
Abstract—This paper discusses some numerical properties of 

the Boundary Element matrices derived from the electromagnetic 

analysis of high resolution human databases. Different solutions 

related to the choice of the problem equations and of the solver 

are proposed and compared by application to test problems.  

Index Terms—Boundary element methods, Electromagnetic 

fields, Matrix inversion. 

I. INTRODUCTION 

The evaluation of human exposure to electromagnetic 

radiating sources requires a detailed model of the body with 

the tissue properties and an efficient numerical method for the 

field solution in highly heterogeneous domains. A combined 

use of a voxel-based anatomic model [e.g. 1, 2] with the 

Boundary Element Method (BEM) [3] is a promising approach 

for this application. However in frequency domain this 

technique leads to complex systems whose matrices have very 

large numbers of non zero entries per row, so needing very 

robust and efficient solvers. 

This paper investigates from a numerical point of view the 

electromagnetic BEM analysis applied to high-resolution 

human models. Particular attention is devoted to the way of 

combining the field equations internal and external with 

respect to the surfaces bounding the volumes into which the 

body is divided, because this choice strongly affects the 

properties of the associated matrix. Then, different sparse 

direct and iterative solvers are applied for the system solution. 

Both open source direct solvers (UMFPACK [4], SuperLU [5] 

and SPOOLES [6]), and iterative solvers implemented by the 

authors are used. The reliability and accuracy of the numerical 

solution are finally discussed in some applications. 

II. FIELD FORMULATION  

The electromagnetic field problem is described by the 

Electric Field Integral Equation (EFIE) and Magnetic Field 

Integral Equation (MFIE), where, under sinusoidal conditions 

(angular frequency ω), the Green’s function is given by: 
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where r and r’ are the coordinate vectors of the observation 

and of the source points, while µ, σ and ε are the magnetic 

permeability, the electric conductivity and the electric 

permittivity respectively. 

The body is divided into homogeneous volumes generated 

by joining together adjacent voxels belonging to the same 

tissue. The resulting bounding surfaces of each volume are 

constituted by quadrangular elements (voxel faces).The 

electric and magnetic fields, assumed to be uniform on each 

element, are the unknowns. Thus, for a sub-volume Ω, 

bounded by M quadrangles, the field problem is governed by: 
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where Js and ρ are the impressed current density and the 

volume charge density of the sources (typically outside the 

body), ξ is the singularity factor (ξ = 0.5 on the surface and ξ = 

1 elsewhere) and n is the normal unit vector directed outwards 

Ω. The m-th element is the source point while, during the 

setting of the matrix, the computational point is the barycentre 

of the i-th element. Each vectorial equation is then transformed 

in a set of three scalar relations by projecting it on the normal 

and on two tangential unit vectors defined for the i-th element. 

For each quadrangle the problem involves six complex 

unknowns (the components of both the electric and magnetic 

fields), that can be defined on one side (conventionally called 

internal) or on the other one (external). We always adopt as 

unknowns the normal component of E and the tangential 

components of H on the “internal” side, while the tangential 

components of E and the normal component of H are assumed 

on the “external” side. Obviously, internal and external 

quantities can be linked through the interface conditions. 

III. APPLICATION AND NUMERICAL ANALYSIS 

The scalar equations associated to each unknown could be 

theoretically written with reference to the internal or external 

side. The case where all the relations are written on the same 

side (internal or external) is excluded, because it leads to a 

trivial problem. Three of the other possible choices to mix the 

two points of view are here investigated: 

A1) The relations are written according to the choice of the 

unknowns (e.g. the equation for the normal component of E is 

developed in the inner volume, the relation for the normal 

component of H refers to the external region and so on). 
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A2) For each unknown the couples of equations written on 

the internal and external side are summed together. 

A3) The equations are written as in the previous case, but 

then they are combined with suitable complex weights so that 

the main diagonal of the matrix becomes unitary. 

The proposed approach is applied to a portion of a human 

model belonging to the Virtual Family [4], radiated by a coil 

which is supplied at 100 kHz and 100 MHz. A first 

representation of this domain leads to a problem with 1626 

unknowns and 1132714 non-zero matrix elements. The 

analysis of the three resulting BEM matrices for the two 

frequencies is summarized in Tab. I, which presents the 

inverse conditioning number for all the matrices. The best 

quality of choice A2 is evident. 

TABLE I 

INVERSE CONDITIONING NUMBER 
100 kHz 100 MHz 

A1 A2 A3 A1 A2 A3 

8.3E-6 5.5E-5 6.9E-12 4.7E-5 6.2E-4 2.2E-4 

 

Both sparse direct and iterative solvers are considered in 

the system solution. The direct solvers are more robust than 

the iterative ones, being capable of computing a solution 

almost independently from the matrix properties; however, 

they require more memory and CPU resources. Moreover, 

since implementing a sparse direct solver is a very challenging 

task, it is common practice to use already available sparse 

direct solvers, both closed source and open source, rather than 

coding them. It is to be noted that most of the existing sparse 

direct solvers were developed for finite difference or finite 

element matrices, i.e. for matrices much more sparse than the 

BEM matrices. The sparse direct solvers here compared are 

UMFPACK [5], SuperLU [6] and SPOOLES [7], indicated as 

M1, M2, M3, respectively; however, only SPOOLES is 

capable of performing its task on the BEM matrices. 

The Lanczos family iterative solvers [8] are the most 

popular methods in computational electromagnetics. Between 

them, only GMRES (M4) and BiCGSTAB can be chosen 

because the systems to be solved have complex and non-

symmetric matrices, while older solvers (BiCG and CGS) are 

not considered here. Every Lanczos-based method performs 

matrix-vector products and auxiliary operations on the product 

results. Generally, the solver efficiency depends on the 

balancing of the amount of matrix-vector products with the 

auxiliary operations. In this regard, GMRES minimizes the 

number of matrix-vector products at the cost of heavy auxiliary 

operations, while BiCGSTAB requires much lighter auxiliary 

operations but a higher amount of matrix-vector products. For 

the BEM matrices, having many non zero entries per row, it is 

preferable to minimize the amount of matrix-vector products, 

hence GMRES is expected to be the best performing. 

The performances of four solvers, applied to the previous 

domain, are compared in terms of expecting time (s) and 

presented in Tab. II, where for GMRES (restarting parameter  

p = 20, convergence tolerance = 1·10
-6

) the iteration number is 

reported between brakets. The superiority of GMRES is not a 

matter of discussion and the best quality of combination A2 is 

also confirmed. 

TABLE II 

EXPECTING TIME (s) FOR THE CONSIDERED SOLVERS 
 100 kHz 100 MHz 

 A1 A2 A3 A1 A2 A3 

M1 Fail Fail Fail Fail Fail Fail 

M2 3.30 3.30 3.34 3.31 3.32 3.45 

M3 1.92 1.91 29.14 1.93 1.94 1.93 

M4 
0.68 

(72) 

0.37 

(13) 
- 

0.97 

(125) 

0.27 

(21) 

0.53 

(45) 

 

In a more detailed domain model (36804 unknowns; non-

232963060 zero elements) a small cylinder, simulating a 

medical implant, is included. In Tab. III the comparison (in 

terms of expecting time and number of iterations) is performed 

only for arrangement A2 at a frequency of 100 MHz, varying 

the cylinder conductivity (σ1 = 1 MS/m; σ2 = 0.5 MS/m; σ3 = 

0.1 MS/m;). The SuperLU (M2) always fails, reporting not 

enough memory to perform factorization. In GMRES the 

convergence tolerance is fixed to 1·10
-6

 and some values of the 

restarting parameter p are analyzed.  

TABLE III 

EXPECTING TIME (s) FOR THE CONSIDERED SOLVERS 
 p σ1  σ 2 σ 3 

M3 - 4074. 4090. 4099. 

M4 20 Fail Fail 
1313. 

(2362) 

M4 40 
685. 

(1227) 

546. 

(980) 

248. 

(442) 

M4 60 
375. 

(671) 

338. 

(600) 

168. 

(303) 

M4 80 
235. 

(423) 

182. 

(327) 

122. 

(218) 

M4 100 
195. 

(351) 

166. 

(297) 

119. 

(215) 
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