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Abstract—The Reduced Basis Method (RBM) generates low-
order models of parametrized partial differential equations
(PDEs) to allow for efficient evaluation of parametrized models
in many-query and real-time contexts.

We use the RBM to generate low order models of microscale
semiconductor devices under variation of geometry and fre-
quency. In particular, we focus on the efficient rigorous error
estimation, which enables to generate low-order models with
certified accuracy. We test and compare multiple techniques to
compute lower bounds to the discrete stability constant, which
is a challenging problem in the context of Maxwell’s equations.

Index Terms—Reduced order systems, Finite element methods,
Electromagnetic fields, Numerical analysis

I. Introduction

The Reduced Basis Method (RBM) generates low order
models for the efficient solution of parametrized partial dif-
ferential equations (PDEs) in real-time and many-query sce-
narios. The RBM employs rigorous error estimators to perform
the model reduction and to measure the quality of the reduced
simulation. In recent years, the RBM has been developed to
apply to a wide range of problems, of which [1] and the
references therein, give an overview.

We address the use of the RBM in a time-harmonic elec-
tromagnetic problem, which exhibits parameter variation in
geometry and frequency. We use the RBM in a 3D model of
a coplanar waveguide, as an example of a microscale semi-
conductor structure. Recent work in parametric model order
reduction (PMOR) within the electromagnetic regime uses
multipoint expansion techniques ([2], [3] and [4]) and proper
orthogonal decomposition (POD) ([5]). Geometric parameter
variations are also investigated in [4].

Section 2 introduces the model and the constitutive equa-
tions. Section 3 states the main properties of the reduced basis
model reduction, while section 4 gives details on the error
estimation. Finally, section 5 gives performance indices of the
model reduction.

II. Model Problem

As an example model, we consider the coplanar waveguide,
depicted in Fig. 1. The model setup is contained in a shielded
box with perfect electric conducting (PEC) boundary. We
consider three perfectly conducting striplines as shown in the
geometry. The system is excited at a discrete port and the
output is taken at a discrete port on the opposite end of the

Figure 1: Geometry of coplanar waveguide.

middle stripline. These discrete ports are used to model input
and output currents/voltages.

We consider the second order time-harmonic formulation of
Maxwell’s equations in the electric field E

∇ × µ−1∇ × E + jωσE − ω2εE = jωJ in Ω, (1)

subject to zero boundary conditions

E × n = 0 on ΓPEC.

We use the weak formulation of (1) with sesquilinear form
a(·, ·; ν) and linear form f (·; ν) as

a(E(ν),w; ν) = f (w; ν) ∀w ∈ X, (2)

where ν ∈ D ⊂ Rp denotes the parameter vector, E(ν) is the
parameter-dependent electric field, w a test function and X
the H(curl)-conforming finite element space, discretized with
Nédélec finite elements [6].

III. Reduced BasisMethod for time-harmonic EM-problems
The aim of the RBM is to determine a low order space XN

of dimension N, which approximates the parametric manifold

Mν = {E(ν)|ν ∈ D}

well. Given such a space XN , it is possible to gain accurate
approximations EN(ν) to E(ν) by solving (2) in XN

a(EN(ν),wN ; ν) = f (wN ; ν) ∀wN ∈ XN , (3)

i.e. projecting (2) onto XN .
An integral part in the model reduction are error estimators

∆N(ν), which give rigorous bounds to the approximation error
in the discrete H(curl) norm.



Additionally, the RBM requires fast evaluations of the error
estimator in the sense that the algorithmic complexity is
independent of the discretisation size of the full model. For
that, the RBM uses an affine decomposition [1] of the bilinear
and linear form

a(E(ν),w; ν) =

Qa∑
q=1

Θ
q
a(ν)aq(E(ν),w), (4)

f (w; ν) =

Q f∑
q=1

Θq(ν) f q
a (w).

Given a RB space XN = {ζ1, . . . , ζN}, the bilinear forms
aq(ζi, ζ j) are precomputed and plugged into (4) to allow a fast
assembly of the parameter-dependent system [1].

A. Geometric Parameters

To consider the linear combination of snapshots for different
geometries, the PDE is transformed from the parameter-
dependent domain Ω(ν) to a parameter-independent reference
domain Ω(ν).

With a domain decomposition of Ω(ν) into subdomains,
such that each subdomain under consideration can be found as
an affine transformation of the respective reference subdomain,
then the affine decomposition (4) can be derived from the affine
geometry transformations.

IV. Error Estimation

The error estimator for the electric field is given by

∆N(ν) =
‖r(·; ν)‖X′
βLB(ν)

,

with ‖r(·; ν)‖X′ the dual norm of the residual with respect to
the full scale discretised problem and βLB(ν) a lower bound
to the discrete inf-sup stability constant. The error estimator
gives rigorous bounds in the sense that

‖E(ν) − EN(ν)‖X ≤ ∆N(ν),

where X denotes the discrete H(curl) norm.
The computation of a lower bound to the discrete stability

constant βLB(ν) is the most time-consuming part in rigorous
error estimation, especially when applied to Maxwell’s equa-
tions, see [7].

We investigate the performance of different techniques for
obtaining lower bounds to the discrete stability constant, such
as successive constraint methods [7], the methods derived in
[9] and interpolation methods. For the example model of a
coplanar waveguide, the discrete stability constant is shown
in Fig. 2 under variation of frequency and the width of the
middle stripline.

V. Numerical Results

The full simulation has been performed with the finite
element package FEniCS using a discretization with first order
Nédélec finite elements. For our numerical experiments, we
used a discretization size of 52′134 degrees of freedom. The
selected parameter variation is the frequency, which varies in
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Figure 2: Stability constant plotted over variation of frequency
and geometry.

[0.6, 3.0] GHz and the width of the middle stripline, which
varies in [2.0, 14.0] mm.

We observed exponential convergence speed in our exper-
iments, in particular a relative error of less than 1% can
be achieved using 59 basis functions, which is a significant
reduction from the original number of degrees of freedom.
See [8] for more details on the model reduction performance
indices.

The RBM typically employs a successive constraint method
(SCM) to obtain lower bounds to the discrete stability constant.
In particular the application to Maxwell’s equations shows
slow convergence, see [7]. We test and compare different
variants of the SCM and apply certain modifications, like
introducing randomized constraints into the SCM which yields
speedup factors of 3 to 4.
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