
Abstract—This paper presents asymptotic boundary conditions 

(ABCs) suitable for the finite element modeling of 2D and 3D 

electrical field problem with open boundaries. The general form 

of the solution to Laplace’s equation is used to derive the closed-

form expressions for the Nth order ABCs on circular, elliptical 

and spherical boundaries. To the best knowledge of the authors of 

this paper, the expressions have not yet been reported in the 

literature. The 1st and 2nd order ABCs, which can be easily 

implemented into existing finite element codes, are discussed in 

details, also for an arbitrary shape of the finite element region in 

2D and for box-shaped boundaries in 3D. Implementation of the 

ABCs into commercial finite element software COMSOL 

Multiphysics is presented. Numerical examples are given. 

Index Terms—Asymptotic boundary conditions, finite element 

method, open boundary problems, static fields. 

I. INTRODUCTION 

Many 2D and 3D electrical field problems can be 

considered as being of the exterior form, that is the problem 

domain is unbounded. Since the finite element method is a 

finite domain method, special techniques must be employed 

when the solution domain is infinite. Over the last three 

decades various methods of analysis for the open boundary 

static and quasistatic electromagnetic field problems have been 

investigated [1], [2], [3], [4], [5], [6], [7]. Among the methods, 

asymptotic boundary conditions (ABCs) seem to be very 

attractive from the numerical point of view. In the present 

paper we discuss different aspects of the ABCs for the finite 

element analysis of 2D and 3D open boundary electrical field 

problems. General expressions for the Nth order ABCs on 

circular, elliptical and spherical boundaries and numerical 

examples are given.  

II. ASYMPTOTIC BOUNDARY CONDITIONS ON CIRCULAR, 

ELLIPTICAL AND SPHERICAL BOUNDARIES 

To solve elliptic boundary value problems in an infinite 

domain by the finite element method, it is normal to divide the 

unbounded domain by an artificial boundary Γ into an interior 

region Ri (where sources, heterogeneities, anisotropies, etc. 

may exist) and a residual, uniform region Re. When using the 

finite element method in Ri, some boundary conditions must be 

imposed on the artificial boundary Γ. The boundary conditions 

(called the ABCs) should mimic the behavior of the unknown 

potential V at infinity and give reasonably accurate results in 

the interior region Ri. The potential V in the exterior region Re 

(and in the outermost part of Ri) satisfies the Laplace equation: 

02 =∇ V                                              (1) 
 

The general solutions to (1), if the potential tends to zero at 

infinity, can be expressed as: 

2D, polar coordinates (r, ϕ) 

( ) ( )ϕϕ ∑
∞

=

−=
1

1,
n

n

n FrrV                                  (2) 

2D, elliptical coordinates (η, ψ) 
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3D, spherical coordinates (R, θ, ϕ) 
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The solutions (2), (3) and (4) can be used to obtain ABCs on 

the artificial boundary Γ. After some algebra, we have found 

general expressions for the Nth order ABCs on circular, 

elliptical and spherical boundaries. They are as follows: 

2D, circular boundary r = d 
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2D, elliptical boundary η = η0 
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3D, spherical boundary R = d 
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The coefficients ( )N

mα  are known as coefficients of the 

Laguerre polynomials, whereas the coefficients ( )N

mβ  are the 

unsigned Stirling numbers of the first kind and can be 

calculated by the recurrence relation: 
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for m > 0, with the initial conditions: 
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To the best knowledge of the authors of this paper, the ABCs 

(5), (6) and (7) have not yet been reported in the literature in 

such forms. No doubt, that the closed-form expressions for the 

Nth order ABCs are very important from the theoretical point 
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of view, however, in fact only the first and second order ABCs 

can be relatively easily implemented into existing finite 

element codes. The boundary contribution in the finite element 

method enters into a line integral representation over the outer 

boundary Γ, where the integrand is a product of the weighting 

function (shape function) and the normal derivative of the 

unknown function V. Hence, the ABCs need to be imposed on 

the normal derivative of V. In a full version of the paper the 

first and second order ABCs will be discussed in details. 

III. ASYMPTOTIC BOUNDARY CONDITIONS FOR BOX-SHAPED 

BOUNDARIES 

The choice of the artificial boundary to be a circle (ellipse) 

in two dimensions or a sphere in three dimensions enabled 

simple derivation of the ABCs. However, such boundaries are 

uneconomical for problems with large aspect ratios. In a full 

version of the paper an arbitrary shape of the two-dimensional 

finite element region will be discussed. In the present digest 

the ABCs for box-shaped (3D) boundaries are considered. It is 

necessary to derive the appropriate normal derivative 

expressions for the different faces of the box representing the 

outer boundary Γ. Using the relations between the Cartesian 

and spherical coordinates, we have found the relevant ABCs: 

3D, 1st order ABC, x = const = d 
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3D, 2nd order ABC, x = const = d 
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with the conditions on the other faces obtained by replacing x 

with y and y with x for y = const = d, and x with z and z with x 

for z = const = d (in (9) we have used the 1st order ABC to 

approximate the terms ∂
2
V/∂x∂y and ∂

2
V/∂x∂z; condition (9) 

differs from that given in [2]). 

An implementation of ABCs in FEM program is relatively 

simple when the code of the program is available. However, 

commercial programs are usually closed-source software 

packages. Fortunately, in COMSOL Multiphysics it is enough 

to choose so called surface charge boundary conditions, 

n⋅⋅⋅⋅D = ρs, in the boundary conditions section. In the section 

modifications of typical boundary conditions are possible in an 

easy way by introducing user’s own formulas. 

IV. NUMERICAL EXAMPLE 

A simple 2D problem with a known closed-form solution 

was considered. This was the scalar potential distribution due 

to a dipole consisting of two lines with charge densities ± λ on 

the x-axis at positions x = ± a, respectively. The problem was 

solved numerically with a = 0.5 and λ = ε0. This example was 

chosen in [1] for testing infinite elements. Due to symmetry, 

the domain of solution was only one-quarter of the plane. 

Solutions of the problem by different techniques are compared 

qualitatively in Fig. 1 (equipotential lines are shown in each 

case). To check if the methods work well, a strange form of the 

finite element region with cut-out was chosen for calculation. 
 

 
Fig. 1.  Test problem: a) finite element mesh, b) analytical solution, c) zero 

Dirichlet boundary condition, d) zero Neumann boundary condition, 

e) infinite elements [1], f) 1st order ABC  
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