computation in Electromagnetics CEM2008,
pages 110–111, Brighton, April 2008. IET.

[30] J.R. Mautz and R.F. Harrington. An E-field solution for
a conducting surface small or comparable to the wave-
length. IEEE Trans. Antennas Propag., 32(4):330–339,
April 1984.

[31] J.-S. Zhao and W.C. Chew. Integral equation solution of
Maxwell’s equations from zero frequency to microwave
frequencies.IEEE Trans. Antennas Propag., 48(10):1635–
1645, October 2000.

[32] J.W. Eastwood and J.G. Morgan. Higer order basis func-
tions for MoM calculations. InComputation in Elec-
tromagnetics CEM2008, pages 112–113, Brighton, April
2008. IET. (to be published).

[33] D.R. Wilton, S.M. Rao, A.W. Glisson, D.H. Schaubert,
O.M. Al-Bundak, and C.M. Butler. Potential integrals
for uniform and linear source distributions on polygonal
and polyhedral domains.IEEE Trans. Antennas Propag.,
32(3):276–281, March 1984.

[34] S. Järvenpää, M. Taskinen, and P. Ylä-Oijala. Singular-
ity subtraction technique for high-order polynomial vector
basis functions on planar triangles.IEEE Trans. Antennas
Propag., 54(1):42–49, January 2006.

AUTHORS NAME AND AFFILIATION

J. Guy Morgan,
Culham Electromagnetics Ltd,
Culham Science Centre,
Abingdon, Oxfordshire,
OX14 3DB, UK

Telephone: +44 1865 408326
email: Guy.Morgan@CulhamEM.co.uk


