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A domain decomposition method for the computation of land 
mine signatures  
 
Abstract — Metal detectors are still the most common tool for 
land mine detection. Yet, their false alarm rate is extremely high 
as they only indicate the sheer presence of metal without using 
any classification until today. Therefore, the German Science 
Ministry funded a project in order to improve the signal analysis 
of existing metal detectors. Within that project network, the 
authors followed the goal of creating a database of synthetic mine 
signatures which then would be used in a classification algorithm. 
The numerical challenge was posed by the fact that, typically, 
metal objects in modern land mines are much smaller than the 
metal detector’s coils. Therefore the computation of mine 
signatures requires much effort regarding the discretisation of 
the search scenario. Here, an efficient discretisation is reached by 
applying a domain decomposition method which subdivides the 
computational domain in sub-domains with different mesh 
resolution. A very fine discretisation is chosen in and closely 
around the metal object, especially in its skin depth layer, a 
coarser one around the coils of the metal detector and a very 
coarse one in the remaining computational domain. In the 
following, the domain decomposition method with Lagrange 
multipliers is presented for the magneto-quasistatic equations 
which mathematically describe the scenario of a metal detector 
used as a mine searching device. 
 

I. INTRODUCTION 
 
Based on the eddy current principle, metal detectors are able 
to discover buried metal objects. With the help of an acoustic 
signal of such a detector, a qualified mine seeker is able to 
determine easily the horizontal position of the detected metal 
object. But today’s metal detectors do not enable a 
classification of the object with respect to its size, shape or 
depth. Because of that, a distinction between a mine and a 
harmless object is impossible for the mine seeker. In practice, 
only one signal in every hundred or thousand is actually 
caused by a mine [1].  
By automatic comparison of the measured signals with 
predetermined signals of known configurations stored in a 
database, the detector could automatically sort out objects 
which can clearly be classified as harmless and give more 
detailed information about other hidden metal parts to the 
deminer. Thus the false alarm rate and with it the operational 
time could massively be lowered.  
For the mine searching application, the magneto-quasistatic 
approach is valid. The simulation of such arrangements poses 
a challenge due to two points.  
The first point is the high accuracy needed, resulting from the 
superposition of the primary field created by the metal 
detector and the much smaller secondary field caused by the 
induced eddy currents in the metal objects. A high-precision 
computation of the secondary field, i.e. of the difference in the 
fields obtained from computations with and without some 
metal object under the coils of the detector, can be reached by 
first computing the primary field only and then computing the 
secondary field in a second step.  
The second critical point is the discretisation of the 
arrangement. The metal objects in mines with sizes of few 
millimetres are typically much smaller than the detector head 
with diameters of about 30 cm. Furthermore, the skin effect in 
the objects has to be taken into account. Typical skin depths 
for this application range from 0.1 mm to a few millimetres. 
Due to these facts, different resolutions for the meshes of the 

metal objects and of the detector head would be desirable. 
Standard methods usually produce a large number of grid 
points or the necessary resolution can not be reached at all.  
To solve this problem, a domain decomposition method with 
Lagrange multipliers is used in this paper together with the 
Finite Integration Technique (FIT) [2], [3]. Domain 
decomposition implies a subdivision of the computational 
domain in non-overlapping sub-domains with different 
meshes. That gives for example the possibility to choose a fine 
mesh for the metal object, especially for the skin depth, a 
coarser one for the metal detector and a very coarse one for the 
rest of the computational domain. A system of equations is set 
up for all sub-domains. To obtain continuity for the values on 
the interface, the sub-domains are coupled with interface 
conditions using Lagrange multipliers. Altogether, this leads 
to a new linear system of equations which has to be solved. 
The paper is organized as follows: The analytic magneto-
quasistatic equations and the Finite Integration Technique are 
introduced in section II. Before the domain decomposition 
method with Lagrange multipliers is described for two sub-
domains in section III, a short overview on domain 
decomposition is presented. The third section is closed with 
using the domain decomposition method with Lagrange 
multipliers for several sub-domains. In section IV the results 
are presented. There, some analytical solutions are described 
which are used for validation. Next, the influence of the size 
of the computational domain and the influence of the 
discretisation inside the object are given. This section ends 
with a comparison of the domain decomposition method with 
commercial software and measured signals.  
 

II. MAGNETO-QUASISTATIC EQUATIONS 
 

A. Analytic equations 
 
Metal detectors are based on the eddy current principle and 
generally consist of two coils. The transmitting coil is excited 
with single- or multi-frequency or with impulse signals. These 
currents lead to an electromagnetic field, the so-called primary 
field, around the metal detector. This primary field induces 
eddy currents in metal objects which, in turn, generate a new 
electromagnetic field, the so-called secondary field. This 
secondary field superimposes with the primary one and 
changes the induced voltage in the receiving coil. This change 
of voltage is measured and if it is high enough an acoustic 
signal calls the attention of the deminer to the hidden metal 
object.  
Since the case of impulse excitation can be tackled by 
superposition of time harmonic excitation with different 
frequencies this paper deals with the time harmonic excitation.  
In general, the frequencies of metal detectors for mine 
searching are between 1 and 50 kHz [1]. For the simulation of 
these arrangements, the magneto-quasistatic approach is valid 
for the following reasons, the wavelength is much smaller than 
the dimension of the computational domain and the 
displacement current densities are much smaller than the total 
current densities, so they can be neglected. 



The time harmonic Maxwell’s equations for magneto-
quasistatics can be expressed as follows:          
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Within this system, the complex phasor of the electric field 
strength is denoted by E, the imaginary unit by i, the angular 
frequency by ω, the phasor of the magnetic induction by B, the 
phasor of the magnetic field strength by H, the phasor of the 
displacement current by D and the source density by ρ. The 
phasor of the total current density J arises from the sum of the 
conduction current density, which is the product of the 
conductivity σ with the phasor E of the electric field strength, 
plus the phasor JE of the source current density, i.e.: 

.EJEJ += σ                                   (5) 
Putting the first Maxwell’s equation (1) into the second (2) 
and considering the formula for the total current density (5) as 
well as the material equation 

,HμB =                                       (6) 

yields the magneto-quasistatic equation for the electric phasor 
E:  

1curl curl .Ei i+ ωσ =− ω
μ

E E J                     (7) 

Using (4), the phasor B of the magnetic induction can be 
described as curl of the magnetic vector potential A: 

curl=B A .                                   (8) 

Thus, the magneto-quasistatic equation for the magnetic vector 
potential A results: 

1curl curl .Ei+ ωσ =
μ

A A J                        (9) 

Equation (8) defines the magnetic vector potential only up to a 
gradient of a scalar function. As usual, the Coulomb gauge: 

div 0=A                                    (10) 
is chosen. Consequently, a grad-div term has to be added to 
the left hand side of (9) which yields the gauged magneto-
quasistatic equation for the magnetic vector potential A: 

  
1curl grad div .Ecurl i+ ωσ + =
μ

A A A J           (11) 

This is the basic equation for the computation of mine 
signatures as measured by metal detectors. 
 

B. Application of the Finite Integration Technique 
 
Because the domain decomposition method is applied here for 
the Finite Integration Technique (FIT) [2], [3], this method 
will be briefly described. In the Finite Integration Technique 
the electromagnetic field quantities are mapped onto a dual 
grid pair. While the discrete magnetic vector potential a  is 
allocated to the primary grid edges, the discrete source 

currents Ej  are assigned to the dual grid facets. Furthermore, 
the analytical curl, gradient and divergence operators are 
transferred to the discrete primary and dual curl operators C 
andC , to the discrete gradient operator TS~  and the discrete 
primary and dual divergence operators S and S , respectively. 

The material parameters, the conductivity σ, permittivity ε and 
permeability µ, are averaged along grid facets or grid edges 
and collected in the matrices σM , εM and 1μM − . With this, 
equation (9) can be written in the framework of FIT: 

( ) .~
Ei jaMCMC 1μ =+− σω                   (12) 

Because the Coulomb gauge is already implied in the 
conducting regions of the solution domain, gauging is only 
necessary for the non-conducting regions. Now, the diagonal 
matrix Dn selects the appropriate entries in the discrete vector 
potential a  in order to enforce the Couloumb gauge only in 
the non-conducting regions [4]. Adding the grad-div term, the 
magneto-quasistatic equation is achieved in the framework of 
FIT: 
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In order to simplify equations for further considerations, the 
system matrix K is defined as: 
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C. Computing the secondary fields 

 
In mine detection with metal detectors the change of voltage 
of the receiving coil is measured. The voltage change US 
originates from the secondary fields of the objects which 
disturb the primary field of the detector. It can be computed 
taking the integral of the secondary electric field strength ES or 
rather of the secondary magnetic vector potential AS along the 
receiving coil: 

∫ ∫−==
S

SSS dsdsU
S

.i AE ω                      (15) 

Since the secondary field is caused by the primary one, for the 
computation of the secondary field the simulation of the 
primary is a condition. Now, two variants are possible for the 
computation of the secondary field. Firstly, AS may be 
computed as the difference of the primary vector potential AP 
and the superposed primary and secondary vector potential 
APS : 

.PPSS AAA −=                              (16) 
As the subtraction of these vectors with large entries but much 
smaller difference is not advisable because of rounding errors, 
the second possibility is the better choice. Here, in a first step 
the primary magnetic vector potential is computed: 

.EPP jaK =                                  (17) 
In the second step, the system of equations for the 
superposition of primary and secondary magnetic vector 
potential is set up: 

.EPSPS jaK =                                (18) 
From this linear system for the computation with metal object 
the term PPS aK is subtracted from both sides. With this, the 
system of equations for the secondary field PPSS aaa −=  is 
given as: 

.PPSESPS aKjaK −=                         (19) 
Now, this system of equations is solved after computing the 
primary magnetic vector potential 

P
a  first.  

 
 
 
 



III. DOMAIN DECOMPOSITION 
 

A. Overview on domain decomposition methods 
 
In the following, a classification of the main domain 
decomposition methods [5], [6], [7], [8] is presented. In all 
these methods a subdivision of the global problem into partial 
problems with smaller complexity takes place [8]. Domain 
decomposition methods can be used for different tasks. The 
first one is the optimization of discretisations for numerical 
simulations, the second one the development of efficient 
solvers and the third one is parallelization [8]. In [5] another 
application is given with coupling different physical sizes. In 
practice, often more than one of these points is true. 
Domain decomposition methods are classified in two groups. 
The first one consists of the so-called Schwarz methods like 
the alternate Schwarz method, multiplicative Schwarz method 
and the additive Schwarz method, to mention only some. The 
sub-domains of these methods overlap. The second group is 
composed of the substructure methods like the Dirichlet-
Neumann method, the Mortar method or the domain 
decomposition method with Lagrange multipliers. These 
methods are also called non-overlapping methods, because 
their sub-domains only touch each other. The substructure 
methods can be classified in three different ways. The first one 
is the classification into direct or iterative methods, relating to 
the solver used. The second one subdivides the substructure 
methods concerning the conditions on the interface of the sub-
domains. Herein, Le Tallec [9] distinguishes between primary, 
dual and mixed methods. The last classification regards the 
discretisation on the interface of the sub-domains. If, on the 
interface, the step width on the finer grid is an integral 
multiple of the step width on the coarser grid, then the method 
is called matching.  Otherwise it is called non-matching.  
 

B. Domain decomposition with Lagrange multipliers 
 
As already mentioned in the introduction, an effective 
discretisation for mine detection scenarios is necessary. 
Therefore, it would be favorable to have different grids for the 
small metal parts of the land mines and the metal detector 
head. The method used here, is to subdivide the computational 
domain in non-overlapping sub-domains with different 
meshes. A similar method has already been used in [10] for an 
electro-quasistatic application. One advantage of this approach 
is the possibility to discretise both sub-domains independently 
from each other. This allows choosing non-matching grids for 
the sub-domains, as presented in Fig. 1. The domain 
decomposition method with Lagrange multipliers for magneto-
quasistatics can be implemented in five steps. These are 
presented in the following for the case of two sub-domains and 
for the framework of FIT. After that, the method will be 
extended to several sub-domains. 

Subdivision of the computational domain 
In the first step of the implementation of the domain 
decomposition method with Lagrange multipliers the 
computational domain is subdivided into non-overlapping sub-
domains. The choice of the size and position of the sub-
domains depends on the requirements of the discretisation. For 
the mine detection scenarios, for example, one sub-domain 
with a fine mesh is chosen around the land mine and another 
one with a coarser mesh for the rest. As shown in Fig. 1, the 
meshes of both sub-domains can be chosen independently, 
which means that the coarse and the fine grid points do not 
need to match each other. Combining both sub-domains, the 
following point has to be paid regard to: The grid points of the 
outer sub-domain which lay in the region of the other sub-
domain have to be deleted such that a sub-domain with a hole 
results as depicted in Fig. 1. While all terms referring to the 
sub-domain with fine discretisation will be denoted with 
subscript f, the sub-domain with the coarser grid gets the 
subscript c.  

Set-up of systems of equations for the sub-domains 
For both sub-domains, the magneto-quasistatic equation has to 
be set up. In this context, the requested boundary conditions, 
e.g. Dirichlet or Neumann boundary conditions, for the overall 
problem will be attributed to the outer boundaries of the 
computational domain while Neumann boundary conditions 
are assigned to the interface between both sub-domains. This 
has the advantage, that the system of equations is not 
influenced. The implementation of the interface conditions 
will be described later. Regard the sub-domains Ωf and Ωc. For 
both sub-domains, the magneto-quasistatic equations read as: 
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As described in the last section, it can be happen that one sub-
domain has a hole. That means that the grid points which 
overlap with another sub-domain have to be deleted. 
Consequently, the dual grid has to be shortened to the 
interface for this sub-domain. If there are different materials 
on both sides of the interface, a correction of the averaging of 
the material parameters becomes necessary. For further 
details, see [11].                                                                         

Interface conditions 
The systems of equations of the sub-domains are coupled with 
the help of two interface conditions. They have an effect only 
to the values of the interface Γ and guarantee the 
communication between the sub-domains. These interface 
conditions correspond to Dirichlet or Neumann boundary 
conditions.  
The first of two interface conditions equals a Dirichlet 
boundary condition, i.e. the magnetic vector potentials of both 
sub-domains have to be equal on the interface Γ: 

.on Γ= fc AA                             (22) 
Implementation of this interface condition requires the choice 
of the grid points situated on the interface, which is done with 
the selection operators Qf for the fine grid and Qc for the 
coarse grid, so that: 
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The dimension of the selection operators depends on the 
number of grid points of the sub-domain and on the number of 
grid points on the interface. The respective selection operator Fig. 1: Computational domain subdivided into a coarse and a fine domain. 



gets entry one, if the point of the sub-domain corresponds with 
the point on the interface. In the other case, it gets the entry 
zero. The interface gets the same discretisation as the fine sub-
domain so that the interface values of only one domain have to 

be interpolated which is necessary since the grids are non-
matching. Hence, a prolongation operator fc Γ→Γ:P  is 
introduced which interpolates the magnetic vector potential 

ca of the coarse sub-domain to that one ( fa ) of the fine sub-
domain. The factors in front of the magnetic vector potential 

ca are stored in the prolongation operator P. Thus, the first 
interface condition reads as: 

.0aQaPQ ffcc =−                       (25) 
The second interface condition is equivalent to 
inhomogeneous Neumann boundary condition: 

.on   curl1
Γ= ΓJA

μ
                        (26) 

To enforce continuity, the virtual current densities on both 
sides of the interface, as presented in Fig. 2, have to vanish if 
both grids are joint. 
Because of the non-matching grids, again an interpolation for 
the values of one grid side is needed. The interpolation onto 
the magnetic vector potential ca of the coarse sub-domain is 
done with the restriction operator PT chosen as the transpose 
of the prolongation operator P. This has the advantage that the 
resulting system of equations described later is symmetric. 
Thus, the second interface condition reads as: 

.λPjPj fΓ,cΓ,
TT =−=                      (27) 

In the following, the negative discrete currents serve as 
Lagrange multipliers λ, which are introduced as additional 
unknowns to the system of equations. 

The saddle point system 
Since the properties of the resulting linear system of equations 
are of central importance for its solution they are described 
here besides its set-up. Combining the magneto-quasistatic 
equations of both sub-domains (20) and (21) plus the interface 
conditions (25) and (27), the system of equations for the whole 
computational domain reads as: 
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Within this system, the negative virtual current densities of the 
fine grid side serve as Lagrange multipliers λ. With the 
following definitions of the matrices gK  and 1B : 
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the structure of a saddle-point problem becomes obvious: 
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This saddle point problem is large, sparse, complex and ill-
conditioned. Furthermore, it is non-Hermitian, i.e.:  

.)( H
g

T
gg KKK =≠ ∗  

The eigenvalues of the system matrix in (29) are located in the 
positive half-space so that the matrix of the saddle-point 
problem is positive stable. The matrix gK  is the biggest sub-
matrix of the saddle point system. It is symmetric and singular. 

Solution of the saddle point system 
The solution of the saddle point system which results from the 
simulation of mine detection scenarios has to be very accurate. 
The necessity for this high accuracy results on the one hand 
from the small secondary field of the metal object which 
superposes the primary field of the metal detector and on the 
other hand from the small error tolerances because a mine has 
clearly and safely to be detected always as mine. 
In the literature, a lot of solvers for saddle point problems can 
be found, but only some are suitable for complex systems. 
Because of the size of the present saddle point system only 
iterative solvers seem appropriate. Direct solvers would need 
far too much memory. One of the main iterative solvers for 
saddle-point systems is the Uzawa algorithm [12]. One 
advantage of this solver is the reduction of the large original 
problem into two smaller problems so that, with the starting 
solution λ0 and the relaxation parameter ϑ, the following 
iteration scheme results: 
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But the first equation of this scheme (30) is still very large. 
Furthermore, the convergence of this method is very slow so 
that it is not used here. 
The related Arrow-Hurwicz [12] algorithm handles this 
problem by solving the following equations: 
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Here, the choice of the two relaxation parameters α and ϑ is 
difficult. Besides that, like in the Uzawa algorithm, the con-
vergence rate is very slow. 
For this reason, a Krylov subspace solver [3], [12], [13] is 
used for the present saddle point system (29). Even if these 
solvers have not been developed especially for saddle point 
problems they show a good convergence behavior. From the 
group of Krylov-subspace solvers, one for complex and non-
Hermitian systems has to be chosen here. Suitable solvers are 
BiCG, BiCGSTAB and QMR. For the given problem, BiCG 
showed to converge best. Nevertheless, BiCG should still be 
used together with a preconditioner.  
Preconditioning can notably speed up iterative solvers. As 
most preconditioners for saddle point systems need a regular 
matrix Kg, the application of the Augmented-Lagrangian 
technique [14] makes sense. This method transforms the 
original system of equations with singular matrix Kg to a new 
system of equation with regular matrix K’g while the solution 
is not changed. As 0aB1 = , then  

0aWBB 1
T
1 =                                (34) 

is also valid. Here W is positive definite and often W = γ I 
with γ > 0 is used [14]. Adding (34) to the first equation of the 
original saddle-point problem (29)  
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yields the equivalent saddle-point problem:  

Fig. 2: Virtual current densities on the interface. 
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Now, after using the Augmented Lagrangian technique, a 
preconditioner can be applied to accelerate the solution of the 
system of equations (35). The main preconditioning methods 
for saddle-point problems with non-Hermitian matrix Kg are 
Block-preconditioning [15], Constraint preconditioning [14], 
[15] and Hermitian/skew-Hermitian [16] preconditioning. The 
constraint preconditioner  
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achieves the best convergence acceleration. Here 'ˆ
gK  is an 

approximation of K’g. The easiest choice of 'ˆ
gK  is the main 

diagonal of K’g. Since the constraint preconditioner has the 
same (2x2) block structure it also has the same constraints. 
Furthermore, it can be seen that, as the original system, this 
preconditioner is a saddle-point problem as well, but easier to 
invert.  

Several sub-domains 
It can be practical to use more than two sub-domains with 
different discretisations, so for example for more than one 
metal object. In principle, two different possibilities can be 
distinguished for the combination of sub-domains. At the first, 
one sub-domain lies inside a second one and the third one lies 
again inside the second, as it is shown in Fig. 3, and the 
resolution of the discretisation increases from the outside to 
inside of the computational domain. One example for this is, if 
the sub-domain of the metal detector, which includes a finer 
sub-domain for the metal object, is surrounded by another 
large but much coarser sub-domain in order to minimize the 
influence of the outer boundaries on the electromagnetic fields 
as alternative to the implementation of open boundary condi-
tions. The necessary mesh of the outermost sub-domain can be 
very coarse, indeed.  

The intermediate sub-domain of the described model (Fig. 3) 
now has two interfaces and therefore also needs two selection 
operators Qnc and Qnf as well as two prolongation operators 
Pnc and Pnf. First, the system of equations for the interface 
between the coarse and the intermediate sub-domain is set up: 
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The matrix Knf and the vectors nfa  and nfE ,j  result from the 
system of equations for the interface between the intermediate 
and the fine sub-domain: 
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Inserting the system of equations (38) for the interface 
between intermediate and fine sub-domain into the system of 
equations (37) for the interface between middle and coarse 
sub-domain, the system of equations for the whole 
computational domain results: 
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On closer inspection, this resulting system of equations (39) 
again is a saddle point problem and can also be solved as 
described above. 

Another possibility of combining sub-domains is such that two 
sub-domains are laying side by side in a larger sub-domain as 
shown in Fig. 4. With this general model, a mine and another 
metal object under a metal detector being so far from each 
other that the discretisation in one sub-domain is not advisable 
can be computed. Under the condition that the sub-domains do 
not overlap, the outer sub-domain has now two different 
interfaces and therefore, again, two selection operators Qcf1 
and Qcf2 as well as two prolongation operators Pcf1 and Pcf2 are 
needed. Neglecting for the moment the second fine sub-
domain the system of equations for the coarse sub-domain Ωc 
and the first fine sub-domain Ωf1 is set up: 
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In the second step the first fine sub-domain Ωf1 is neglected 
and the system of equations for the coarse sub-domain Ωc and 
the second fine sub-domain Ωf2 is set up: 

.2,

,

2

2

222

22

22

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
−

0
j

j

λ
a
a

0QQP
QK0

PQ0K

fE

cE

cf

f

c

fcfcf

T
ff

T
cf

T
cfc

     (41) 

Combining and re-arranging of both systems of equations (40) 
and (41) leads to the system of equations for the whole 
computational domain: 

Fig. 4: Two sub-domains side by side in another one. 

Fig. 3: Sub-domains inside each other. 
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On closer inspection, this is a saddle-point problem again and 
can be solved with the same combination of BiCG and 
Constraint preconditioner. Such, as many sub-domains as  
 
seem to be appropriate can be combined. Yet, since additional 
Lagrange multipliers are needed on each of the new interfaces 
there is break-even at some point where more sub-domains 
would be inefficient, i.e. for each application there is an 
optimum between the best discretisation and the number of 
sub-domains. 

IV. RESULTS 

Model problem with analytical solution  
As model problem, circular transmitting and receiving coils 
both with a diameter of 30 cm are chosen. While the 
transmitting coil is excited with a harmonic current of 1 A and 
2,400 Hz, the receiving coil can be an absolute or difference 
coil. The wires of both coils are assumed to be infinitely small. 
The metal object used here is a sphere with diameter of 2.8 cm 

located 20 cm below the coils. 
For validation of the implemented domain decomposition 
method, two different analytical results can be used. The first 
one [17] is based on [18]. In this work, Frank assumed on the 
one hand that the magneto-quasistatic approach is valid and on 
the other hand that the conducting sphere is small enough to 
assume the primary field in this area to be homogenous. Based 
on Maxwell’s equations the change of impedance is computed 
from the undisturbed magnetic induction, the exciting current 
and the current density, which are induced in the metallic 
sphere.  
Not only conducting spheres but also permeable objects like 
rotational ellipsoids and a torus are treated in [19]. The authors 
also assume the object to be so small that the primary field of 
the detector is homogenous in this area. Then, the secondary 
field of the metal object can be obtained as dipole source. 
Using that dipole moment, the secondary electromagnetic 
fields of the metal objects are computed. Next, the voltage 
change can be computed by integration as given in (15).  

Influence of the size of the computational domain 
Even if Dirichlet boundary conditions lead to higher errors for 
the electromagnetic fields inside the computational domain in 
comparison to open boundary conditions they are used in this 
work because of their easy implementation. The 
implementation of open boundary conditions is foreseen for 
the future. Now, the question is studied how far the Dirichlet 
boundary should be put in order to get acceptable errors.  

As model problem, a 
sphere with conductivity 
of 2 ⋅106 S/m is located 
below the metal 
detector, like in Fig. 5. 
Two models are 
compared: In model (A) 
the sphere, as part of Ωf, 
gets a fine mesh with 
step size hf, the metal 
detector, as part of Ωn, a 

coarser one with step size hn and a very coarse one with step 
size hc is taken for Ωc = Ω\{Ωf ∪Ωn}, like in Fig. 3.. This 
model (A) with increasing resolution of the discretisation from 
outside to inside of the computational domain is compared 
with Model (B) with the same step widths, but only two sub-
domains, one for the metal object and one for the rest.c.  

Model (A) clearly needs less grid points but the interesting 
point is a comparison of the computational time needed for 
(A) vs. (B). In Fig. 6, for both models and for the analytical 
solution, the induced voltage change US of the receiving coil is 
plotted as function of the size of the computational domain. In 
both models, increasing the computational domain leads to a 
better approximation of the simulated results compared to the 
analytic solution of [17]. For this model problem, the error 
reaches values below 5% for a size of 1.8 m and below 2% for 
a size of 2.7 m. This equals fivefold or eightfold the radius of 
the coil, respectively. In case of only a small space around the 
detector, the total computational time for model (B) is smaller 
than for model (A). But for a larger space around the detector 
and thus higher accuracy, model (A) needs less time than 
model (B). Thus, for the model problem presented here it 
makes sense to use three sub-domains. For a computational 
domain with size of 2.7 m this model needs only 60% of the 
computational time of the model with two sub-domains.   
Influence of the discretisation inside the object 
Since the model with three sub-domains needs less computa-
tional time than the model with two sub-domains, this model 
is used here. While, in the following, always the same discreti-

(b) Imaginary part 

Fig. 6: Induced voltage change US  as function of the size of computational domain with two and three sub-domains. 

(a) Real part 

Fig. 5: Model problem 



sations (hn and hc) are  chosen for the sub-domains with metal 
detector Ωn and the surrounding sub-domain Ωc, the constant 
step width hs within the sphere is varied.   
For examination of the influence of the discretisation inside 
the metal objects the two cases of a sphere with the same size, 
but with different materials are compared: Material 1 has 
conductivity σ1 = 2 ⋅106 S/m and material 2 has σ2 = 2 ⋅107 
S/m. Material 2 corresponds to aluminum.  
In Fig. 6, for both materials, the voltage change US is plotted 
as function of the step size hf in the sphere. The full line 
characterizes the analytical solution of [17], the dashed lines 
indicate the skin depths (δ1=7.26 mm and δalu=2.3 mm) and 
50% of the skin depths (0.5δ1=3.63 mm and 0.5δalu=1.15 mm), 
each. Fig. 7 clearly shows a convergence against the analytical 
solution with decreasing step size hf. Furthermore, it can be 
seen that the aluminum sphere needs smaller step sizes than 
the sphere with the higher skin depth in order to reach the 
same errors. As the sphere has the same size in both cases, the 
different results obviously depend on the material parameters. 
If the same number of grid lines per skin depth is used errors 
of the same size are reached. For this model problem 1.5 grid 
lines per skin depth are mandatory for an error less than 5 % 
and 2 grid lines per skin depth for an error less than 2 %. As 
expected, for objects with the size of some centimeters as used 
here. The discretisation of the metal object mainly depends on 
the skin depth.  

Comparison with commercial software 
At the beginning of this project, several commercial software 
tools had been tested. At that time, none of the tested software 
was able to deliver a good discretisation and a high accuracy 
of the solution for these model problems representing mine 
searching scenarios. Meanwhile, the situation has changed.  
Therefore, as an example, a comparison with the actual 
version of CST EM-STUDIOTM [20] (CST-EMS) is presented. 
It allows choosing among two different mesh types – 
hexahedral and tetrahedral grids.  

 
The first comparison is done for the domain decomposition 
(DD) method with Lagrange multipliers and conventional 
hexahedral meshes. Therefore, again, the model problem (A) 
with a sphere, sub-domains Ωf, Ωn and Ωc and material 1 and 2 
is used. The step sizes hn  and   hc, i.e for the metal detector and 
the sub-domain Ωc are kept constant for all simulations. Both, 
CST-EMS and DD, use conventional hexahedral grids with 
the same step sizes. The constant step size hd  inside the 
spheres is varied from computation to computation. By the 

topological regularity of a conventional hexahedral grid 
without DD, the step size hf  is automatically enforced in parts 
of Ωn and Ωc  in the computations carried out by CST-EMShex. 
Thus, the number of grid points and also the memory needed 
in CST-EMShex is larger than in the DD code. For material 1 
and hs = 3.5 mm, DD needs NDD = 116,429 grid points and 
CST-EMShex needs NEMS, hex = 428,485 grid points. This 
implies a factor of 3.68 for the conventional discretisation in 
comparison to the domain decomposition method to reach an 
error below 2 %. For material 2 (aluminum sphere) hs = 1.17 
mm was chosen according to the study described above. With 
that, DD needs NDD = 142,845 grid points and CST-EMShex 
needs NEMS, hex = 764,469 grid points. Now, the factor is 5.35 
compared to DD. Clearly, with smaller skin depth, caused by 
higher material parameters or higher frequencies, an 
increasingly higher number of grid points and with it memory, 
can be saved using the domain decomposition method. By 
comparing the accuracy of the results presented in Fig. 8 a 
good correspondence of the results of both discretisation 
methods can be seen. The relative difference lies always below  
2 %. With DD a significant reduction of grid points and with it  
of memory can be reached in comparison to conventional 
hexahedral meshes at similar accuracy. As the DD code is 
written in MATLAB only, the computational times are not 
optimized yet and are still very high, in fact. In future, the 
algorithm shall be implemented in a parallel C++ code with 
new solvers for the linear systems in order to reach a massive 
reduction in computational time as well.  
For simulations with CST EM-STUDIOTM also tetrahedral 
meshes can be chosen. The size of the elements in one area 
can be influenced by the maximal step size. The maximal step 
size of the sphere is chosen 20 times smaller than for the rest 
of the computational domain. Convergence studies have 
shown that for tetrahedral meshes in CST EM-STUDIOTM 
about 42,000 unknowns are necessary for material 1 to achieve 
an error smaller than 5 % and about 260,000 unknowns for an 
error below 2 %. For material 2 (the aluminium sphere), 
however, about 84,500 unknowns are essential for an error  

 
below 5 % and about 653,500 unknowns for an error smaller 
than 2 %. The comparison of the mine signatures in Fig. 9 
shows a better agreement to the analytical solution for the 
solutions of CST-EMStet than with DD. To reach the same 
accuracy with DD as well a better discretisation has probably 
to be used. Yet, this would further increase the long 
computational time.  

(a) Real part 

Fig. 7: Induced change of voltage US as function of the step size within the sphere, i.e. within the metal object. 

(b) Imaginary part 



 
 
Comparison with measured values 
Measurements with the metal detector Foerster MINEX 2FD 
4.500 (see also Fig. 10) carried out by Hendrik Küger [21] are 
used for comparison of measured signals with simulated ones. 

The Foerster MINEX 2FD 4.500 is exci-
ted with harmonic currents of the frequen-
cies 2,400 Hz and 19,000 Hz. While the 
transmitting unit is an absolute coil, the 
receiving unit is a difference coil. Both 
coils can be approximated by two ellipses, 
respectively. The biggest extension of the 
detector head is 22.4 cm. For the compari-
son, the detector is excited with a frequen-
cy of 2,400 Hz. Furthermore, an alumi-
nium sphere with a diameter of 2.8 cm, 
which is located 17 cm below the coils, is 
used. Because of the symmetric signature, 
only one half one has to be computed. 
The model, which approximates now the 
detector head, is subdivided in three sub-
domains and has about 95,300  grid 
points. The gain of an amplifier of the 

metal detector is unknown. Therefore, this factor has to be 
computed. The real part of the computed voltage change at the 
position of 8 cm away from the center of the coils is divided 
by the corresponding measured value. Then, all measured  
 

 
 
 
values are multiplied with this factor. After this, a good agree-
ment between the measured and the simulated signature can be  
seen in Fig. 1. By a similar agreement for mine signatures a lot 
of false alarms can be eliminated in future.  
 

 V. CONCLUSIONS 
 
Due to the different size of the model’s parts of mine detection 
scenarios and a high accuracy needed due to the very small 
secondary fields of the metal objects the simulation demands 
for an efficient discretisation strategy. The domain 
decomposition method with Lagrange multipliers presented in 
this paper allows a subdivision of the computational domain in 
non-overlapping sub-domains with independent discretisation, 
each. Interface conditions enforce the communication between 
these sub-domains. A new system of equations results at the 
end. This badly conditioned and complex saddle point 
problem is hard to be solved.  
In this work a combination of BiCG and constraint 
preconditioner is used after the application of Augmented 
Lagrangian technique. For scenarios with several metal objects 
below a metal detector the domain decomposition method is 
generalized from two to several sub-domains.  

Fig. 10: Foerster 
MINEX 2FD 4.500 

(b) Imaginary part (a) Real part 

Fig. 9: Comparison of signatures of spheres computed with tetrahedral grids in CST EM STUDIOTM and domain decomposition method (DD). 

(b) Imaginary part (a) Real part 

Fig. 8: Comparison of induced voltage change US computed with hexahedral grinds in CST EM STUDIOTM and domain decomposition method (DD)



 

For validation, two analytical solutions from [17] and [19] 
were chosen. In this paper, the influence of the size of the 
computational domain and of the discretisation inside the 
metal object on the voltage change US was examined. It was 
shown that the distance between coil and outer Dirichlet 
boundary should be at minimum five times or better eight 
times the radius of the coil.  
The optimal discretisation inside the object depends on the 
skin depth of the material. For an error below 5% at least 1.5 
grid lines and below 2 % at least 2 grid lines per skin depth are 
necessary.  
Furthermore, a comparison with actual commercial software 
showed the reduction of grid points and with it of memory for 
the domain decomposition method in comparison to conven-
tional hexahedral meshes. Nevertheless, the results of tetrahe-
dral meshes have better accuracies at shorter computational 
times. This disadvantage of the domain decomposition method 
which only partly has to do with the MATLAB implementa-
tion should be eliminated in future by better linear solvers.  
Finally, a good agreement between the simulated results and 
measured ones could be shown. With the high accuracy which 
could be achieved for the computed results false alarms could 
be reduced in future.  
In conclusion, further work should be devoted to the develop-
ment of new solvers for the saddle point problem and to the 
implementation of the transient excitation in a parallel 
runtime-optimized code.  
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(a) Real part (b) Imaginary part 

Fig. 11: From a aluminum sphere induced change of voltage of the Foerster MINEX 2FD 4.500 in dependency of the position of the sphere 
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