
Abstract—For the optimal design of electromagnetic device 

with uncertainty, this paper proposes a new multi-objective 

reliability-based design optimization (RBDO) algorithm by 

optimizing the performance and maximizing the minimum 

reliability. Furthermore, the second-order sensitivity assisted 

Monte Carlo simulation (SSA-MCS) method is suggested for 

reliability analysis, where the second-order design sensitivity is 

implemented by a hybrid direct differentiation-adjoint variable 

method. The proposed multi-objective RBDO algorithm is 

investigated through application to the optimal design of a 

superconducting magnetic energy storage system. 

Index Terms— Multi-objective optimization, reliability, 

sensitivity-assisted Monte Carlo simulation, sensitivity analysis. 

I. INTRODUCTION 

In the electrical engineering, considerable robust design 

algorithms attempt to minimize performance variations [1]. 

The algorithm, which can guarantee the specific feasibility 

level in the probabilistic sense against uncertainty, however, 

has been scarcely presented. It deserves to be mentioned that 

the reliability-based design optimization (RBDO) from 

mechanical engineering, tries to improve the reliability of a 

design under uncertainty at the required level [2].  

Recently, also in electrical engineering, attention is paid to 

the reliability assessment and the RBDO [3]. The preliminary 

investigation only mentions the reliability index approach, of 

which the computational effort is very expensive for problems 

involving performance analysis by the finite element method 

(FEM). Therefore, in our previous research [4], we proposed a 

first-order sensitivity-assisted Monte Carlo simulation (FSA-

MCS) to efficiently evaluate reliability. However, it looks 

insufficient when researched problems involve bigger 

uncertainties or performance functions are strongly nonlinear. 

In this paper, for intensive study on the RBDO, the 

reliability metric is incorporated into a multi-objective RBDO 

problem. To improve the accuracy of the FSA-MCS method, 

the second-order sensitivity is studied by the hybrid direct 

differentiation-adjoint variable method. 

II. RELIABILITY CALCULATION AND RBDO ALGORITHMS 

A. Reliability Calculation  

Firstly, in the uncertainty set U(x) of a nominal design x 

[4], the performance constraint (g(x)0) at the test design ξ is 

approximated by using Taylor expansion as: 
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where g(x) and H(x) are the gradient vector and the Hessian 

matrix, respectively. The reliability is approximated as [4]: 
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where N is the number of random test designs and I[ ] is the 

indicator function. The numerical implementation of the SSA-

MCS is shown in Fig. 1. 

B. Second-Order Sensitivity Analysis Based on FEM 

In the FEM, the system matrix can be written as: 

[ ][ ] { }K A Q  (3) 

where [A] is the magnetic vector potential; [K] and [Q] are the 

stiffness matrix and the forcing vector, respectively. Based on 

(3), the second-order sensitivity of function g(x) with respect 

to design parameters pi and pj is derived as follows: 
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where [Ã ] is the converged solution of (3), [p] is related with 

nodal mesh, and [λ] is adjoint variable defined as follows: 

[ ][ ] [ ].K f A    (5) 

From (3), the derivative d[A]/dpi needed in (4) is obtained by 

solving equation: 
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In addition, other terms related with the constraint function are 

problem dependent and can be evaluated analytically. The 

above algorithm is the hybrid direct differentiation-adjoint 

variable method [5] due to usages of (5) and (6). Its 

computational cost is linearly proportional to the number of 

design parameters (t) and needs (t+2) times of FEM calls [5]. 

Multi-objective Optimization Approach to 

Reliability-Based Optimal Design of 

Electromagnetic Problems 
Ziyan Ren, Dianhai Zhang, and Chang-Seop Koh, Senior Member, IEEE 

College of Electrical and Computer Engineering, Chungbuk National University, Chungbuk, 361-763, Korea  

E-mail: renziyan@chungbuk.ac.kr 

For a specified design x,

Sensitivity analysis by FEM

Generate N test designs  in U(x)

Calculate g() for test designs 

Evaluate reliability

g(x) and H(x) 

 ( ) - +nU R k k    x ξ x ξ x

   

 

1
1( ) 0 ( )

1 ( ) 0
( )

0 ( ) 0

N
ii

i
i

i

R g I g
N
g

I g
g


 


 

x ξ

ξ
ξ

ξ

 
Fig. 1.  Flowchart of the second-order sensitivity-assisted MCS method. 



C. Multiobjective Reliability-Based Design Optimization 

The conventional RBDO problem is formulated as: 
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where R
t 

 is the predefined target reliability and m is the 

number of constraint function. Solving (7), one reliable 

solution can be obtained. In the real problem, however, it is 

more significant to learn how the reliable solutions change 

with different reliability values. Therefore, a multi-objective 

RBDO (MO-RBDO) problem is proposed as: 
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where Rmin is the minimum reliability among all constraints. 

Obviously, algorithm (8) can supply a Pareto-optimal set 

by making a tradeoff between the performance and reliability.   

III. NUMERICAL RESULT OF SUPERCONDUCTING MAGNETIC 

ENERGY STORAGE SYSTEM (SMES)  

The SMES is selected as the 22nd problem for testing of 

electromagnetic analysis method (TEAM 22) [6], In the 3-

parameter TEAM 22 [2], x=[R2, H2/2,D2]
T
 m, the objective 

function and constraints are: 
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where Bn=3 mT and other symbols are explained in [6].  

The constraint approximation by design sensitivity is 

compared in Fig. 2. Table I compares the reliability of 

different optimal designs. The results from the SSA-MCS are 

very close to the MCS by giving smaller errors.  

The parameters (particles/iterations) in the particle swarm 

optimization are set as: (30/200) for classical and RBDO 

problems and (50/300) for MO-RBDO. For reliability analysis, 

uncertainties in geometric variables are kσx=0.0392 m, J 

follow Gaussian distribution with μJ=[16.78,-15.51]
T
 MA/m

2 

and kσJ=0.45 MA/m
2
. During optimization, fixed values are 

R1=1.32 m, H1/2=1.07m, and D1=0.59 m. 

Table II compares optimization results of the RBDO and 

the classical optimum, where the number of test points in the 

SSA-MCS is 1,000,000. It is found that the classical optimum 

has very low reliability and has higher possibility, in this case 

46.33%, to violate the constraint g1(x)0. As the target 

reliability increases, the optimal design of the RBDO gives a 

little worse objective value such as R
t
=0.6 and 0.7; however, it 

locates further inside the feasible region by giving bigger 

margins to both constraints.   

Fig. 3 shows the optimization result of the proposed MO-

RBDO method together with optimum in Table II. It is found 

that the Pareto-front includes optimums obtained by the 

RBDO, and design A (one of the extreme solutions) is very 

similar to the classical optimal design. The Pareto front also 

provides important information to make a balance between the 

objective function and minimum reliability according to 

different requirements. If the constraints are extremely critical, 

design C with bigger reliability may be selected although it has 

very poor performance. Design B may be considered as a 

better solution in the general-purpose optimization since it 

makes a good trade-off between performance and reliability. 

Fig. 4 shows constraint values of each Pareto optimum, which 

reveals that a design with smaller margins for constraints will 

result in a lower reliability in Fig. 3 such as design A. 
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TABLE II 

OPTIMAL RESULTS OF RELIABILITY-BASED DESIGN OPTIMIZATION 

Rt R2 H2/2 D2 f(x) Bs
2 [T2] g1(x) a R(g1(x)0) 

Classical 1.8127 1.4963 0.2458 6.226E-5 7.522E-11 -0.1191 0.5367 

0.60 1.8229 1.4061 0.2592 3.076E-4 2.748E-9 -0.3534 0.6375 

0.70 1.8121 1.4885 0.2519 1.358E-2 6.511E-8 -0.5918 0.7209 
a All designs have enough margins for constraint g2(x)0. 
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Fig. 3.  Optimal results of the proposed MO-RBDO and the RBDO. 
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Fig. 4. Constraint values of each Pareto-optimal design. 
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Fig. 2.  Approximation of g2(x) for design x=[1.8127,1.4963,0.2458]T m. 

TABLE I 

RELIABILITY OF DIFFERENT OPTIMAL DESIGNS  

Different design x [m]  Reliability of g2(x) a 

R2 H2/2 D2  FSA-MCS SSA-MCS MCS 

3.0500 0.2460 0.4000  0.7200 0.7232 0.7231 

2.6602 0.5574 0.2218  0.9500 0.9512 0.9521 

3.0988 0.2644 0.3903  0.6679 0.6708 0.6716 

3.0197 0.3081 0.3496  0.5158 0.5215 0.5210 
a Reliability of g1(x) for all cases is 1.0, kσx=[0.03, 0.0196, 0.0196]T m 

and test designs in all MCSs are set 10,000. 
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