
Abstract—In this paper, a model for the coupled analysis of 

magneto-mechanical problems in isotropic materials is proposed 

in which the effect of stress in transverse direction with respect to 

the flux density is also considered. To take account of the Villari 

effect in this case, magnetostriction data under transverse as well 

as longitudinal stress is required. The model uses the information 

included in the magnetostriction data and calculates the 

permeability variation including the anisotropy induced by the 

stress. The model is then applied to a simple two-dimensional 

problem, using simulated magnetostriction data, and the flux 

distribution in three cases of uncoupled, coupled without , and 

coupled with considering the transverse stress  are compared. 

Index Terms—magnetostriction, coupled problems, stress, 

Villari effect. 

I. INTRODUCTION 

It is a known fact that the magnetic behavior of 

ferromagnetic materials is affected by the mechanical stress 

occurring in the material [1]. The phenomenon which is the 

result of magneto-elastic energy balance in microscopic scale 

[2] is known as the Villari effect. Another phenomenon in 

ferromagnetic material, which is also due to the magneto-

elastic energy balance [3], is the magnetostriction (MS) in 

which the material dimension changes in response to the 

magnetic flux density. The magnetostriction which is also 

affected by stress, contributes to the vibration and noise of 

electrical machines and apparatuses [4]. Therefore, the design 

of electrical machines, when the level of stress is relatively 

high, requires the numerical analysis of the problem taking 

account of the Villari effect and the effect of stress on MS. 

However, since both the Villari effect and MS  depend on the 

same feature of the material [5], i.e. magneto-elastic energy 

balance, a model has been already proposed [6] using the 

knowledge of the magnetostriction behavior together with the 

zero-stress magnetization curve to describe the Villari effect. 

The model, however, neglects the effect of transverse stress on 

MS and consequently on the magnetization. Moreover, it was 

developed with the assumption that the stress does not alter the 

direction of the flux density. In general, the direction of the 

flux density is also affected by the stress, especially when 

applied in the transverse direction. In this paper, the model 

proposed in [6] is further developed to take account of the 

transverse stress and also the stress-induced anisotropy in the 

material. The proposed model requires the magnetostriction 

data of the material measured or modeled for transverse as 

well as longitudinal stress. 

  

II. THEORY 

In a coupled magneto-mechanical system, the magnetic field 

strength, ),( σBH , which depends on the flux density B, and 

the stress tensorσ , is defined as follows [7]: 
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where w  is the total energy density of the system which is the 

sum of the magnetic and mechanical energy densities and  can 

be written as follows [7]: 
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where )0,(0 BHH   is the field strength corresponding to B 

under zero stress, and 
elast

ε is the elastic strain tensors in Voigt 

notation, related to the stress by Hook’s law ( elastDεσ  ). 

Equation (1) then becomes 
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 In [6], it is shown that 
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where ε is the total strain tensor, and
ms

ε is the 

magnetostriction strain tensor. The expression for 
ms

ε is 

given by the following equations [6]: 

Sε ms , (4) 
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where  is the magnetostriction parameter and S is the 

magnetostriction direction tensor. The partial derivative in (3) 

is taken under a constant . If magnetostriction is neglected, 

0ms
ε , so the last term in (3) vanishes, making H 

independent of stress. Therefore, the stress dependency of H, 

which shall be presented in this paper, arises from the 

magnetostriction phenomenon.  

III. THE PROPOSED MODEL 

A. Magnetic Equation 

By considering   as a function of B, longitudinal 

stress | |σ and the transverse stress σ , ),||(  σσB, , 

equation (3) finally takes the following form:  

 BσBHσBH ),(),( 0

ms , (6) 
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where
ms  is the MS reluctivity tensor representing the 

variation of reluctivity due to mechanical stress. Ampere’s 

law in term of vector potential then becomes 

 

   JAσBH  )(),( ms , (7) 

 

where )0(B,  is the magnetic reluctivity evaluated from 

the zero-stress magnetization curve, A is the magnetic vector 

potential, and J is the current density. The derivation of 
ms  

from equation (3) results in the following expressions: 
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where 
ms

s is the scalar MS reluctivity,  E and 
P are Young’s 

modulus and Poisson’s ratio, and tr(.) stands for the trace of a 

tensor.  

The finite element discretization of the coupled equations 

becomes 

 PAM , (10) 

 

where M is the magnetic coefficient matrix, and P is the 

current source term. 

B. Mechanical Equation 

The mechanical equation of the proposed method is the same 

as in [6].  The discretized mechanical equation of the system is 

 

 msmK ffu   (11) 

 

where K is the stiffness matrix, u is the displacement,  and 
m

f and ms
f  are the nodal magnetic and MS forces, 

respectively. The indirectly strong coupling method [6] was 

used for solving the coupled nonlinear equations (10) and (11).  

IV. RESULTS AND DISCUSSION 

The model was applied to a simple 2D problem as shown in 

Fig1. An external stress of -5 MPa (compressive) is applied on 

the top of the model as shown in the figure. For the 

magnetostriction parameter a mathematical equation was 

assumed for the magnetostriction parameter as follows: 
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Three analyses were carried out; an uncoupled analysis, a 

coupled analyses with transverse stress neglected, a coupled 

analyses with transverse stress considered. The results are 

shown in Fig. 2. Fig.2 (b) shows the flux density has been 

modified due to the longitudinal stress only. In Fig.2 (c) both 

longitudinal and transverse stress are considered. Fig.2 (d) 

shows the directions of B and H in the stressed regions. The 

anisotropy has been induced by transverse stress components. 
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Fig. 1. Simple 2D reactor model analyzed. 
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Fig. 2.  (a) The flux distribution obtained from the uncouple analysis, (b) 

from the coupled analysis neglecting the transverse stress, (c) from the 

coupled analysis considering the transverse stress, (d) direction of H depicted 

by blue arrows beside B-arrows (for better visibility, H-arrows are scaled 

slightly longer than B-arrows).  
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