
Abstract—A new numerical scheme is proposed for the compu-

tation of the corona space charge density and electric field 

distributions in wire-duct electrode configurations. We use a 

technique based on a combination of finite element and donor cell 

methods (FEM-DCM). The solution procedure is obtained 

iteratively by using the Newton-Raphson algorithm in order to 

converge to a self-consistent solution. An electric vector potential 

formulation is used for the computation of the electrostatic field 

whereas the current continuity equation is applied for the 

derivation of the space charge density. The same mesh is used 

throughout the whole iterative procedure, the Kaptzov condition 

is easy to handle and there is no need for an outer loop in order to 

impose the correct charge condition on the surface of the corona 

wire electrode.  

Index Terms—electric corona discharges, finite element 

methods, numerical simulation. 

I. INTRODUCTION 

The electric corona discharge is of common use in 

numerous engineering applications such as electrostatic 

precipitation [1], decomposition of toxic gases, ozone genera-

tion and others. However it can also happen as an unwanted 

phenomenon such as in high voltage transmission overhead 

lines where it is responsible of power losses that must be 

avoided. In any case, it is important to have an accurate 

modeling in order to either optimize the devices or minimize 

the losses in transmission grids. 

Simulation of the electric corona discharge is not obvious 

since the related set of equations contains a nonlinear coupling 

between the electrostatic field and space charge quantities. 

Both of them depend on each other so that an iterative scheme 

is needed to find a self-consistent solution. The classical 

formulation for the electric field problem is the Poisson 

equation which describes the electric scalar potential under 

suitable boundary conditions and a given space charge 

distribution. A particular additional boundary condition related 

to the corona effect must also be considered. That is the 

constancy of the value of the normal electric field on the 

corona electrode for voltages beyond the corona inception 

level (Kaptzov condition). The field is then equal to the onset 

value E0 obtained from Peek’s formula. The finite element 

method (FEM) is the most used technique for the numerical 

solution of the electrostatic field problem [2], [3]. As the 

electric space charges move, the charge problem is governed 

by the current continuity condition that allows the computation 

of the charge distribution under the electric field computed in 

the field problem. Several techniques have been developed for 

the space charge density problem such as the method of 

characteristics (MOC) [3] and the donor-cell method (DCM) 

[4]. This last technique is a upstream finite volume scheme and 

it will be used here in combination with the FEM technique 

applied to an electric vector potential formulation instead of 

the traditional scalar one. 

The corona electrode configuration is often of wire type 

and therefore it will be considered in this paper. In this 

situation the Kaptzov condition is very easy to handle since the 

electric flux is now applied as the essential boundary condition 

instead of the scalar electric potential of the electrodes. The 

use of DCM is also more direct because it is directly applied to 

the FEM mesh and no Voronoi pattern is required as in [4]. 

The Newton-Raphson algorithm is employed for the conver-

gence to a self-consistent solution. Two-dimensional problems 

are considered as it is generally the case in this context but the 

extension to 3-D problems is straightforward. 

II. PROBLEM FORMULATION 

The governing equations of the corona problem are 

  D.  (1) 

 0 E  (2) 

 0.  J  (3) 

with the constitutive relations 

 ED 0  (4) 

 EJ k  (5) 

where D is the electrostatic displacement,  is the space charge 

density, E is the electric field, J is the electric current density, 

ε0 is the gas permittivity and k is the mobility of charge 

carriers. 

We introduce the electric vector potential P defined in 

accordance to (1):  

 PDD  s
 (6) 

where Ds is a source electric flux density satisfying (1) but not 

(2) a priori so that a gauge condition must be applied. 

Combining (1), (2) and (4), the following (translational) 2-D 

div-conform formulation is obtained: 
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with the boundary conditions 

 
ed,PP  on0andon00 Dnn.Ds

 (8) 

Domain  is the inter-electrode space, e relates to the 

conductor boundaries and d is the remaining part. The 

Dirichlet boundary condition on d allows the specification of 
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the electric displacement flux on the corona electrode. Note 

that for 2-D problems, P reduces to its z-component P and 

naturally satisfies the Coulomb gauge (.P = 0). 

The use of the FEM requires consistent discretization 

spaces for the variables. Quantities P and Ds (and also D) will 

be decomposed in nodal and “facet” element spaces 

respectively, related to 2-D problems. The space charge 

density  is implicitly discretized in the “volume” element 

space. Linear triangles are assumed for the mesh. A classical 

tree technique is used in order to define the source field where 

the flux of Ds is fixed at 0 on each edge of the tree (i.e. the 

gauge Ds.w = 0). The fluxes on the co-tree edges result from 

the Gauss’s law applied to Ds for the associated loops. An 

electric displacement field is then derived for a given space 

charge density in the inter-electrode interval from (7) and (6). 

The space charge density problem is solved by a upstream 

finite volume technique, the DC-method, applied by 

combining (3), (4) and (5) as in [4] but in a specific way since 

now we consider the same finite element mesh instead of the 

classical dual Delaunay-Voronoi polygon tessellation. The 

current which crosses a “facet” (i.e. an edge) of any triangle t 

is the flux of J directly obtained from the fluxes of D by using 

(4) and (5). The charge density  of the adjacent triangle is 

used for edges for which current enters the triangle t and 

charge density inside the triangle t is used for edges for which 

current leaves the triangle. This upstream difference method 

requires fixing the space charge density on the triangles along 

the corona electrode. Writing the current conservation for each 

triangle yields a system of linear equations which can be 

solved to determine the charge density distribution for a given 

electric displacement field. 

Finally, self-consistent distributions for both D and  are 

obtained by considering volume charge density and node 

potential values simultaneously as unknowns, and using 

Newton-Raphson’s method to converge upon the solution. 

Configurations with a wire (or several wires) as the corona 

electrode will be considered in this paper as it is often the case 

in most applications. The corona effect is assumed to take 

place simultaneously all around the surface of the wire so that 

the Kaptzov condition is automatically satisfied by fixing the 

electric flux F on this electrode through a suitable Dirichlet 

condition on d :  

 
00SEF   (9) 

S is the perimeter of the corona electrode and E0 is the onset 

value of the electric field derived from the Peek’s formula [1]:  
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where a is the electrode radius in cm,  is the relative air 

density factor and m is the roughness factor. The VI charac-

teristic of the investigated configuration is then obtained by 

increasing step by step the space charge density, assumed 

homogeneous, injected on the surface of the corona electrode. 

Then as an additional advantage there is no need for an outer 

loop in order to satisfy the Kaptzov condition as it is the case 

with the electric scalar potential formulation. The voltage 

value V is obtained in a “variationally correct” way [5]. 
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Fig. 1. Wire-duct precipitator modeling.  

III. NUMERICAL RESULTS 

The described algorithm has been applied for the simu-

lation of the wire-duct electrostatic precipitator with infinite 

number of wires shown in Fig. 1. Positive corona is assumed. 

All the required physical and geometrical parameters are 

indicated. Only the symmetry cell is discretized. The essential 

(Dirichlet) condition is applied on boundaries AE (P = F) and 

BCD (P = 0). The Kaptzov condition specifies the value E0 on 

arc AB (the same as for the experimental data of [6]). In Fig. 2 

the accuracy of our results is compared to some others deduc-

ed from various methods as described in [1] and [6]. 

Further explanation will be given in the full paper. 
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Fig. 2. Validation of our algorithm with published data. 
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