
Abstract—This paper presents an algorithm to construct the 

major and symmetric minor hysteresis loops based on the normal 

magnetization curve and intrinsic coercivity, which are generally 

available from the manufacturers. The vertexes of the constructed 

hysteresis loops are all on the given normal magnetization curve, 

as the normal magnetization curve is defined. As an application of 

the proposed algorithm, some hysteresis loops are constructed 

from the measured magnetization curve and compared with the 

measured ones. 

Index Terms—Coercive force, magnetic hysteresis. 

I. INTRODUCTION 

Parameter identification for various Preisach models 

requires a lot of first order reversal curves [1], which are 

normally not available from the manufacturers. A lot of 

approaches have been published in the literatures to identify 

the required parameters from only the major loop, while minor 

loops are determined by estimation [2]-[4].  

This paper presents a new algorithm to construct the major 

and symmetric minor hysteresis loops based on the normal 

magnetization curve and the intrinsic coercivity (coercive 

force), which are generally available from the manufacturers. 

The vertexes of the constructed major and minor hysteresis 

loops are all on the given normal magnetization curve, as the 

normal magnetization curve is defined. The constructed 

hysteresis loops can be used for parameter identification for 

various hysteresis models, and also for the determination of the 

demagnetization curves in a magnetization simulation. As an 

application of the proposed algorithm, hysteresis loops are 

constructed from the measured magnetization curve and 

compared with the measured ones. 

II. CONSTRUCTION OF THE MAJOR LOOP 

The major hysteresis loop consists of an ascending branch 

Masd(h) and a descending branch Mdec(h). The ascending, or 

descending, branch can be directly obtained from each other 

based on the odd symmetry condition, and therefore, only one 

branch, such as the ascending branch, is required to be 

constructed. 

The ascending branch can be expressed as 

)(hMm asd=   (1) 

which can also be expressed by compound functions as 
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where Man(hre) and Hre(h) are two functions to be determined. 

This paper presents a decoupled algorithm to derive Man(hre) 

from only the normal magnetization curve, and determine 

Hre(h) from the intrinsic coercivity of the major loop. 

A. Determination of the Man(hre) Curve 

A normal magnetization curve is shown by the OTS solid 

curve in Fig. 1, in which a tangential line is drawn at point T 

where dm/dh has the maximum value. If the intercept of the 

tangential line at point C is denoted as hcim, and the curve 

defined by CTS is expressed as Hasm(m), then one obtains the 

Man(hre) curve by linearly mapping point C to O while keeping 

point S unchanged, shown by the long dashed line in Fig. 1, as  
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where Han
-1

(hre) is the inverse function of Han(m), and 
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Fig. 1.  Determination of the Man(hre) Curve 

B. Determination of the Hre(h) Curve 

The value h of the Man(h) is defined as hre, therefore, the 

long dashed curve in Fig. 1 is mapped to a line through points 

O and S if it is drawn in the hre-h plane, and the CTS curve in 

Fig. 1 is mapped to a line through points C and S, as shown in 

Fig. 2. 

In Fig. 2, for any given intrinsic coercivity of the major 

loop hci ≥ hcim, one can create a smooth curve through the 

following three points to construct the ascending branch in the 

hre-h plane: Q(-hs, -hs), P(hci, 0), and S(hs, hs). A smooth curve 

with continuous first derivatives can be obtained from 
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where k0, k1, and k2, to be determined parameters, are the 

values of dhre/dh at points Q, P, and S, respectively, and are 

constrained by 
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For the proposed algorithm, k1 is computed from 
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Fig. 2.  Determination of the Hre(h) Curve 

III. CONSTRUCTION OF MINOR LOOPS 

It is well known that a normal magnetization curve is 

obtained from the vertexes of a series of measured hysteresis 

loops with various field amplitudes, which provides useful 

information in minor loop construction. The magnetization 

curve in the m-h plane (see Fig. 1) is mapped to OTS curve in 

the hre-h plane, as shown in Fig. 3. For a given vertex S′(hs′, 

hres′) of a minor loop, the intrinsic coercivity is estimated from 
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where ht is the h value at point T. Finally, the ascending branch 

for the minor loop in the hre-h plane Hre′(h) is obtained by 

creating a curve through the three given points Q′(-hs′, -hres′), 

P′(hci′, 0), and S′(hs′, hres′) based on the same algorithm as that 

for the major loop. 
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Fig. 3.  The ascending branch of a minor loop in the hre-h plane 

IV. APPLICATIONS 

A measured normal BH curve and major hysteresis loop 

are cited from [5], and are shown in Fig. 4, where a 

constructed major loop based on the measured normal BH 

curve and the coercivity using the proposed algorithm is 

compared with the measured major loop. Another measured 

BH curve is cited from [6], and constructed major and minor 

hysteresis loops are shown in Fig. 5. 
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Fig. 4.  Constructed major hysteresis loop compared with the measured one 

cited from [5] 
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Fig. 5.  Constructed major and minor hysteresis loops based on the measured 

normal BH curve cited from [6] 
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