
Abstract—An on-surface radiation boundary condition 
procedure (OSRBC) in the time domain is presented. The method 
extends well-known OSRBCs originally developed for high 
frequencies (short time transients) to low frequencies or long-
time transients in the time-domain. Starting with asymptotic 
approximations we obtain an operator that is uniformly valid in 
time. Thus, the OSRBC developed here is valid at low and high 
frequencies. Its numerical implementation and its performance in 
low frequency problems are demonstrated through examples of 
scattering from conducting cylinders. The advantage of the new 
OSRBC is that it is applicable to a wide range of frequencies it 
can be applied to short and long time transients.  
 

Index Terms—Scattering, radiation boundary conditions, time-
domain analysis, numerical analysis. 

I. INTRODUCTION 
The combination of asymptotic and numerical methods has 

led to efficient modeling of scattering of electromagnetic 
waves in open domains. The success of these methods is 
mostly due to the radiation series operators of Bayliss and 
Turkel [1]. The series operators Bn ensure the cancellation of 
the first n terms of the asymptotic scattered field series as 
 r →∞ . These far-field operators were used as on surface 
radiation boundary conditions (OSRBCs) and combined with 
various numerical methods to obtain approximate solutions for 
scattering from convex targets [2,3]. The advantage of this 
approach is that now the field and its normal derivatives can 
be obtained from the approximate condition and the integral 
equations are reduced to integration over the surface of the 
scatterer (or on its contour for a 2D object).  

This approach has been limited to high frequency 
problems, primarily in the frequency domain because 
OSRBCs are based primarily on the 1st order Baylis and 
Turkel operator which is a high frequency operator. There is 
however a need to develop operators in the time domain to 
tackle problems in low frequency scattering for a variety of 
applications including electromagnetic pulse (EMP) 
simulations and target identification. To this end, a variable 
time-dependent coefficient operator capable of simulating the 
response over a wide frequency range has been investigated in 
[4] and this operator forms the basis of the OSRBC proposed 
in this work. In essence, we start with the Baylis and Turkel 
operator and modify it to include low frequency components. 
By so doing the new OSRBCs are applicable over a wide 
frequency range, capable of simulating both low and high 
frequency fields. As such the new OSRBC is well suited for 
solution of long transient problems.  

 

II. THE ON SURFACE RADIATION BOUNDARY CONDITION 
We assume here a TM wave incident on a cylinder with its 

cross-section in the x-y plane and its axis along z. The incident 
and scattered fields are: 
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Both fields satisfy the homogeneous wave equation. We 
represent the solution using the Stratton-Kirchoff formula [5] 
in the following form: 
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 where    G( x, x ')  is the free space Green’s function,   ∂/ ∂n ' is 
the outward normal derivative on Γ,   

x  is the field point and 
   
x '  the source point on the boundary contour. It is then 

obvious that the main issue is the calculation of the normal 
derivative 

   
∂Us

x( ) / ∂n '  on Γ since for conducting contours 

 Us  can be calculated from the incident field.   To do so we 
start with B1 and an integral form of B2, written in the time 
domain [4]: 
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initial condition.  
A new OSRBC based on the operator in [4] which we call 

the HHM operator is proposed here. Since the HHM operator 
corrects for the low frequency behavior and is based on 
asymptotic analysis as well as it has the correct behavior at 
large distances for both low and high frequencies. It has the 
following form for cylindrically symmetric waves: 
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where   δ 0(t) = 1/ (4r(1− 2rG0(t)) ,  G0(t) = 1/ (r ln((2t + D) / r))  
and D > re2/2. D is an integro-differential operator. The 
expression in (5) can be seen as the B1 operator in (3) operated 
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upon by   ∂/ ∂t +δ 0(t) to which an additional term   Us / 8r 2  was 
added. Analogous expressions of the operator for 
nonsymmetric waves also exist [4]. Based on this operator we 
construct the new HHM OSRBC as follows (using here the 
general form   ∂/ ∂n '  instead of   ∂/ ∂r for the cylindrical case): 
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where   κ x ', y '( )  is the curvature, s’ the tangential variable and   
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again from the initial conditions. 

III. NUMERICAL IMPLEMENTATION 

For the perfect conductor case discussed here, Us = Uinc on Γ 
and the normal derivative can be obtained from (6) as: 
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where: 
 

  

I(t1)=
ti

t1∫ 1
2
∂2Uinc

∂s '2
+
κ 2 x ', y '( )

8
Uinc

$

%

&
&

'

(

)
)
e
−

τ

t1∫ δ0(t ')dt '
dτ . (8) 

 
In this case, the normal derivative can be evaluated through 
time marching methods. For tm = ti + mΔt and Δt small: 
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 This then allows calculation of the normal derivative at the 

surface of the conductor and from it other quantities such as 
the scattering cross-section. For verification purposes, an exact 
solution is found for the conducting cylinder using potential 
theory [5]. Equations (5), (6) are also evaluated numerically 
using the method described above for the purpose of 
comparison with the new OSRBC. 

It should be noted that the OSRBC developed here is not 
limited to perfect conductors. The method described can be 
extended to imperfect conductors and dielectrics. 

IV. SOME RESULTS 
 To demonstrate the usefulness and effectiveness of the 

OSRBC developed here we use a conducting circular cylinder 
of radius r0 = 1. The incident electromagnetic wave is a TM 
Gaussian impulse plane wave. We obtain results at low and 
high frequencies and compare them with the exact solution as 
well as with the B1 and B2 Bayliss and Turkel series. Here we 
only show the normal derivatives of the field but the scattering 
cross section has also been computed as were the fields and 

scattering cross-section of other geometries. Figure 1 
compares the normal derivatives at θ = 90º (grazing angle) for 
the high frequency case k0 = 5. The HHM OSRBC is clearly 
close to the exact solution. B2 also performs relatively well but 
the results using B1 are rather poor. These results are 
somewhat sensitive to the location at which the derivatives are 
calculated since all boundary conditions are based on the 
geometric theory of diffraction. Figure 2 compares the results 
for the same conditions but for the low frequency case k0 = 
0.001. In this case the normal derivative is independent of the 
incidence direction due to the low frequency diffraction 
phenomenon. The results in Figures 1 and 2 demonstrate that 
the HHM OSRBC is a uniform time-domain OSRBC that is 
valid for both high and low frequencies. 
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Fig. 1. Comparison of OSRBCs and potential theory solutions for normal 
derivatives on a conducting circular cylinder at θ = 90º (grazing angle), at 

high frequency, k=5.  
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Fig. 2. Comparison of OSRBCs and potential theory solutions for normal 

derivatives on a conducting circular cylinder at θ = 90º (grazing angle) at low 
frequency, k=0.001. 
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