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Abstract—The trajectory of a spherical magnet falling inside a of the magnet, the magnetization directiod, and rotating
cylindrical, conducting pipe is modelled taking into account both Speedﬁ are:
the rotation of the magnet and its horizontal displacement.The . .
electromagnetic force and torque are obtained via al-a 3D FE V(t) = X(t) ky + Z(t) k; Q)

e R ek S b Pl ) = Sy K+ cosm @
~ Index Terms—Magnets, conducting materials, eddy currents, A(t) = d(t) x d(t) = é(t)Ry (3)
finite element methods.
I \
|. INTRODUCTION : _}9\_
It is well known that the free fall of a spherical magnet : k d

inside a cylindrical conducting pipe such as a copper tube is I R}
slowed down by electromagnetic forces. When only the ver- ! S
tical velocity component is considered and the magnetimati : S Ky
direction of the magnet is assumed constant, the trajectory N....... L& L7 Q
and velocity have been determined ([1] at steady-state and :‘— Xo——e 77T
[2] taking into account the transient initial phase). These €
calculation have been refined by Don@sal [3] who assumed Figure 1: Magnet and pipe geometry.

that the magnetization direction is constant but allowedafo
horizontal displacement. The rotation of the magnet in @ pip The source magnetic vector potential (MVP) of the magnet

has been considered [4] when its motion is controlled. in the region outside the magnet is:
In the real case, when the magnetization direction is not M R?
assumed constant, a spherical magnet will both rotate and (X t) = %m(d(t) x (X - Xc(t))). 4)

have a non-zero horizontal displacement due to a latere¢for
When the radius of the pipe is just slightly higher than that the time-derivative of the induced MVR is neglected (due
of the magnet, the magnetization direction has a damptsdthe low speeds), then the equations are in this movingdram
oscillation around the axis of the pipe. However, when the >
radius of the pipe is much bigger than the radius of the magnet Vx (l — 7K, x (ﬁ X é)] = Vx (-atas +Vx VX as) (5)
the magnet rotates and the horizontal displacement is highe 7 .

The purpose here is to construct a model and solve it so axt) = Lo J5.) y (6
that the free fall of the magnet can be predicted in both the ’ A7 Jp IX- ¥
above cases. The general problem has 6 degrees of freedom. -ll—Por convenience. the vector potentidl of the current
decrease the model complexity, we assume that the rotdtiondo ity is introd o G T Thp ‘ 5)-(6) i ved
the direction of the magnetization is possible only in a plan ens!ty IS Intro uceq_ = Vx 1. The system ©)-( ). IS Sove
(I?X, IZZ). This simplified problem now has only 3 degrees dferatlvely with a rapidly converg|n§ n a formulanon. The
freedom &,z 6) (Fig. 1). The coupled dlierential equations Laplace forcgf .and the corresponding torquie are then
form a dynamical system which is solved numerically and thCéJmputed using.

results are compared to data obtained by experiments. fe fﬁx T x ¥x 2.dx )
= - S
D

Il. GOVERNING EQUATIONS R R R
r:-f(z—zc)xvxfxvxasdx (8)
A moving reference frame with the z coordinate of the mag- D
net center as the origin is chosen. The coordinates of theiceThe aim here is to develop a model with the force and torque
of the spherical magnet are, in this framg,= X - (X- IZZ)I?Z. as a function of the speeds, £ 6), in order to the study the

Assuming that the motion is in thé k;) plane, the velocity off-axis, the lateral motion and the rotation of the magnet, and



their coupled &ects. TheT (and @) fields are expanded into lll. Resurrs

Taylor series as a function af - The simplified model (16) is solved for the case of a
o0 . spherical Nd-Fe-B magneR(= 6.35mm, m = 8g, uoM =
T= Z 2(TrX + Tz + Trgh). (9) 0.7T) and copper tubesr (=5 10/(.m)1) of different radii
n=0 (8mm < Ry < 16mm). When the tube radius iRy = 8mm

The system (5)-(6) is transformed into simpler subsysteni&ig. 2 left), the magnet position slowly oscillates arouhd
The first-order fields Tox, Toz Toe) Verify: center of the pipe. This is also the case for the magnetizatio
B = _ = _ direction. The period of the oscillations @f is about 3,
AToc= o0V ds ATor = 00:Vx s ATos = 0,3 (10) this is due to the lateral displacement of the magnet. If the
and for higher ordef verify Yk > 1: lateral displacement was neglected, then the period woelld b
o around ten times higher. These values have been compared
dgeay = T (Teeay) and ATy = 09,V x 8y 1D o experimental data. The measured vertical speed is about
wherei stands forx, z or 6, and ¥ corresponds to the Biot 0.07m/s, and the period of oscillation of is about 3, in
and Savart law applied to thie— 1 order fields. The sametotal agreement with our calculations.
Taylor series expansion as in (9) is used for force and torque

The codficients are computed with a 3D FE method and” " :
some simplifications. A second order Taylor series expansid} NN
is suficient because the vertical speed idfisiently small. g —— " g /,/

A. On-axis analysis "o o |

The #-dependence of the force and torque componeng" ‘
analyzed fOrXc — O are: O'Ocoo 05 1.0 i 15 20 2E 0.0 05 1.0 o 15 20 2E
f = —Ag(1 — By COS(B))X + Csin(®)z— (H + | cos(@))0z TR AT

) . . . . / oot | AAAAAAAARARR S
f, = Csin(2)x - A1 + B;Cos(2))z- Dsin()z (12) ot / S | AMAMAN
Iy~ —(F — Ecos(®))d - (H + | cos(?))xz- Dsin()Z = ° S|
where @y, By, Az, B;) represent, respectively, the magneticoo / ocor |
drag force for the lateral and vertical motidd,is the lateral -ood—pe—— ) o-ooco/o T T R
force (source term of the lateral motion) aidis the main ‘ e ‘ o, -
torque which drives the magnetization direction. ~ TN \\
05 N\ / \ ~
B. Off-axis analysis ﬁ \ / N LT :

The x.-dependence is studied as a function of the fields \ \ :40 \\\
with respect to the position. The source MVP (as wellf3s \ // NG
is expanded as a function & = xcky: - | J

(R, %) = 84(X, 0) + Vas(X, 0) - Ky Xc (13) Figure 2: ¢ X, 6) (from top to bottom), for a pipe radius of
T =T(X = 0)+ XT'(x = 0) (14) Ro=8mm (left) andRy = 16mm (right) versus time

The first order termT’(x. = 0) is used to analyze thg.- When the copper tube radius R = 16mm (Fig. 2 right),
dependence, and is expanded as (9). Therfitiependence the spherical magnet oscillates around a mean vertitaiis
of the first-order terms off{, [) is: position, which is not zero and rotates at an almost constant
f/ ~ —Gsin(®) 0 - K 2 f/ ~—LH-Kxz speed. Experiments confirm the magnet rotation and the order
I ~ —Gsin(2) X - Lz (15) of magnitude of the calculated speed (slightly more thays1lm
y which much higher than for the pipe of radiRs = 8mm).
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