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Abstract— A semi-implicit approach is proposed for computing
current density in superconductors characterized by a non linear
vectorial power law

−→
J (

−→
E ) ∼ ‖−→E ‖

1
n−1−→

E , with n > 1. A Discon-
tinuous Galerkin method is adopted for the spatial discretization
of the non linear system satisfied by the components of

−→
E

and
−→
J . An application example is given for a superconducting

cube subjected to an external magnetic field along the z−axis.
The distributions of components Jx, Jy are symetric and reflect
similarities of their boundaries conditions. The penetration time
of the sample is compared to that obtained when a surounding
vacuum volume is added on the domain.

Index Terms— Superconductors, Nonlinear diffusion, Discon-
tinuous Galerkin method, Newton iterative method, Semi-implicit
formulation.

I. INTRODUCTION

Development of numerical experiments on high temperature
superconducting materials is a crucial issue for modeling
their applications. This remains arduous notably when their
behaviour is described by non linear relations J−E or E−J
given by:

−→
J

Jc
=

∥∥∥∥∥

−→
E

Ec

∥∥∥∥∥

1
n−1 −→

E

Ec
or

−→
E

Ec
=

∥∥∥∥∥

−→
J

Jc

∥∥∥∥∥

n−1−→
J

Jc
, (1)

where
−→
J is the current density,

−→
E the electric field, Ec the

critical electric field, Jc the critical current density and n > 1
the power law exponent.

Different discretization techniques have been implemented
for computing 2D induced fields in bulk superconductors
when a non linear scalar problem is assumed [1], [2], [3]. The
cases of 3D models are less common. A surrounding vacuum
volume is always added around the superconducting domain
in order to describe demagnetizing effects due to the induced
current density [4], [5]. Unfortunately, this leads to resolving
additional equations in the vacuum and makes it harder to
carry on simulations with arbitrary geometries and shapes.

In this paper, a discontinuous Galerkin discretization ap-
proach is considered and a semi-implicit scheme is proposed
for solving the non linear system formed by the components
of the electric field. The boundary conditions are defined
with an explicit evaluation of the demagnetizing field created
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by the sample. This work is an extension of the method
published previously to compute the vectorial 2D current
density distribution in superconductors [6].

II. THE DIFFERENTIAL SYSTEM

In a three-dimensional setting where the magnetic induction
is

−→
B = (Bx, By, Bz), the electric field and current density

have three nonzero components. They satisfy a vectorial
problem written as:

∂
−→
J

∂t
− 1

c

−→
#−→

E = −−→∇−→∇ · −→E , (2)

with c = µ0Jc/Ec.

The main idea of this article is to solve the diffusion
equations of each component with an explicit coupling. We
set u1 = Ex/Ec, u2 = Ey/Ec, u3 = Ez/Ec, (S1, S2, S3) =

−−→∇−→∇ · −→E and define the following functions :

β1(u1, u2, u3) =
(
u2
1 + u2

2 + u2
3

) 1−n
2n u1 = Jx/Jc = v1 (3)

β2(u1, u2, u3) =
(
u2
1 + u2

2 + u2
3

) 1−n
2n u2 = Jy/Jc = v2 (4)

β3(u1, u2, u3) =
(
u2
1 + u2

2 + u2
3

) 1−n
2n u3 = Jz/Jc = v3 (5)

The vectorial equation (2) forms a system of three scalar
non linear diffusion equations. to which boundary conditions
or the fluxes must be added (see Section IV). We perform a
semi-implicit approach on the following system :

(S)






∂β1(u1, u2, u3)

∂t
− c−1#u1 = S1 in Ω

∂β2(u1, u2, u3)

∂t
− c−1#u2 = S2 in Ω

∂β3(u1, u2, u3)

∂t
− c−1#u3 = S3 in Ω

−→∇u1 · −→ν = Cb1(t) on ∂Ω
−→∇u2 · −→ν = Cb2(t) on ∂Ω
−→∇u3 · −→ν = Cb3(t) on ∂Ω

. (6)

where Cb1,2,3 are built from Faraday law and assumption
−→∇ · −→E = 0 on ∂Ω.
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III. SEMI-IMPLICIT APPROACH

We consider the time step δt = tk+1 − tk. At time tk+1,
explicit forms uk

2 , uk
3 are used for determining the solution

uk+1
1 (similarly for uk+1

2 and uk+1
3 ). This assumption leads

on these semi-implicit expressions of the nonlinearities:

βk+1
1 =

[(
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1

)2
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(
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2

)2
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(
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3

)2] 1−n
2n
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1 (7)
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2
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3
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3
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2 (9)

The spatial discretization of differential operators in the system
(6) are performed with a Discontinuous Galerkin method
described in [6]. The generated terms are represented by
F1,2,3. The discrete system to solve is written :






M
βk+1
1 − βk1
δt

= F1(u
k+1
1 , uk

2 , u
k
3)

M
βk+1
2 − βk2
δt

= F2(u
k
1 , u

k+1
2 , uk

3)

M
βk+1
3 − βk3
δt

= F3(u
k
1 , u

k
2 , u

k+1
3 )

(10)

To avoid difficulties in the linearization process due to the fact
that β1, β2 and β3 are not derivable at 0, the discrete unknowns
are changed in (10). The components of current density v1, v2,
v3 are calculated from an equivalent discrete system given by:






M
vk+1
1 − vk1
δt

= G1(v
k+1
1 , vk2 , v

k
3 )

M
vk+1
2 − vk2
δt

= G2(v
k
1 , v

k+1
2 , vk3 )

M
vk+1
3 − vk3
δt

= G3(v
k
1 , v

k
2 , v

k+1
3 )

(11)

where G(v1, v2, v3) = F (u1, u2, u3). The linearization of G
is ensured if the inverse functions β−1

1 β−1
2 β−1

3 exist and are
derivable. Unfortunately, these derivatives are non trivial. In
accordance with the E − J power law (1), we suppose that :

uk+1
1 =

[(
vk+1
1

)2
+
(
vk2

)2
+
(
vk3

)2]n−1
2
vk+1
1 (12)

uk+1
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[(
vk1

)2
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2

)2
+
(
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2
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)2]n−1
2
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3 (14)

These inverse functions are continuous and derivable. A New-
ton iterative method is applied for computing vk+1

1 , vk+1
2 and

vk+1
3 .

IV. BOUNDARY CONDITIONS

For getting the fluxes at the border, components of
−→∇u1,2,3

are expressed in an explicit form. For example, for u1:






−→∇ · −→E = 0

−→
rot

−→
E = −∂

−→
B

∂t

⇒






∂uk+1
1

∂x
= −∂u

k
2

∂y
− ∂uk

3

∂z
∂uk+1

1

∂y
=
∂uk

2

∂x
+
∂Bz

∂t
∂uk+1

1

∂z
=
∂uk

3

∂x
− ∂By

∂t

(15)

where
−→
B =

−→
Ba +

−→
Bd, with

−→
Ba the uniform applied magnetic

field and
−→
Bd the demagnetizing field created by the sample.

It is well known that the average magnetic induction around
the sample is given by

−→
B = µ0(

−→
Ha +

−→
M), where M is

magnetization of the sample defined by M = 0.5V

∫

V

−→r ×
−→
J dV , with −→r = (x, y, z) and V the volume.
We consider a quasi-static approximation of the demagnetizing
field and suppose that Bdx,y,z = −µ0Nx,y,zMx,y,z, where
N is the demagnetizing factor in each directions. They are
evaluated thanks to analytical formulas [7]. We will develop
expressions of boundaries conditions while taking into account
the demagnetizing field in the extended paper.

V. NUMERICAL RESULTS

We consider a superconducting cube of edge length a =
1mm, characterized by Jc = 50A/mm2, Ec = 10−7V/mm
and n = 20. It is subjected to an external magnetic field in
the z direction such as, Ba(t) = aBt, with aB = 1T/s.

The distributions Jx/Jc, Jy/Jc are presented in Fig.1 at
tpDG = 0.03s when the full penetration is reached. They are
symmetric and reflect similarity of their boundaries conditions.
The penetration time tpDG is close to that obtained with the
Finite volume method applied on A − V formulation with
a surrounding vacuum volume tpFV = 0.033s [5]. These
numerical results and comparison will be detailed in the
extended paper.
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Fig. 1. Jx/Jc (left) and Jy/Jc (right) at t = 0.03s
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