

Abstract— In this paper, the performance of a parallel sparse

direct solver on a shared memory multicore system is presented.

Large size test matrices arising from finite element simulation of

induction heating industrial applications are used in order to

evaluate the performance improvements due to low-rank

representations and multicore parallelization.

Index Terms— Eddy currents, finite element methods, sparse

matrices, parallel algorithms, approximation algorithms.

I. INTRODUCTION

In 3D finite element simulation of induction heating

processes, the solution time is a limiting factor in the design

and optimization of new devices. Time-harmonic

electromagnetic problems coupled with thermal problems are

solved in sequence, and the linear system solution in the

electromagnetic problem is often the bottleneck. Direct solvers

are preferred to iterative ones when convergence and stability

issues. Therefore, an efficient direct method to solve large

sparse complex matrices should exploit parallelization and

reduce memory consumption. In this paper, a reduction of

memory requirements through low-rank techniques and

factorization times through shared memory parallelism in

MUMPS (MUltifrontal Massively Parallel sparse direct

Solver) will be discussed [2]. Matrices arise from the

modelization of induction heating industrial devices. Heating

of a susceptor by pancake coils and gear induction hardening

are taken as test benchmarks. Geometric model design,

meshing and matrix building are performed by a commercial

software [3]. Starting from the same geometry (Pancake or

Gear), meshes are gradually refined in order to solve problems

of different sizes leading to matrices ranging from 320k to

1.5M degrees of freedom.

Fig. 1. Geometry of the pancake coil

Fig. 2. The figure represents only a slice of the whole inductor and workpiece

geometry because of symmetries

TABLE I

TESTED MATRICES

Test matrix Pancake 1 Pancake 2 Pancake 3 Pancake 4 Gear 1

Degrees of

freedom
320k 630k 1M 1.5M 370k

Number of

entries in LU

factors

990M 2.1G 5.2G 8.7G 700M

II. IMPROVEMENTS BY LOW-RANK APPROXIMATION

TECHNIQUES

A low-rank matrix can be represented in a form which

decreases its memory requirements and the complexity of

basic linear algebra operations it is involved in, such as matrix-

matrix products. This is formalized by Definition 3.1 in [6].

Let A be a matrix of size m × n. Let kε be the approximated

numerical rank of A at accuracy ε. A is said to be a low-rank

matrix if three matrices W of size m × kε , Z of size n × kε and

E of size m × n exist such that :

EZWA T  . (1)

where ||E||
2
 ≤ ε and kε (m + n) < mn.

kε is commonly referred to as the numerical rank at precision ε

and can be computed, together with W and Z with a Rank-

Revealing QR (RRQR) factorization. Low-rank approximation

techniques are based upon the idea to ignore E and simply

represent A as the product of W and Z
T
, at accuracy ε.

In practice, matrices coming from applicative problems are

not low-rank, which means that they cannot be directly

approximated. However, low-rank approximations can be

performed on sub-blocks defined by an appropriately chosen

partitioning of matrix indices [5]. Theoretical studies based on

mathematical properties of the underlying operators have

shown that variable sets that are far away in the domain tend to

Shared memory parallelism and low-rank approximation techniques

applied to direct solvers in FEM simulation

P. Amestoy
1
, A. Buttari

2
, G. Joslin

3
, J.-Y. L'Excellent

4,5
, M. Sid-Lakhdar

5
, C. Weisbecker

1
, M.

Forzan
6
, C. Pozza

6
, R. Perrin

7
, and V. Pellissier

7

1
INPT-IRIT, Toulouse, France,

2
CNRS-IRIT, Toulouse, France,

3
CERFACS, Toulouse, France

4
INRIA, Montbonnot, France,

5
ENS Lyon, France

6
Dep.t of Industrial Engineering, University of Padova, 35131 Italy

7
CEDRAT, Meylan, France

exhibit weak interactions, and the corresponding matrix block

has a low rank. To benefit from this property, a new low-rank

format called Block Low-Rank (BLR) has been developed and

exploited within internal data structures of the multifrontal

method used in the MUMPS software, in order to decrease the

memory consumption and the operation count of the solver.

Preliminary results show that the described method is more

efficient on large problems, which is a good property in the

context of large scale computing. As reported in Table 2, in

two test cases the memory footprint is reduced by a factor

almost of three and the complexity is almost halved. A few

steps of iterative refinement are performed to recover full

precision from the original approximated precision.

TABLE II

LOW-RANK IMPROVEMENTS

Test matrix Pancake 2 Pancake 4

LR threshold ε 10-8 10-10 10-14

Memory saved for factors

storage
35%

34% 14%

Operations saved for

factorization
60%

60% 29%

Scaled residual 2.3 x 10-16 1 x 10-12 3.5 x 10-16

III. IMPROVEMENTS OF SHARED MEMORY PARALLELISM IN

MUMPS

In order to solve a linear system, the multifrontal method

transforms the initial sparse matrix into an elimination tree of

much smaller dense matrices. This tree is traversed in a

topological order and each node is computed following a

partial LU decomposition. Then, a two-pass solve operation is

applied on each node of the tree in order to find the solution of

the original system.

The structure of the tree offers an inner parallelism, called

tree parallelism, in which different processes work on data

subsets, on different nodes of a network. This kind of

parallelism is already exploited by MUMPS in distributed

memory environments [5]. However, in shared memory

environments, only node parallelism is applied: many

processes collaborate on the decomposition, working on the

same node. In this approach, threaded BLAS libraries are

preferred in order to parallelize dense matrix operations. In

order to go further, the fork-join model of parallelism has been

implemented in code based on OpenMP directives. Our first

goal was then to exploit tree parallelism in shared memory

environments, by adopting algorithms commonly used in

distributed memory environments and by rearranging them to

multithreading. Therefore, the so called AlgL0 algorithm

consists in finding a separating layer in the tree, called L0,

such that node parallelism will still be applied above it, but

tree parallelism will be applied under it through OpenMP. The

use of adequate memory mapping policies allows to improve

the performance of MUMPS on SMP (Symmetric Multi

Processor) and NUMA (Non-Uniform Memory Access)

architectures. The localalloc policy, which consists in mapping

the memory pages on the local memory of the processor that

first touches them, is applied on data structures used under L0,

in order to achieve a better data locality and cache

exploitation. The interleave policy, which consists in

allocating the memory pages on all memory banks in a round-

robin fashion such that the allocated memory is spread over all

the physical memory, has been used on data structures above

L0 in order to improve the bandwidth.

Both MUMPS 4.10.0 and MUMPS 4.10.0 with new AlgL0

algorithm have been tested on the set of test matrices, with the

stated memory allocation techniques. As reported in Table 3,

this approach brings a remarkable reduction of computational

time on all matrices even if it tends to decrease on large

matrices, because the portion of work in the top of the tree

(above L0) increases in comparison to the workload in the

bottom of the tree. Furthermore, this gain is expected to rise

through the use of the interleave policy.

TABLE III

TIME SAVE BY USING MUMPS 4.10.0 WITH ALGL0 ALGORITHM

Test matrix Pancake 1 Pancake 2 Pancake 3 Gear 1

Time saving 13% 11% 8% 21%

IV. CONCLUSIONS

Significant improvements of parallel sparse direct solver

MUMPS have been successfully tested in 3D numerical

simulation of industrial applications of induction heating.

Preliminary results show a remarkable reduction of both

memory usage and number of operations to be performed.

Furthermore, both tree and node parallelism are exploited in

order to reduce the solution time.

REFERENCES

[1] F. Dughiero, M. Forzan, C. Pozza and E. Sieni, “A translational coupled

electromagnetic and thermal innovative model for induction welding of

tubes”, IEEE Trans. On Magn., vol. 48, no. 2, 2012.

[2] MUMPS, http://graal.ens-lyon.fr/MUMPS/, MUMPS users guide.

[3] CEDRAT, http://www.cedrat.com, Flux users guide.

[4] S. Börm, “Efficient numerical methods for non-local operators”,

European Mathematical Society, 2010.

[5] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent and

C. Weisbecker, “Improving multifrontal methods by means of Low-

Rank Approximations techniques”, SIAM 2012 Conference on Applied

Linear Algebra, LA12, Valencia, Spain, 2012.

[6] M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve

Elliptic Boundary Value Problems (Lecture Notes in Computational

Science and Engineering), Springer, 1 ed., 2008.

