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The Block-P3M Algorithm for Fast Integral Equation Solvers

Abstract — The Block-P3M solver calculates action-at-a-distance
convolution sums that arise in electromagnetics and, unlike the
plane-wave fast multipole method (FMM), it does not suffer from
low-frequency breakdown. The solution uses O(N log N) opera-
tions and O(N) storage for surface as well as volume distributions
of sources. It differs from single-mesh P3M [1, 2] primarily in that
sparse meshes are used and the mesh convolution sum is evalu-
ated using Fast Fourier Transforms on a nested hierarchy of blocks.
Block-P3M gives optimal accuracy, and is applicable from statics to
high frequency electromagnetics.

I. INTRODUCTION

This article describes the Block-P3M generalisation of the P3M
algorithm. The work was motivated by the needs of large
Method of Moments (MoM) calculations, but is also applicable
to low frequency electromagnetic calculations that use integral
formulations. Block-P3M has advantages over multi-level fast
multipole (MLFMA) and multigrid algorithms [3, 4, 5].

Block-P3M evaluates the convolution sum

φi =
N∑

j=1

G(xi; xj)σj ∀i ∈ [1, N ] (1)

in O(N logN) operations using O(N) storage. The distribu-
tion of sources {σj} may be on surfaces or throughout volumes
and the displacement-invariant Green’s function G(xi; xj) may
take any functional form, for example, the Helmholtz kernel (for
scattering) or the Laplace kernel (for potential fields).

Block-P3M is used in solving action-at-a-distance integral
formulations of the equations of electromagnetism. Fields de-
scribed by the differential equation

Lφ = σ (2)

where L is the differential operator, φ is the field and σ is the
source are equivalently given by the integral equation

φ(x) =
∫
G(x; x′)σ(x′)dx′ (3)

where x is the field point, x′ is the source point and the integral
is over all volumes containing sources. The Green’s function
satisfies the differential equation

LG = δ(x− x′) (4)

In applications where Block-P3M is applicable, the boundary
conditions are such that G takes either a displacement invari-
ant form G = G(r) where r = (x − x′), or may be written as
the sum of displacement invariant functions.

The simplest instance of action-at-a-distance formulation is
in electrostatics, where Eq. (2) is Poisson’s equation, Eq. (3) is
Coulomb’s Law and the Green’s function becomes the Laplace
kernel G = 1/4πε0|r|. In magnetostatics, the differential Am-
pere’s Law can be transformed to the integral Biot-Savart Law.
Maxwell’s equations have action-at-a-distance equivalents of the

Liénard-Weichart equations in the time domain and the Stratton-
Chu equations for time harmonic signals [6].

Historically, computational complexity has favoured the dif-
ferential equations as the starting point for numerical computa-
tions. These are approximated using volume-filling finite differ-
ence or finite element nets within a computational volume on
which boundary conditions are applied. The resulting sparse
matrix equations are then solved using either direct or itera-
tive solvers. For example, given a volume distribution of N
charges, rapid elliptic solvers can find potentials in O(N logN)
operations [2, Chap. 6], whereas a direct Coulomb sum takes
O(N2). Fast solvers such as P3M [1, 2] can reduce the com-
plexity of the Coulomb sum to better than O(N logN), making
the action-at-a-distance approach faster than differential equa-
tion approaches for large problems. The Block-P3M method ap-
plied to the Helmholtz kernels that arise in MoM again gives
complexity gains over volume mesh methods. Fast solvers plus
the absence of body conforming volume meshes makes integral
equation methods the preferred choice for complex geometries,
especially if there are moving conductors.

A. Background

All fast solver methods for evaluating the so-called ‘N-body’
problem (Eq. (1)) rely on

1. decomposing the Green’s function into the sum of short-
range and long-range parts;

2. explicitly evaluating the convolution sums for the short-
range parts;

3. approximately evaluating the long-range parts on meshes.

P3M variants use continuous finite element or spline approxima-
tions of the Green’s function, whereas the fast multipole methods
use discontinuous point expansions about cell centres.

The P3M method[1, 2] uses additive splitting of the Green’s
function into a short-range part and a part that can be accu-
rately approximated on a mesh. It works for any displacement-
invariant kernel, provided that the mesh spacing is smaller than
the scale-length of the long-range Green’s function. The Laplace
Green’s function is scale-free, and this has been successfully
exploited by Couchman in developing the Adaptive-P3M algo-
rithm [7, 8]. He showed that extra speedup is obtained by recur-
sively applying P3M over reducing scale lengths in astrophysical
problems where there are large density contrasts. The scale-free
nature of the Laplace kernel is also key to multigrid methods (c.f.
Section III.).

Rokhlin [9] introduced the FMM for astrophysical N -body
calculations. The FMM relies on analytic expansions that allow
the long-range Green’s function to be extrapolated from lattice
points using spherical wave expansions [10]. Recursive appli-
cation of the extrapolation on increasing scale-lengths led to the
tree-based MLFMA [4, 5]. Recently, Dehnen has shown that re-
placing the spherical-wave expansion by a Cartesian Taylor ex-
pansion offers further speedup gains [11].



The FMM was extended to electromagnetic scattering [12, 13]
by replacing the spherical-wave expansion by a plane-wave ex-
pansion. Fast multipole methods have been the subject of inten-
sive research over the past decade. The multi-level fast multiple
algorithm further reduces the complexity of the FMM.

Another fast method for scattering is the Adaptive Integral
Method (AIM) [14, 15]. This uses a multipole expansion on
a lattice, and like P3M uses Fast Fourier Transforms (FFTs) to
evaluate the long-range part of the interaction. The operations
count scaling for AIM (and for single-mesh P3M) degrades to
O(N3/2 logN) for surface distributions of sources.

B. P3M and MoM

In MoM, the Helmholtz kernel G ∝ exp(−ik0|x|)/|x| has scale
length λ = 2π/k0 and this limits to low frequency the use of fast
methods that rely on the Green’s function being scale-free.

The quadrature points for the integrals of MoM play the same
role as ‘particles’ in particle applications of P3M. For example,
the scattered field in the electric field integral equation (EFIE)
Es = −∇φ− iωA is evaluated using the integral equations for
φ and A. Currents are approximated by finite elements on the
elements and integrals are evaluated using quadrature, allowing
the approximations for φ and A to be written in the form of
Eq. (1)

φ(x) =
1
ε

∑
j

G(x; xj)Qj ; A(x) = µ
∑

j

G(x; xj)Ij (5)

where Qj and Ij are the charge and current associated with
quadrature point j.

The building blocks for a fast P3M-MoM solver are MoM in-
tegration routines to evaluate sources and fields at quadrature
points, a Krylov solver [16] and a Block-P3M solver. These
allow fast computation of the voltage excitation vector V and
the product ZI in the iterative solution for the current vector
I = Z−1V .

Block-P3M for MoM uses a Helmholtz kernel with the sin-
gularity removed, and is used in the following steps for the fast
computation of the ZI product:

• map MoM currents to the quadrature points;

• use Block-P3M to find fields (c.f. Eq. (1));

• add in singular integral corrections;

• map fields at quadrature points to the MoM basis functions;

• sum field contributions to obtain the ZI product vector.

II. SINGLE MESH P3M

The original P3M method used a mesh Poisson solver with
short-range corrections [17]. Eastwood [1, 2] generalised and
optimised it by introducing the FFT solver, Green’s function
formulation, spline function assignment/interpolation and least-
squares optimisation. P3M using point collocation is also known
as the PME (Particle-Mesh Ewald) method [18].

The Particle-Particle/Particle-Mesh (P3M) method splits the
potential and Green’s function into a short-ranged (P-P) part and
a smoothly varying (P-M) part

φi = φsr
i + φmesh

i ; G = Gsr +Gmesh (6)

φsr
i is evaluated using direct pairwise sums over the set Si of

near neighbours of i

φsr
i =

∑
j∈Si

Gsr(xi − xj)σj ; i ∈ [1, N ] (7)

If the spectral content of Gmesh is negligible beyond wavenum-
ber kc, then by the sampling theorem [19] it can be accurately
represented by a sample of nodal values at an interval ∆ ≤ π/kc.
This allows φmesh to be accurately computed using the FFT on
a mesh. Gmesh is approximated at general points using finite
elements:

Gmesh(xi − xj) 'Wp(xi)Gfe(xp − xp′)Wp′(xj) (8)

Nodal amplitudes Gfe are precomputed using a Galerkin (or
point collocation) method and their FTTsGk are stored. The use
of the FFT on a regular lattice favours the use of spline functions
for Wp rather than the more common finite element choices of
Lagrange or Hermite polynomials. The P-M calculation reduces
to

assign: σp′ =
∑

j

Wp′(xj)σj (9)

solve: φp =
P−1∑
p′=0

Gfe
p−p′σp′ (10)

interpolate: φmesh
i =

∑
p

Wp(xi)φp (11)

where p and p′ label mesh nodes and i and j are quadrature
points in the MoM model. Figure 1 illustrates the assign and
interpolate steps for quadratic splines in 2D. In 3D, the cur-
rents from the quadrature points are assigned to the nearest 27
mesh points, and fields are interpolated from the nearest 27 mesh
points. Cubic splines use 64 points, and order p splines use the
nearest (p+ 1)3 points. The correction for the smoothing effect
of the spline functions is incorporated in the FFT solve.

G p−q

assign interpolate

solve

q

i

p

j

Figure 1: The assign-solve-interpolate steps of the mesh calcu-
lation.

The mesh convolution sum (Eq. (10)) is evaluated using FFTs;
the FFT of source values σp gives harmonics σk. Multiplica-
tion by Green’s function harmonics Gk gives potential harmon-
ics φk = Gkσk, and the inverse FFT converts these to values
φp. If periodic boundary conditions are used, Eq. (10) can be
transformed using a length P FFT and short range contribu-
tions from periodic images need adding to the fields. If isolated
boundary conditions are required, then zero padding sources and
FFT lengths greater than 2P − 1 [20] are needed to diagonalise
Eq. (10). The field φi is given by combining the contributions of
the P-P and P-M calculations.

P3M in two and three dimensions is given by interpreting x
and p as 2D or 3D vectors and indices, and Wp as products of
1D polynomial functions [2]. For spatially uniform distributions
of sources, the operations count scales asO(N

√
logN), but this

increases toO(N3/2 logN) for surface distributions in a 3D vol-
ume. The Block-P3M algorithm described below recovers the
more favourable scaling for non-uniform and surface distribu-
tions that are encountered in MoM and other integral equation
applications.



P3M avoids low-frequency breakdown by using interpolation
for approximating the Green’s function, and this should also lead
to better accuracy at a given order. Figure 2 gives a low-order
1D illustration. The finite element approximation with O(p)
spline functions Wp gives continuity of value and derivatives to
O(p − 1), whereas FMM uses independent power expansions
about each cell centre. In Figure 2 the exact cos(r)/r Green’s
function is approximated using 2 degrees of freedom in each
0.1 interval using linear splines (as in P3M) or point expansions
about cell centres (as in FMM). The accuracy of the latter de-
grades rapidly with decreasing r.
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Figure 2: A 1D illustration of the FMM and P3M representations
of the Green’s function. See text for details.

III. RECURSIVE INTERPOLATION

If the scale length of the Green’s function is much larger than
the size of the mesh, then the assign and interpolate steps can be
repeated to reduce the size of the solve step mesh.

Recursive interpolation repeats the decomposition of the con-
volution as described above in Eqs. (6)-(11). Eq. (10) has the
same form as the original problem, Eq. (1), but now for sources
on the mesh. It can be decomposed in the same way as the orig-
inal problem but on a coarser mesh. For the Laplace kernel, this
can be repeated to the size of the system, since the problem is
self-similar, but for the Helmholtz kernel, the decompositions
are limited to cases where the mesh size is less than λ. The next
section describes how to overcome this limitation.

The recursion can be terminated at any level, leaving the solve
step at the coarsest mesh level to be completed as for the single-
mesh P3M algorithm.

IV. BLOCK-P3M

Recursive interpolation decomposes the solve step by repeating
the short-range/long-range split of the Green’s function and the
assign/solve steps on increasingly coarse spatial meshes. A key
feature of Block-P3M is to decompose the solve step by repeat-
edly grouping the mesh into blocks but now applying the FFT
solve only to the non-empty subset of blocks.

Block decomposition splits 1D into 2D convolution sums (i.e.,
3D to 6D in R3) and introduces inter-block propagators H .
Given Eq. (10), where P = QR, we can set p = q + Qr and
rewrite it as a 2D convolution

φq,r =
R−1∑
r′=0

Q−1∑
q′=0

Gq−q′,r−r′σq′,r′ (12)

The convolution over index q is not periodic. However, zero
padding [20] σ with (1 + w)Q zeroes (to give ρ) and setting
Hq,r = FqGq,r gives a periodic convolution of period (2 +w)Q
that yields M = (2 +w)Q values of ψq,r where φq,r ≡ ψq,r for
q ∈ [0, Q− 1].
Fq is a filtering function which is 1 for |q| < Q and goes to

zero over the interval Q ≤ |q| < (1+w)Q. If the padding width
w is zero, then F is a rectangular window of width 2Q, but there
are advantages in taking w ≈ 1 and using smooth transitions
such as cosine bells to reduce spectral infilling.

The periodic convolution (period M = (2 + w)Q) and its
Fourier transform over index q are

ψq,r =
R−1∑
r′=0

M−1∑
q′=0

Hq−q′,r−r′ρq′,r′ (13)

ψk
r =

R−1∑
r′=0

Hk
r−r′ρk

r′ (14)

where k is the harmonic index corresponding to q, and q indices
are modulo M. Any block r where ρq,r = 0 for all q is ignored.

Inspection of Eq. (14) shows that the original problem
(Eq. (10)) has been recovered, but now for different harmonics
k on the large blocks with indices r. These harmonics are split
into three groups, depending on the range of Hk

r . If |Hk
r | are

below the k-space truncation amplitude they are ignored, if Hk
r

are short ranged (i.e., non-zero only for small |x| so that direct
evaluation is faster than FFT evaluation), Eq. (14) is evaluated
by direct summation, otherwise a further level of decomposition
is used, setting R = ST and repeating the above sequence.

At the final level, all remaining harmonics are short ranged.
The computation of the potential is completed by repeatedly
computing inverse FFTs (IFFTs) at each level and combining
the results with the short-range contributions until the first level
is reached.

A. One-level algorithm

The P-P part of the one-level Block-P3M algorithm is a direct ap-
plication of Eqs. (13)-(14). Figure 3 summarises the algorithm.
If R = 1, it reduces to single-mesh P3M described above in
Sec. II, but in general covers the situation with R > 1 illustrated
in Figure 4.

In Figure 4, the surface distribution of sources is represented
by the oval curve. The computational region containing the
curve is divided into coarse blocks r and these in turn are sub-
divided into fine blocks q. Data are stored only for non-empty
(shaded) blocks. Starting with source σj , the direct P-P contri-
bution to φi is given by Eq. (7), and mesh sources σqr are found
by assignment to the fine blocks in each coarse block. Each non-
empty coarse block is zero-padded and transformed to give ρk

r .
Direct evaluation of Eq. (14) followed by inverse Fourier trans-
formation gives φqr, and this is interpolated to test point posi-
tions to give φmesh

i . If Eq. (14) is evaluated by padding and
FFT, then it would become a two-level scheme.

A naı̈ve estimate of the operation count for summing Eq. (14)
is O(N2

rNk), where Nr is the number of non-empty coarse
blocks and Nk is the number of k values. However, the nature of
the inter-block propagators reduces this to close to O(Nr).

Figure 5(a) shows an example of contours of constant real
part of Hqr that arise from the filtered section of the Helmholtz
Green’s function; the larger box is the range over which it is
non-zero, and the smaller is the FFT periodic box. Figure 5(b)
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Figure 3: The one-level Block-P3M algorithm.
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Figure 4: One-level Block-P3M blocks.

shows the 1% of peak level contour of amplitude of the trans-
formed propagator Hk

r , shaded by <(Hk
q ). The spectral con-

tent is strongly peaked about |k| = k0 along the vector direc-
tion between the source and test blocks, where k0 is the signal
wavenumber. For larger r, Hqr becomes closer to a plane wave
pulse, and so its transform becomes even more localised. For |k|
away from k0, Hk

r are only non-negligible for near-neighbour
blocks. These properties substantially reduce the operations
count for evaluating the sum Eq. (14). If blocks are larger in
terms of wavelengths, the peaking of the propagator transform is
even more pronounced.

The benefit of using a filter width w > 0 is that spectral in-
filling from the sharp cutoff of H is avoided, and so more inter-
block propagator harmonics can be discarded. For example, us-
ing a cosine bell truncation with w = 1 for blocks of 323 cells
with cell width of λ/8 and a threshold of 10−4 peak amplitude
for discarding harmonics retains less than 3% of harmonics for
blocks beyond second neighbour and gives an rms error≈ 10−5;
a threshold of 10−2 retains < 0.5% and gives an error ≈ 10−3.

B. Multi-level algorithm

In multilevel Block-P3M the assign and interpolate steps may
be single level (c.f. Sec. II)or multilevel (c.f. Sec. III)The solve
step goes through L levels of blocks computing harmonics from
the smallest blocks at level 1 to the largest at level L, and then
from largest to smallest computing field values. The one-level
case described in the previous section generalises to:

For level 1 to L:

1. For all harmonics at the current level where G is short
ranged, directly evaluate the sum, Eq. (10);

2. Terminate if all harmonics have been processed, otherwise,
group sub-blocks into blocks of side Q, yielding the convo-
lution sum, Eq. (12);

3. Zero-pad and FFT the finer mesh index q for non-empty r
blocks giving for each harmonic k Eq. (14);

(a) <(Hpq) contours

(b) |Hk
r | contour

Figure 5: (a) the real part of the level 1 propagator for r =
(2, 2, 0) and (b) the 1% peak amplitude contour of the transform
of the propagator for coarse blocks of side one wavelength.
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Figure 6: Flow diagram for three-level Block-P3M.



(a) quadrature points on a MoM model (b) level 1 and 2 blocks

(c) level 2 and 3 blocks (d) level 3 blocks and bounding box

Figure 7: A MoM model and nested blocks for three-level Block-P3M.

4. Set r → p, R→ P , ψ → φ, H → G, ρ→ σ in Eq. (14) to
recover Eq. (10) and go to the next level.

For level L to 1:

1. IFFT harmonics to get field values at the lower level;

2. discard field values for padding index values;

3. combine with directly-summed terms at this level.

Figures 6 and 7 illustrate a three-level scheme for the mesh
field calculation with single assign/interpolate levels. Figure 6
gives the flow diagram and Figure 7 illustrates the steps for a real
MoM model [21]. Sources at quadrature points (Figure 7(a)) on
the MoM model are assigned to the fine blocks (Figure 7(b)) to
give σpqr. These are grouped in the medium-level blocks (larger
blocks in Figure 7(b)), and the data are Fourier transformed to
give σk

qr on the medium blocks. Zero-padding is used to avoid
aliasing. The result is a mesh of values for each retained k on
the finer mesh in Figure 7(c).

For wavenumbers k where Hk
qr is short-ranged, the convolu-

tion is summed directly, and where it is long-ranged, the data are
Fourier transformed to give σkl

r on the coarse mesh. The result is
a mesh of values for each retained kl on the mesh in Figure 7(d).
The same procedure as is used for lower levels is followed to get
σklm on the bounding box.

The direct sum on the bounding box gives φklm. This is in-
verse transformed and combined with the directly calculated φkl

r .

The process is repeated to get φk
qr and then φpqr and finally the

result is interpolated to the test point positions.
Cubic blocks are used to allow storage saving for the precom-

puted filtered Green’s functions by exploiting the 48-fold sym-
metry:

H(i) ≡ H(Perm{±ix,±iy,±iz}) (15)

where indices i = (ix, iy, iz) are triplets of pqr, kqr, klr or klm
depending on the level.

V. FINAL REMARKS

The Block-P3M algorithm overcomes the problem of the re-
duced performance of the original P3M algorithm for non-
uniform source distributions that are typically found in sur-
face integral calculations. It gives O(N logN) complexity and
O(N) storage for non-uniform distributions of sources and for
any displacement-invariant Green’s function.

The complexity for surface distributions of sources and test
points is achieved through avoiding empty blocks at all levels
and through discarding harmonics where the amplitudes of the
propagator harmonics are below the chosen threshold level. Di-
rect summation of convolutions is used where the range of the
propagator is small, and Fourier transforms are used where the
FFT is computationally faster. Storage reduction is achieved by
storing only blocks that are non-empty. When blocks do contain
non-empty sub-blocks, then sparse storage methods are used to
store only those sub-blocks. Computations and storage needed



for the precomputed inter-block propagators are reduced by ex-
ploiting 48-fold symmetry on cubic lattices and by storing only
those harmonics of the propagators with amplitudes above the
cutoff threshold.

The algorithm is built on FFTs on uniform lattices and works
equally well for Laplace and Helmholtz kernels. Unlike FMM, it
does not rely on truncated divergent series, and so does not suffer
breakdown when point separations become small compared to
the wavelength.

If a Galerkin approximation is used in Block-P3M then it
gives optimal least-squares accuracy. The trade-off between
computational cost and accuracy remains optimal even when
k-space truncation is used. How to make the best choice for
combining the recursive interpolation, recursive block decom-
position and k-space truncation is currently being investigated.
However, Block-P3M is expected to provide a competitively fast
method that exploits optimised FFT routines and is amenable to
parallelisation.

Block-P3M is also of value for volume-filling source distribu-
tions. The block decomposition offers a method for breaking a
global mesh in large computations on distributed-memory par-
allel computers into a set of spatially-localised blocks on which
the FFT can be used without communication between proces-
sors. The lower levels of the calculation are embarrassingly par-
allel, and higher levels involve few harmonics so there is a much
reduced interprocessor communication when compared to ap-
plying the FFT to the global mesh.

The Block-P3M algorithm is particularly attractive for electro-
magnetic scattering calculations using the method of moments.
It has the same complexity and storage scaling as the MLFMA,
but superior properties: MLFMA has a point-matched discon-
tinuous approximation to G that is recursively extrapolated us-
ing a mixture of rectangular and polar meshes and suffers from
low-frequency breakdown. In contrast, Block-P3M has a least-
squares fit, continuous (to the order of the splines used) ap-
proximation to G that is recursively interpolated on rectangular
meshes, and does not suffer low-frequency breakdown.
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