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Abstract—This work presents the Face-Based Gradient
Smoothing Point Interpolation Method (FS-PIM), a numerical
method derived from the Point Interpolation Method that solves
three-dimensional boundary value problems. FS-PIM is sup-
ported by the theory of G-space, weakened-weak formulations
and the gradient smoothing operation. The obtained resultsshow
that both convergence rate and accuracy of the approximation
generated by FS-PIM are better than the ones presented by the
Finite Element Method.

Index Terms—Meshless methods, point interpolation methods,
gradient smoothing, weakened-weak form, three-dimensional.

I. Introduction

The development of the Point Interpolation Method (PIM)
and its application in electromagnetics have increased in the
last years. Efforts have been made on frequency and time-
domain modeling with methods based on strong forms [1], [2],
on formulations based on weak forms combined with global
Galerkin methods [3] and on local Petrov-Galerkin methods
[4]. Parallel algorithms on graphics processing units (GPUs)
has also been proposed to reduce the processing time [5].

A new PIM approach that works with weakened-weak forms
(W2) was proposed by [6]. This class of methods uses the
operation of gradient smoothing to approximate the derivatives
of the field function in global Galerkin weak forms [7].
With such modifications, a weakened-weak formulation arises
overcoming the problem of the incompatibility of PIM shape
functions that impacts negatively the quality of the numerical
solution [3]. The W2 form also brings to PIM convergence
rates higher than the Finite Element Method (FEM) with more
accurate approximations [6].

PIM with W2 formulation is used in [8] for solving
two-dimensional electromagnetic problems. In that work, the
gradient smoothing operation is performed based on nodes,
edges and cells. The results proved the capacity of those
methods to generate very accurate solutions, especially the
edge based method. However, a three-dimensional electro-
magnetic application does not exist yet. This work presents
a 3D Point Interpolation Method based on gradient smoothing
with weakened-weak formulation. The method is applied to
an electrostatic problem for validation purposes. Finally, the
results are compared to those obtained by the FEM.

II. Mathematical Formulation

A. Gradient Smoothing and Weakened-Weak Form

Three-dimensional electrostatic problems are formulatedas
follows: given a permittivityǫ and a volume charge densityρ,
determine the scalar potentialV : Ω ⊂ R3

→ R that satisfies

∇ · (ǫ∇V) = ρ on Ω

V = g on Γg

−ǫ
∂V
∂n
= h on Γh (1)

where g and h are the Dirichlet and Neumann boundary
conditions, respectively, on the boundariesΓg and Γh, and
∂Ω = Γ = Γg ∪ Γh with Γg ∩ Γh = ∅.

The weak form of the problem (1) can be obtained using
the weighted residual method and it is expressed as:∫
Ω

ǫ∇w · ∇V dΩ = −
∫
Ω

wρ dΩ −
∫
Γh

wh dΓ, ∀w ∈ U (2)

wherew is the test function of the weighted residual method
and U is the test function space, in which the function must
belong toH1(Ω), i.e., its first order derivatives must be square
integrable overΩ.

The gradient ofV can be approximated by an integral rep-
resentation in a predefined domain called smoothing domain
Ω

s
x [6]

∇̂V =
∫
Ω

s
x

∇VŴdΩ =
∫
Ω

s
x

∇(VŴ)dΩ −
∫
Ω

s
x

V ∇ŴdΩ (3)

whereŴ is called smoothing function. Applying the gradient
theorem in (3), we have

∇̂V =
∫
Γ

s
x

VŴ −→n dΩ −
∫
Ω

s
x

V ∇ŴdΩ (4)

whereΓs
x = ∂Ω

s
x and−→n is the unit outwards normal onΓs

x.
Considering the smoothing function̂W locally constant over
Ω

s
x and equals to the inverse of its volumeVs

x, then (4) is
simplified to

∇̂V =
1
Vs

x

∫
Γ

s
x

V −→n dΓ (5)

which is the smoothed gradient ofV in Ωs
x.



The next step is to divide the problem domain intoNs

smoothing domains with no overlap. Therewith, we can ap-
proximate the gradient in the weak form (2) by the smoothed
gradient (5), resulting in the weakened-weak form

Ns∑
i=1

ǫVs
i ∇̂w · ∇̂V = −

∫
Ω

wρ dΩ−
∫
Γh

wh dΓ, ∀w ∈ UG (6)

whereVs
i is the volume of theith smoothing domain andUG

is the test function space, which now must be inG1(Ω) [7].
This means that only the function (and not its derivatives)
must be square integrable overΩ, a weaker requirement with
respect to the test functions of the weak form. The integration
of the weakened-weak form is carried out using the smoothing
domains already constructed.

B. Point Interpolation Method

The scalar potentialV in (6) is approximated by the Point
Interpolation Method [6]. PIM uses linear polynomials in the
basis to generate the shape functions with consistency C1. The
approximationVh(x) at pointx is given by

Vh(x) =
n∑

i=1

pi(x)ai (7)

whereai is the coefficient for theith polynomial termpi and
n is the number of nodes in the support domain ofx.

The support domain is a set of nodes in the vicinity of
point x used to compute the shape functions. In this work,
T4 scheme is used for support nodes selection [6]. T4 scheme
uses the tetrahedral integration mesh and selects the 4 vertices
of the cell where the point is located as the support nodes.

C. Construction of the Smoothing Domains

To compute the smoothed gradients, it is necessary to build
the smoothing domains. As seen in Section II-A, overlaps are
forbidden and the union of all smoothing domais must cover
the entire problem domain.

The smoothing domains are constructed based on the tri-
angular faces of the tetrahedral mesh. For each facef , a
smoothing domainΩs

f is created connecting the vertices of
f to the centroids of the cells adjacent tof .

III. Numerical Results and Conclusions

In this section we test FS-PIM against an electrostatic
problem with a unit cubic domain having a known analytical
solution. The top face is at an electric potential that varies
sinusoidally from 0V to 10V. The other faces are at a potential
of 0V. No electric charge is present in the problem.

The solution is computed using 5 different tetrahedral
meshes with equally spaced nodes. The error is computed for
the potentialV at arbitrally sampled points. We also test FEM
with the same meshes for comparison. Figure 1 shows the
errors for both methods.

It can be seen that FS-PIM generates better approximations
than FEM. While the latter presents a convergence rate of 2.0,
as expected for linear models based on weak forms, the former
presents a convergence rate of 2.4, confirming the presence of

Figure 1: Numerical solution error for FS-PIM and FEM.h is
the distance between nodes.

superconvergence for models based on weakened-weak forms
[8], [7].

The treated problem indicates FS-PIM as a good alternative
to FEM in 3D electromagnetics. More realistic problems that
show the robustness of the method even in the presence of
low quality mesh elements will be presented in the extended
version of this paper.
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