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Tree-cotree condensation properties

���������
	����
—Through topological considerations,

some interesting properties of the tree-cotree-gauged
discretization of magnetostatic problems are present-
ed. On this basis, several tree-cotree gauging tech-
niques can be interpreted in terms of projections.

I. Introduction

Spanning trees have been used in circuit simulation
for a long time. As early as mid-twentieth century,
spanning tree techniques were used for generating in-
dependent meshes for mesh-current analysis, see e.g.
[1].

In electromagnetics, their use is much more recent.
In 1988, a tree-cotree technique was proposed by Al-
banese & Rubinacci [2] for regularizing magnetostatic
vector potential discrete formulations.

A way of imposing the Coulomb gauge for the same
problem was proposed in [3]. For the calculation
of the solenoidal eigenmodes of cavities, tree-cotree
techniques were used in [3], [4]. A technique based
on tree-cotree techniques for reducing the problem
size in mixed formulations is presented in [5].

It was early noticed that, in the case of tree-cotree
gauging for the magnetic vector potential, the condi-
tion number of the system matrix considerably in-
creased. Quite a number of papers deal with the
problem of finding a quasi–optimal tree [6], or try
to explain the phenomenon [7].

The goal of the present paper is to highlight some
interesting properties of the tree-cotree technique ap-
plied to magnetostatic problems. Their algorithmic
consequences are yet to be examined.

II. Problem Formulation

Let us consider a domain D in which the magneto-
static field equations hold:

curl ~H = ~J ;

div ~B = 0; (1)

~B = µ ~H.

By defining a vector potential through ~B = curl ~A,
the second order equation for ~A is

curl ν curl ~A = ~J, (2)

where ν = 1/µ. For simplicity, we will consider zero,
Dirichlet-type boundary conditions (tangential com-

ponent of ~A zero on the boundary).
We will assume a discretization of the equation (2)

with the Finite Integration Technique (FIT) [8], or
with edge finite elements [9]. For both methods, it

can be shown that the discretized equation can be
brought to the form:

CT MνC
_a =

_
_

j , (3)

where the superscript T denotes transposition. Here,
C is the discrete curl operator, the edges-to-facets
incidence matrix: considering inner-oriented mesh
edges and facets, an entry Cfe is equal to 1 (re-
spectively −1) if edge e is a part of the boundary
of the facet f and their orientations match (respec-
tively don’t match), and is zero otherwise. Note that

C̃ = CT plays the role of the discrete curl operator on
a second mesh, the dual mesh, defined such that each
of its edges/facets are in a one-to-one correspondence
with the facets/edges of the primary mesh (except
possibly on the boundary).

The matrix of relation (3) is singular. Most of the
regularization techniques are based on a gauging for
the vector potential, div ~A = f , used explicitly or
implicitly in the discrete formulation.

In our case, the discrete divergence operator (de-
fined on the dual mesh) will be denoted by GT . Its
structure is well-known: it is nothing else than the
reduced edge-to-node incidence matrix, often used in
circuit theory. An entry Gen of the matrix G is 1
(respectively −1) if the edge e contains node n as ini-
tial (respectively final) node, and 0 otherwise. One
of the meshnodes is considered “grounded” and the
corresponding column is eliminated from G.

Therefore, a discretized gauge relation for _a can be
written as:

GT _a = f , (4)

and the discrete “Coulomb gauge” has the form

GT _a = 0. (5)

To make the counting easier, we will consider only
simply connected domains. In the primary mesh, let
N be the number of meshnodes minus one, E the
number of edges, F the number of facets. Thus, the
matrix C has dimension F ×E and the matrix G has
dimension E × N .

The rank of the E × E matrix from (3) is E − N .
The idea of the tree–cotree gauging is to select an
independent set of rows, namely those corresponding
to the E − N cotree edges.

We will discuss the various techniques to do that
in Section IV.

III. Some properties

A. The independent cutset matrix

In order to clarify some properties of the tree-cotree
gauging technique, it is useful to write the matrix G

used in (4) under a special form.
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Fig. 1. Matrices G, G
′ and C for a simple circuit.

Let us assume that a tree has been chosen. By
numbering the mesh edges such that the cotree edges
come first, the gradient matrix G is partitioned as:

G =

[
Gc

Gt

]
. (6)

The submatrix Gt is nonsingular, therefore, by mul-
tiplying G to the right by G−1

t a new matrix is ob-
tained:

G′ = GG−1

t =

[
F

I

]
, (7)

where the matrix F is called the essential incidence
matrix, of dimension (E − N) × N .

Note that the gauge relation (4) for _a can be writ-
ten in terms of G′ as:

G′T _a = G−T
t f .

The new G′ is an incidence matrix of edges to the
independent cutsets1. Its generation is equivalent to
the following operations on the mesh graph: select a
tree; renumber edges such that the cotree edges come
first; select the independent cutsets such that each
cutset contains only one tree edge and its orientation
matches the orientation of the associated tree edge.

The construction of the matrices G, G′ and C is
exemplified in figure 1 for a simple mesh.

1We remind that a cutset is a set of edges of a graph chosen
such that the elimination of these edges transforms the initial-
ly connected graph into a non-connected one. There are N

independent cutsets in a graph.

B. The structure of the discrete curl matrix C

The matrix C is also partitioned according to the
tree-cotree decomposition:

C =
[
Cc|Ct

]
.

The matrices C and G satisfy the following funda-
mental property (see e.g. [8]):

CG = 0,

the discrete equivalent of curl grad = 0. Therefore,
since CGG−1

t = CG′ = 0, the following relation
holds:

[
Cc|Ct

] [
F

I

]
= CcF + Ct = 0,

or
Ct = −CcF. (8)

In consequence, the matrix C has the following spe-
cial structure:

C =
[

Cc| −CcF
]

= Cc

[
I| − F

]
= CcL, (9)

where
L =

[
I| − F

]
(10)

is a matrix of dimension (E − N) × E.

C. The initial problem, rewritten

With the new expression (9) for the curl operator,
the matrix relation (3) becomes:

LT CT
c Mν CcL =

_
_

j .

By introducing the notation:

Mc = CT
c MνCc, (11)

the matrix equation becomes

LT McL
_a =

_
_

j , (12)

with the following block structure:

[
Mc −McF

−FT Mc FT McF

] [
_ac

_at

]
=

[
_
_

j c
_
_

j t

]
. (13)

Note that the matrix Mc is full rank, symmetric
and positive definite.

IV. Tree-cotree gauging

In magnetostatics, the non-uniqueness of the vector
potential is in principle irrelevant: all that matters is
that its curl should give the correct magnetic flux den-
sity. However, the non-uniqueness is reflected in the
singularity of the equation system, an inconvenience
for many linear system solvers. That is why gauging,
in particular the tree-cotree gauging, has been used
to transform the system into a regular one.



Some of the known tree-cotree gauging techniques
for (13) are shortly described below.

The technique proposed by Albanese &

Rubinacci [2] consists in setting to zero the
tree-components _at of _a: _at = 0. This is equivalent
to eliminating those rows and columns in (13)
which correspond to the tree edges. Therefore, the
reduced-size problem which is solved is:

Mc
_ac =

_
_

j c.

Note that this approach does not impose a specified
divergence for the vector potential (in particular, it
does not impose the Coulomb gauge). It just selects
one vector of the right space, whose tree-components
are all zero.

In reference [3], Manges & al. use the first block
line of the matrix in (13):

H =
[

Mc| −McF
]

= McL.

Through the change of variable _a = HT y, the
reduced-size system to solve becomes HHT y =

_
_

j c,
i.e.

McLLT Mcy =
_
_

j c.

In [10], Tičar & al. use the following change of
variable:

_a = CT y,

so that, after multiplication of (3) to the left by C,
the reduced system (which is still irregular, but has
smaller dimension) becomes:

C CT MνC CT y = C
_
_

j ,

or, after using (9) and (12),

(CcL) LT McL (CcL)T y = C
_
_

j .

Finally, a non-symmetric version can be obtained,
following [4], based on the
Coulomb gauge” (5):

GT _a = 0 ⇒ G′T _a = 0 ⇒ _at = −FT _ac, (14)

where the form (7) of the matrix G′ was used. By
using this relation and (8), the matrix equation (3)
becomes:

CT Mν(Cc
_ac + Ct

_at) =
_
_

j ,

CT Mν(Cc
_ac + CcF FT _at) =

_
_

j ,

and by preserving only the cotree block of CT

CT
c MνCc(I + F FT )_ac =

_
_

j c.

Observe that I + FFT = LLT . Therefore, the
reduced system has the form:

McLLT _ac =
_
_

j c. (15)

Note that, since the current density is divergence-free,
a relation similar to (14) holds for the tree compo-

nents of
_
_

j :
_
_

j t = −FT
_
_

j c.

The matrix in equation (15) is, unlike the previ-
ous ones, not symmetric. A symmetric form can be
obtained by noting that (14) implies

_a =

[
_ac
_at

]
=

[
I

−FT

]
_ac = LT _ac.

Using this relation in (12), and premultiplying with
L, the following symmetric reduced-size system is ob-
tained:

LLT Mc LLT _ac = L
_
_

j .

The matrix of this system is much less sparse than
that of the unsymmetric version.

To summarize, the following versions for reducing
the size of the problem

LT McL
_a =

_
_

j

have been used:

A. Albanese & Rubinacci [2]

Mc
_ac =

_
_

j c,
_a =

[
_ac

0

]
(16)

B. Manges & al. [3]

McLLT Mc y =
_
_

j c,
_a = LT Mc y (17)

C. Tičar [10]

Cc LLT McLLT CT
c y = C

_
_

j , _a = CT y (18)

D. Munteanu (present paper), unsymmetric version

McLLT _ac =
_
_

j c,
_a = LT _ac (19)

E. Munteanu (present paper), symmetric version

LLT McLLT _ac = L
_
_

j , _a = LT _ac (20)

In the above relations, L is the topological matrix
given by (10).

The above relations are a good starting point
for analyzing the effective condition number κ =
λmax/λmin of the various tree-cotree formulations
(λmin is the minimum nonzero eigenvalue). Without
dealing with this issue here, we will just mention a
few points.

For the technique A, it has been noticed by many
authors that the condition number is larger than the
one of the initial matrix. An explanation of the phe-
nomenon is given in [11]. It is expected that the con-
dition number will increase for all the formulations
except D, where, due to the fact that the nonzero
eigenvalues of MN are equal to the nonzero eigenval-
ues of NM, we have κ(LT McL) = κ(McLLT ).

Our numerical tests indicate that

κD < κC < κA < κE < κB.

Also note that only the formulation A maintains
the sparsity of the initial matrix: all the others pro-
duce matrices which are (sometimes much) less sparse
than the matrix in (3).



V. Tree-cotree gauging as projections

It is interesting to find an interpretation of the tree-
cotree-gauged formulations in terms of projections.

We will start by a short introduction in projections.
Let us consider an n-dimensional matrix equation
Ax = f and two subspaces S and T of IRn. If we
want that the solution x ∈ S and impose the con-
dition that the residual Ax − f be orthogonal to T ,
what results is a projected equation [12].

Now if V and W are bases for S and T respectively,
then x ∈ S is written as x = Vy. If T is a subspace of
dimension m, imposing the condition Ax− f orthog-
onal to T is equivalent to requiring that the residual
be orthogonal to m independent vectors of T , in par-
ticular to the vectors of the basis W:

WT (Ax − f) = 0.

The combination of these two conditions yields the
system

WT AVy = WT f ,

called an oblique projection on S, orthogonally to T .
If S and T are the same subspace and we choose

W = V, what results is an orthogonal projection on
S:

VT AVy = VT f .

For our problem, let us consider a chosen tree, and
write any vector in IRn as

x =

[
xc

xt

]
,

in which the cotree and the tree components of the
vector intervene.

Let us denote by Sc the subspace of vectors which
have zero tree components, i.e. xt = 0, and by Ss

the subspace of “solenoidal” vectors, i.e. ones that
satisfy GT x = 0, or xt = −FT xc. An orthonormal
basis for Sc is

Bc =

[
I

0

]
.

A (non-orthogonal) basis for Ss is

Bs = LT .

It is easy to verify that Sc and Ss are indeed sub-
spaces.

A. Albanese

The matrix of (16) is obtained by performing a pro-
jection with

V = W = Bc.

The Albanese method is therefore an orthogonal pro-
jection on the subspace Sc of vectors with zero tree
components. It is trivial to show that the solution
x = Vy is in Sc, and that the residual is orthogonal
to Sc. Figure 2 a shows schematically the geometric
interpretation of this approach. The system matrix,
unknown vector and the right-hand side are denoted
generically by A, x and f , respectively.
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Fig. 2. a) Orthogonal projection on Sc; b) Oblique projection
on Ss, orthogonally to Sc; c) Orthogonal projection on Ss. Sc

is the subspace of vectors with zero tree components, and Ss

is the subspace of “solenoidal” vectors, satisfying GT x = 0.

B. Manges

The method given by (17) uses

V = LT Mc = BsMc, W = Bc.

Since Bs is a basis for Ss and since Mc is nonsingular,
V is also a basis for the subspace Ss of solenoidal
vectors. The Manges & al. method is therefore an
oblique projection on the subspace Ss of solenoidal
vectors, orthogonally to the subspace Sc of vectors
with zero tree components (figure 2 b).

C. Tičar

It can be considered that this method uses

V = W = CT .

The method is special in that, in 3D, it cannot be
interpreted as projection, since VWT is singular.
However, the obtained solution is solenoidal. Indeed,
x = CT y and GT x = GT CT y = 0 due to CG = 0.
The resulting matrix is not regular.

In the 2D case, CT is a basis, therefore the method
represents an orthogonal projection on the subspace
of solenoidal vectors (figure 2 c).

D. Munteanu nonsymmetric

The nonsymmetric version (19) uses

V = Bs = LT ,W = Bc.

It is therefore obtained by an oblique projection on
the subspace of solenoidal vectors, orthogonally to the
subspace of vectors with zero tree components (figure
2 b).

Note that although the subspaces are the same as
in Manges, another basis is used for the solenoidal
vectors subspace. As shown before, this choice does
not increase the matrix condition number, unlike the
Manges version.



E. Munteanu symmetric

In this case,
V = W = LT .

Therefore, the methods is an orthogonal projection
on the subspace Ss of solenoidal vectors (figure 2 c).
The matrix is less sparse than the initial one.

Note that, while the orthogonal projector is unique,
therefore basis- (and tree)-independent, the projec-
tion applied to the system of equations does depend
on the basis.

If an orthonormal basis LT
1

for Ss is constructed
from LT , and by performing the projection with

V = W = LT
1
,

then the resulting system is tree-independent. How-
ever, LT

1
will be almost full, so that the initial sparsity

is lost in the resulting system of equations.

VI. Conclusions

As the last decade’s tendencies in computational
electromagnetics have already shown, the separation
of topology and metric in the discrete formulations
proves to be very fruitful not only in understanding
the numerical properties of the algorithms, but also in
generating new, more efficient and robust techniques.

On the same line, the present paper has revealed
new structural properties of the tree-cotree formula-
tions, and provided an interpretation thereof in terms
of projections.

Apparently, each of the tree-cotree techniques has
its own characteristics, advantages and disadvan-
tages.

The technique A of Albanese & al is very simple,
preserves the sparsity of the matrix, but increases the
condition number.

The technique B (Manges) is also quite simple, but
it typically has a very large condition number and
matrix density increases.

The formulation C (Tičar & al.) produces only
a slight increase of the condition number and of the
matrix density, however, the matrix is still singular.

The technique D is relatively simple to implemen-
t and preserves the condition number of the initial
matrix, but the resulting reduced matrix is not sym-
metric.

Finally, the symmetric version E also produces an
increase of the condition number (much less than
in method B, but it can be higher than in the Al-
banese version). The matrix density increases (typ-
ically somewhat less than in method B). If an or-
thonormal basis is used in this method, then the con-
dition number is not influenced, but the matrix be-
comes full.

Note that the techniques B, D, E are based on
the imposition, at the discrete level, of the “Coulomb
gauge” given by (5).
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