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Abstract—This work presents the Face-Based Gradient Il. M ATHEMATICAL FORMULATION
Smoothing Point Interpolation Method (FS-PIM), a numerical . .
method derived from the Point Interpolation Method that solves A. Gradient Smoothing and Weakened-Weak Form
three-dimensional boundary value problems. FS-PIM is sup-  Three-dimensional electrostatic problems are formulated
pOI’ted by the theory of G-Space, weakened-weak formulatios fO"OWS glven a perm|tt|v|ty6 and a Volume Charge densﬁy

and the gradient smoothing operation. The obtained resultshow determine the scalar potentil: Q ¢ R3 —s R that satisfies
that both convergence rate and accuracy of the approximatio P '

generated by FS-PIM are better than the ones presented by the . _
Finite Element Method. V(W) =p on Q
Index Terms—Meshless methods, point interpolation methods, V=g on Iy
gradient smoothing, weakened-weak form, three-dimensiaal. oV
—-e— =h on Iy D
on
|. INTRODUCTION where g and h are the Dirichlet and Neumann boundary

conditions, respectively, on the boundarigg and I'h, and
The development of the Point Interpolation Method (PIMJQ =T =Ty U 'y with TgN T = 0.
and its application in electromagnetics have increasedhén t The weak form of the problem (1) can be obtained using
last years. Horts have been made on frequency and timéhe weighted residual method and it is expressed as:
domain modeling with methods based on strong forms [1], [2],
on formulations based on weak forms combined with globalgf
Galerkin methods [3] and on local Petrov-Galerkin methods”®
[4]. Parallel algorithms on graphics processing units (§PUwherew is the test function of the weighted residual method
has also been proposed to reduce the processing time [5]_and U is the test function space, in which the function must
A new PIM approach that works with weakened-weak formaelong toH'(Q), i.e., its first order derivatives must be square
(W2) was proposed by [6]. This class of methods uses tiH¥egrable ovet.
operation of gradient smoothing to approximate the devigat ~ The gradient oV can be approximated by an integral rep-
of the field function in global Galerkin weak forms [7].resentation in a predefined domain called smoothing domain
With such modifications, a weakened-weak formulation aris&s [6]
overcoming the problem of the incompatibility of PIM shape
functions that impacts negatively the quality of the nurmedri

solution [3]. The V¥ form also brings to PIM convergence " ~ fQ VW = me(VV\/)dQ— fgiv wae - (3)

rates higher than the Finite Element Method (FEM) with more . ) . i .
accurate approximations [6]. whereW is called smoothing function. Applying the gradient

theorem in (3), we have

eVw - VV dQ:—prdQ—fwh da, vYweU (2)
Q

Ih

PIM with W? formulation is used in [8] for solving
two-dimensional electromagnetic problems. In that wohle t
gradient smoothing operation is performed based on nodes,
edges and cells. The results proved the capacity of those _ )
methods to generate very accurate solutions, especiadly YHerels = 93 andT is the unit outwards normal off.
edge based method. However, a three-dimensional electroC0nsidering the smoothing functiai locally constant over
magnetic application does not exist yet. This work preserix @nd equals to the inverse of its volunwg, then (4) is
a 3D Point Interpolation Method based on gradient smoothig§nPlified to X 1
with weakened-weak formulation. The method is applied to VV = $f V Rdr (5)
an electrostatic problem for validation purposes. Finédlhe x JI3
results are compared to those obtained by the FEM. which is the smoothed gradient ¥fin Q3.

%vzfvv“v—ridg— V VW0 (4)
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The next step is to divide the problem domain irftQ 15
smoothing domains with no overlap. Therewith, we can af
proximate the gradient in the weak form (2) by the smoothe 2 ' ]
gradient (5), resulting in the weakened-weak form

Ne 25 b

Zevs%w-%vz—fw;)dg— whd, vYweUg (6) _

i=1 Q Th o I i
whereV? is the volume of théth smoothing domain andg ;3 a5l |
is the test function space, which now must beGhQ) [7]. ~
This means that only the function (and not its derivatives al |
must be square integrable ow@r a weaker requirement with
respect to the test functions of the weak form. The integnati | |
of the weakened-weak form is carried out using the smoothir —=— FEM
domains already constructed. 5 ‘ ‘ ‘ ‘ (Lo FS-PIM
B. Point Interpolation Method oo e 1 |og10(h;)'8 oo e

The scalar potentiaV in (6) is approximated by the Point
Interpolation Method [6]. PIM uses linear polynomials ireth
basis to generate the shape functions with consistehcy 1@
approximation\V"(x) at pointx is given by

Figure 1: Numerical solution error for FS-PIM and FEMis
the distance between nodes.

n superconvergence for models based on weakened-weak forms
Vi) =" pia @ 8] [7].

i=1 The treated problem indicates FS-PIM as a good alternative
whereg; is the codicient for theith polynomial termp; and to FEM in 3D electromagnetics. More realistic problems that
n is the number of nodes in the support domairxof show the robustness of the method even in the presence of

The support domain is a set of nodes in the vicinity dbw quality mesh elements will be presented in the extended

point X used to compute the shape functions. In this workersion of this paper.
T4 scheme is used for support nodes selection [6]. T4 scheme
uses the tetrahedral integration mesh and selects theidegert
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