
 

Abstract — To solve stochastic magnetostatic problem, magnetic 
fields can be approximated using a double discretization: the spatial 
discretization using the finite element method for example and the 
discretization of the stochastic dimension using a polynomial chaos 
expansion for example.  In this paper, we aim at determining the 
numerical error due to the stochastic discretization.  

 
Index Terms—Stochastic processes, estimation error, 
magnetostatics, finite element method. 

I.  INTRODUCTION 

To quantify the impact of uncertainties of the input data on 
the output data of a model, stochastic approaches can be used 
which consists in modeling the uncertain inputs as random 
variables. The outputs of the model are then also random 
variables or fields.  If the model is based on a Partial Differential 
Equations (PDE) system like the Maxwell equations in 
electromagnetism, then a Stochastic PDE system has to be 
solved. The discretization of the spatial dimension using the 
Finite Element Method (FEM) for example yields a stochastic 
matrix system to solve. The degrees of freedom, potential values 
at the nodes, are not scalars anymore but random variables. 
Several methods are available in the literature to characterize 
these random variables. The Monte Carlo Simulation method 
(MCSM) is probably the best known and is widely used in 
different scientific areas (financial mathematics, biostatistics, 
mechanics, etc.). The MCSM is robust and simple but very time 
consuming especially when coupled with a numerical model such 
as a Finite Element model.  Approximation methods which 
consist in searching the random degrees of freedom in a finite 
dimension functional space have been introduced in the early 
90’s. The Polynomial Chaos Expansion (PCE) is one of the most 
popular approximation method [1]. These double discretization 
yields an approximated solution whose accuracy depends on the 
discretization along the spatial dimension (mesh) and the 
discretization along the random dimension (the order of the 
PCE). To evaluate the numerical error (i.e. the distance between 
the numerical solution and the exact solution), one can 
distinguish two kinds of error estimation: a priori error and a 
posteriori error estimation. In this paper, we are interested in the 
a posteriori error estimation which is function of the numerical 
solution and so, the error estimation is evaluated after the 
numerical resolution of the problem. The a posteriori error 
estimation has been already addressed in literature [2, 3]. In [2], a 
global error estimation based on the hyper-circle theorem is 
proposed. This error estimation requires the solutions of two 
complementary formulations.  This error estimator takes into 
account simultaneously the error due to the space discretization 
and along the random dimensions. In [3], an error estimator 
enabling to evaluate the error due the stochastic discretization 
(stochastic error) has been proposed based on an enrichment of 
the functional space.  

In this paper, we propose a stochastic error estimator based 
on the evaluation of the residue calculated from the obtained 

numerical solution. The proposed error estimation is tested on an 
academic example.    

II. MAGNETOSTATIC PROBLEM WITH UNCERTAINTIES ON THE 

BEHAVIOR LAW 

We are interested in a magnetostatic problem defined in a domain 
D with uncertainties on the permeability. The uncertain 
permeability can be modeled by a random field µ(x,θ) where the 
parameter θ refers to a random outcome. We assume that the 
random fields µ(x,θ) can be expressed explicitly as a function of a 
random vector ξ(θ) = (ξ1(θ), ξ2(θ),..., ξM(θ)) defined on 

M M  R where ξ1(θ), ξ2(θ),..., ξM(θ) are real independent 
random variables with known probability density functions. In the 
following, to simplify the notations, the dependency of the 
random vector ξ on θ will be removed. Then, the permeability 
take the form µ(x,ξ). We assume also that the permeability is 
bounded: 

 0 min max( ) ( , ) ( ) Mx x x          . (1)

Consequently, the magnetic field H and the magnetic flux density 
B are also function of ξ. The stochastic magnetostatic problem on 
a domain D can be written:  
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where Js is the source term that can be written as Js(x)= 
curlHs(x). For completeness, boundary conditions are also added. 
The problem (2) can be solved using the scalar potential 
formulation where the scalar potential (x,ξ) is defined such that 
H(x,ξ)=-grad(x,ξ)+Hs(x). The domain D is spanned by a 
tetrahedral mesh M with n0 nodes, n1 edges, n2 facets and n3 

elements. Let denote 0 0( , )h h
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where w0i(x) is the shape function associated to the node i [4] and 
Vx

h0 is defined by: 

  0
0 0 0 0span 1 2 1 1( ) / , ,..., , ,...h

x iV w x i i i n     (4) 

with i0 a given node of the mesh M. Generally, Ωh0(x,ξ) is not 
available because (3) should be solved for an infinite number of 

values of M . In the following section, a method to 

approximate Ωh0(x,ξ) by using a PCE is briefly presented.  

III. APPROXIMATION USING A PCE 

    The scalar potential approximation Ωh0,P(x,ξ) is sought in the 
following form: 
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where {Ψα(ξ)}0≤≤P is a set of multivariate polynomials of order 
at most p (truncated PCE) [1] and Ωiα the coefficients to 
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determine. Here, the order of a polynomial chaos is equal to the 
sum of the orders of the monodimensional polynomials. In the 
SSFEM method [5], the coefficients Ωiα are determined by: 
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with E() the expectation. The equation (6) leads to a linear matrix 

system of dimension 0 1 1n P  ( ) ( )  where the solution is the 

vector of the coefficients Ωiα. In our case, an iterative solver will 
be used to solve the linear system with a stopping criterion   on 
the residue of the linear system (6). The solution obtained with 
the SSFEM depends on the spatial mesh, on the order p of the 
PCE set and also on the stopping criterion . Therefore, the 
numerical error depends also on these three factors. In the 
following section, for a given mesh, a stochastic error estimator 
(partial error due to the discretization using the truncated PCE) 
which evaluates the “distance” between Ωh0,P(x,ξ)  and Ωh0(x,ξ) is 
proposed.  

IV. A POSTERIORI STOCHASTIC ERROR ESTIMATION  

   The stochastic error is defined by: 
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We propose the following error estimation: 
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where ( )r   is the residual vector and 0  is the mean value of 

the stiffness matrix that are defined by: 
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and k1, k2 the coefficients that depend only on ( , )x  : 
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One can notice that the coefficients k1 and k2 can be calculated 
explicitly. In practice, the ratio between the upper bound and the 
lower bound of the stochastic error (8) is about several units. 
Furthermore, the estimation (8) is independent on the method 
used to solve the stochastic problem (SSFEM, Non intrusive, 
etc.) and on the choice of the stochastic approximation basis 
(truncated PCE in this paper). For example, even with an 
approximation based on wavelets [6] instead of a truncated PCE, 
the estimation (8) holds.  

V. NUMERICAL EXAMPLE 

    The magnetostatic example is presented in Fig. 1. The domain 
is split up into 5 sub-domains with the relative permeabilities 
µ0=1, µ1=µ2=1000. µ3 and µ4 are two independent uniform 

random variables defined on [600-1400]. The current Js is 
imposed equal 1A. We use the SSFEM method to solve this 
problem (see (6)). With a given Ωh0,P(x,ξ), the mean value of 
stochastic error estimation is compared to the  mean value of the 
stochastic error obtained by the Monte-Carlo method (MCSM). 
With the MCSM, the stochastic error at each point ξk is evaluated 
by calculating the distance between Ωh0,P(x,ξk) and Ωh0(x,ξk) 
obtained by solving (3) at the value ξ= ξk. 
 

 

Fig. 1. Stochastic magnetostatic problem  

 
Fig. 2. Expectation of the estimator and of the error approximated by the Monte 

Carlo method in function of the stopping criteria   

 

In the Fig. 2 we represent the evolution of the stochastic error 
obtained by the proposed estimator and the one obtained by the 
MCSM in function of the order of the PCE and of the stopping 
criterion with a fixed mesh of 2617 nodes. We can notice that the 
error obtained by the proposed method and the error obtained by 
the MCSM are very close and these errors decrease when 
reducing the stopping criterion . We can notice also that the 
stochastic error is almost constant from a given value of the 
stopping criterion (log() = -6 with order p = 2 and log() = -8 
with order p = 4). It is not necessary to increase the precision of 
the resolution of the linear system (6) beyond this point by 
reducing . 

VI. REFERENCES 

[1] D. Xiu, G.E. Karniadakis. The Wiener-Askey polynomial chaos for 
stochastic differential equations. SIAM J. SCI. Comput, Vol. 24, no. 2, pp. 
619–644, 2002. 

[2] S. Clenet, N. Ida. Error Estimation in a Stochastic Finite Element Method 
in electrokinetics. Int. J. Numer. Meth. Engng, vol. 81, no. 11, pp. 1417-
1438, 2010. 

[3] X.Wan, G.E. Karniadakis. Error Control in Multi-Element Generalized 
Polynomial Chaos Method for Elliptic Problems with Random 
Coefficients. CICP, Vol. 5, No. 2-4, pp. 793-820, 2009 

[4] A. Bossavit. Computational electromagnetism. Academic Press (Boston), 
1998. 

[5] R. Gaignaire, S. Clenet, O. Moreau, and B. Sudret.  3D spectral stochastic 
finite element method in electromagnetism. IEEE Trans. Magn. vol.43, 
no.4, pp. 1209-1212, 2007. 

[6] O. Le Maitre, O. Knio, H. Najm and R. Ghanem.  Adaptive multi-wavelets 
decomposition for stochastic processes. ICOSAHOM, Brown University, 
Providence RI, June 21-25, 2004. 

2 3 4 5 6 7 8 9 10
-10

-8

-6

-4

-2

0 error estimation order chaos = 2
error estimation order chaos = 4
error Monte-Carlo order chaos = 2
error Monte-Carlo order chaos = 4

-Log () 

E(esto) 


