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Abstract—This article details a novel energetic approach for 1
achieving stable higher order discretizations of constittive equa- T
tions in the Finite Integration Technique (FIT) and in its cousin,
the Cell Method (CM), in the basic case of two-dimensional '
discretization of frequency domain electromagnetic probéms -1 =¢!
over pairs of non-uniform Cartesian dual grids. !

Index Terms—Computational electromagnetics, Finite Integra- @!
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. INTRODUCTION -t

FIT and CM are discretization methods variously applieBigure 1: Pair of dual gridg, G. Oriented primal edges, 2
in computational electromagnetics. As it is well known,siie and oriented primal facé are outlined.
methods are based on the discretization of space by means
of a pair ofdual grids. Integral electromagnetic quantities are ~
associated to proper oriented geometric elements of the difee fluxesb; of B(r) across the:; faces ofG. Also letd be
grids in such a way that electromagnetic balance equatams the array of the fluxes; of D(r) across thenz = n. edges
be naturally discretized as exact equations. The disatatiz of G and leth be the arrayh; of the normal component of
of constitutive equations is the key point as it is the soM(r) at thens; = n; nodes ofG.
responsible of the accuracy and stability properties of theFaraday's equation and Ampere-Maxwell equation can be
numerical method [1]. Various efforts are reported in ftere exactly written in terms of the introduced dofs. A stablecset
for discretizing constitutive equations over differerdsses of order discretization of constitutive equations can be ewad
dual grids. A particularly convenient approach is émergetic  as follows. Let it be assumed thgt is composed of four
method introduced in [2], since it theoretically ensures-cocongruent squares of edge lengtand tha is determined by
sistency, stability and convergence of the discretizationer the¢ coordinate, as shown in Fig. 1. The general case in which
arbitrary polyhedral dual grids [3], [4]. this simple pair of dual grids is independently scaled alibreg
Despite many recent results reported in literature for dig-andy directions and assembled to form non-uniform pairs
cretizing constitutive equations, virtually no clue [5]igts of larger Cartesian dual grids follow from this case.
on how to increase the order of discretization with respectLet wi(r), with i = 1,...n. = 12, be a set of basis
to the first order. In this paper this problem is attacked byfenctions allowing to exactly reconstruct any affine fiddr)
novel approach which extends the energetic method [2]. THiem its circulationse; and letw'(r), withi =1,...ny = 4,
details of such approach are provided in the basic casehsfa set of basis functions allowing to exactly reconstragt a
the second-order discretization of constitutive equatiover affine field B(r) from its fluxesb;. Referring to Fig. 1, it can
pairs of non-uniform Cartesian dual grids for two-dimemnsio be assumed

frequency domain electromagnetic problems. wl(z,y) = a, (—z/2 + P(x)/2)(1/2 — y) 1)
e ) e - <y g/

[I. SECOND ORDERDISCRETIZATION OF CONSTITUTIVE w2(z,y) = a, (1 —P(x))(1/2 —y), 2

EQUATIONS wi(e.y) = a: (1/2 = 2)(1/2 ~y), 3)

A two-dimensional electromagnetic problem in the fre-
guency domain is analyzed within the spacial regidn
Without loss of generality, let the electric fiel(r) and the
electric displacemenD(r), functions of the position vector P(0) =0, (4)
r = (z,y), be tangent td2, and let the magnetic fiel#i(r) P(1) =1, (5)
and the magnetic inductioB(r) be normal tof2. P(-2) = P(x) ©6)

The Q2 region is discretized by a Cartesian primal géd '
and a Cartesian dual grig and degrees of freedom (dofs) aréThe basis functions for the other edges and faces can be
introduced as follows. Lee be the array of the circulationsstraightforwardly derived from (1)-(3) as a consequence of
e; of E(r) along then,. edges ofG and letb be the array of geometrical symmetry.

in which a,, a, are unit vectors directed as tlyeand > axes
andP(z) is any function such that



Let F, by the vector space determined by the three func-

tions —z/2 + P(x)/2, 1 — P(z) andz/2 + P(z)/2 and let e
L, be alinear functional of functions f(x) such that wb|---h
b
( ) H (7) %""E g Second order referén /” g [ F
(f(:r)) =0if f(z) = —f(==), (8) g
L, (f*(x)) >0, 9) 8. .
L. (f*(z)) = 0 and f(z) € F, implies f(z) = 0.  (10) 4 P
It is noted thatl, can be written in the form ] " . Pl g
)= [ Quw)fa)ds o

Figure 2: Relative error in maximum norm of dafsb, d, h,

in which Q,.(x) is either a function or a generalized function:
with respect toh;.

Let now £, = £, and let the linear functional = £, o £,
be introduced for functiong(zx, y), so that

in which ¢ is Dirac’s delta and
(z,y)) / Q. (z)dx / Q,(y ,y)dy
n=01+¢)/2,
This functional is a second order approximation of the inte- co = 6 — 8¢,

gration operator ovef). The elements oy =y = 46— 2.

ij i(r) - 2(r)w
me' = L(we(r) - E(r)we(r)), It can be noted that in all situations the dual edges define
of matrix M, with 7,7 =1,...,n. = 12, and the elements golden sections of the primal edges, as established by (13). It

mi = L(w'(r) .Izj(r)wj (r)) can also be observed that the same set of conditions (7)-(10)
v Y P and (13)-(15) leads to stable second order discretizatidns
of matrix M,, with 4,57 = 1,...,ny = 4, can now be both the electric and magnetic constitutive equationstly,as

determined as functions of the electric permittivitgr) and it is noted that ittannot be assumed,. = Q, = 1, since (14)
magnetic reluctivityw(r), assumed to be symmetric, positivevould not be satisfied. As a result the integration operator over
definite tensors. These expressions differ from those of theused in the energetic approach [2] for achieving stable first
energetic approach [2] just in the substitution of the irdéign  order discretizations of constitutive equatiotanot be em-
operator over) with £. With proper choices of, P and ployed also for stable second order discretizations. Quele

Q. = Q,, equations its second order approximatiaf can be used.
d = M_e, (12) I11. NUMERICAL RESULTS
h = M,b, (12) A T My is injected into a section of rectangular waveguide

determine stable, second order discretizations of comsgt terminated by a PEC. The discretization (16), (17) is applie

equations. In fact the followina proberties can be ea3|fo non-uniform Cartesian grids with decreasing maximum
q 9 prop eflametershM As expected, the relative errors all dofs e,

proven.
Property 1: Equations (11), (12¢xactlytransforms the cir- b, d, h exhibit second order convergence, as shown in Fig. 2.
culations ofE(r) along the edges @f into the fluxes oD(r) IV. CONCLUSIONS

through the edges & and the fluxes oB(r) across the faces  The full paper will include complete proofs and more details
of G into the components df(r) at the nodes of, for all of the numerical analysis.
affinefields, if and only if it is
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