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Abstract—In this study, we try to develop the application of
meshless method, particularly conventional radial point inter-
polation method (CRPIM), in computational electromagnetics.
Indeed, this development focuses on the two important factors of
every numerical algorithm, i.e., the computational time and the
accuracy. Comparing the identity of shape and basis functions
in RPIM, a new algorithm is proposed by which the shape and
basis functions coincide. As a result, the computational time
of existing RPIM in electromagnetics reduces, approximately
to half. Also, the accuracy improves even in comparison with
some developed methods as finite element method (FEM) and
CRPIM. All improvements are shown in analysis of a parallel
plate waveguide with internal discontinuity.

Index Terms—Meshless Method, functional analysis, basis
function, shape function, parallel waveguide.

I. Introduction

The RPIM is one of the most common and efficient mesh-
less techniques in computational electromagnetics. Due to
the independency of this method from any mesh generation,
potentially, it is applicable to more complicated geometries.
Also, in contrast with FEM whose approximation spaces are
of polynomials, the RPIM uses variety kinds of approximation
spaces as exponential, logarithmic and etc [1]. So, its accuracy
can be more than FEM in some complicated wave propaga-
tions as discontinuity interfaces [2].

The computational time of RPIM is the main disadvantage
of the method, comparing with some other well-established
techniques. Above problem becomes more inefficient when
the RPIM is used as an industrial numerical package. The
source of this problem is the middle inversion matrix step
(MIMS) that constructs the shape functions according to basis
functions [3].

In this work, using the property of exponential basis func-
tion, a new basis function is proposed by which the MIMS is
eliminated. In fact, the new basis function takes a special form
such that appears as shape function. This new function reduces
the computational time of the meshless method. Furthermore,
it increases the accuracy of RPIM. This increment is due to the
elimination of some numerical error sources related to MIMS.

To see the improvements, practically, a parallel plate waveg-
uide with an internal dielectric that acts as discontinuity will
be analyzed using RPIM supplemented by the new basis
function. Both error calculation and computational time of this
simulation show the validity of approach.

II. The Conventional Radial Point InterpolationMethod
Let consider the general form of 2D scalar wave equation
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where Ω is the problem domain, ax, ay, g and f are known
functions, supplemented by the following Dirichlet and mixed
boundary conditions as
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where L = L1 + L2 is the counter, enclosing Ω with outward
normal vector n̂. Again, γ, q and b0 are known functions [4].

Using Ritz’s method, the functional (weak form) of above
equations is
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The CRPIM proposes the following approximation as the
solution of (4)

ũ(x, y) = ũ =

n∑
i=1

aiBi(x, y) (5)

where ai is unknown coefficient and Bi(x, y) is the
basis f unction, both at ith node; n is the number of scattered
nodes in the problem domain Ω [2]. The matrix representation
of (5) is

ũ = ABT (6)

A. Conventional Basis Function

One of the most common basis functions in CRPIM is the
exponential one by shape parameter α, as

Bi(x, y) = exp
(
−α

[
(x − xi)2 + (y − yi)2

])
(7)

Even though (5) is a solution, but it must be rewritten accord-
ing to the value of solution function at scattered nodes [3]. So,
the CRPIM proposes the following approximation, equivalent
to (5), as

ũ =

n∑
i=1

uiS i(x, y) (8)



where ui is the value of solution function and S i is the
shape f unction, both at ith node [1]. The matrix representation
of above equation is

ũ = US T (9)

To find the shape functions, a (n × n) MIMS is constructed
as below

S T = BT B−1
0 (10)

where

B0 =


B1(x1, y1) . . . Bn(x1, y1)
B1(x2, y2) . . . Bn(x2, y2)
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...
B1(xn, yn) . . . Bn(xn, yn)

 (11)

Afterwards, the system of equations is assembled substituting
(8) into (4) as

[Ki j]n×nUn×1 = [bi1]n×1 (12)

Both (10) and (12) take noticeable computational time in
calculation process.

B. New Basis Function

When S i is derived, it possesses the three basic properties,
i.e., compactly supported, even symmetry and Kronecker delta
property [1] as shown in Figure 1. For the sake of generality
(and due to the strict page limitation of short paper submis-
sion), let express the new (direct) basis function, directly, as

Bdirect
i (x, y) =

(
−β

[
(x − xi)2 + (y − yi)2

]
+ 1

)
× exp

(
−α

[
(x − xi)2 + (y − yi)2

])
(13)

that contains two shape parameters α and β to control its shape.
More attention illustrates the role of α and β to take those
values by which all three properties of shape functions are
also satisfied by Bdirect

i [5]. Using trial and error method, α =

1.92 and β = 0.97 realize the aim (more concentration is on
Kronecker delta property).

Holding above properties, (11) changes to

Bdirect
0 = I (14)

as identity matrix and finally

S = Bdirect (15)

Indeed, this approach cancels the MIMS, reduces the com-
putational time and increases the accuracy of direct RPIM
(DRPIM).

III. Parallel PlateWaveguide with Internal Discontinuity

To prove the improvements in practice, the DRPIM is
applied to analyze a 2D parallel plate waveguide (Figure 2) in
which a partition of dielectric with εr = 4 acts as discontinuity
zone. Without any mention to governing equations (they can
be found in [4]), both reflection and transmission coefficients
of above structure has been calculated using different methods.
Figure 3 shows the error plots of these methods As seen, the
DRPIM is able to reach a given error in less computational
time and number of nodes.

Figure 1: Proposed shape (direct basis) function at xi = yi = 0.

Figure 2: Parallel plate waveguide with discontinuity.

IV. Conclusion
Identifying the main problem of CRPIM, i.e., computational

time, this paper proposed a new basis function that is able to
coincide with shape functions and cancel the MIMS.
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Figure 3: 2D error analysis using different methods.


