
Abstract—This paper proposes an open superconducting 
magnetic resonance imaging (MRI) magnet configuration with 
the addition of soft magnetic material. In order to obtain 
multiple optimization design objectives including high 
homogeneity in the imaging region, high magnetic field strength 
as well as low cost, a two-step optimization strategies are carried 
out, in which orthogonal design (OD) is, firstly, employed to 
define the key ones among several possible design variables and 
then response surface model (RSM) with high computation 
efficiency is utilized to simulate the objective function. The 
magnetic performance in the imaging region of MRI attains to 
the design requirement. 

Index Terms—Magnetic resonance imaging, Optimization 
methods, Response surface methodology, Superconducting 
magnets. 

I. INTRODUCTION 
For traditional superconducting MRI system, the imaging 

region is completely enclosed by the solenoid coil, and this 
may induce claustrophobia to some patients and make 
interventional diagnostic or surgical procedures difficult. 
However, open accessibility to the imaging region may cause 
the less energy efficiency of the magnets and worse magnetic 
field homogeneity [1-3]. In this paper, a novel magnet 
structure of open-type superconducting MRI device 
composed of iron material and superconducting coil is 
presented. Owing to the addition of soft magnetic material to 
superconducting magnet, the main magnetic circuit excited 
by superconducting coils can be closed through iron and air 

region so that the openness of imaging region increases. The 
magnetic field in the imaging region is obtained with the 3-D 
finite element analysis (FEA). The orthogonal design (OD) 
and an adaptive optimization strategy using response surface 
model (RSM) are proposed to obtain the optimal design of 
MRI with higher magnetic efficiency as well as higher degree 
of access to imaging region.  

II. OPTIMIZATION COURSE  
A.  The determination of key design variables 

An initial model of the open-type superconducting MRI 
magnet is shown in Fig. 1, in which a couple of 
superconducting coils are winded outside cylindrical body 
made from ferromagnetic material. The magnetic field in the 
imaging volume which is a spherical space with a diameter of 
40cm is generated by the superconducting coils. There are 6 
design variables (DVs) to define magnet configuration, i.e. 
my_l, pc_w, im_h, md, pf_t and pf_h shown in Fig. 1, and the 
orthogonal design (OD) is developed to find out the key 
design variables among them. In this paper, Taguchi’s 
orthogonal table is used to calculate the variation trend of 
magnetic flux density and non-homogeneity in the imaging 
region with all variables mentioned above. The results listed 
in Table I show that these six design variables within their 
own scopes always guarantee that the magnetic flux density 
attains to above 1.5T, but the interaction between the two 
variables pf_t and pf_h have greater effect on the 
inhomogeneity . 

Thus, the size of pf_t and pf_h of the pole face shape are 
defined as key design variables and pc_w, my_l, im_h and md 
are fixed at 0.63m, 1.37m, 0.28m and 0.01m, respectively. 
The optimization objective is defined as follows: 
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where aveB  is the mean value of the magnetic flux 
densities,δ  is the non-homogeneity in the imaging region, 
and ( )_ , _x pf t pf h= with the scope of [ ]_ 0.25, 0.35 mpf t∈ , 

[ ]_ 0.01, 0.04 mpf h∈ . normδ  and normB  are allowed field 
value in intensity and non-homogeneity, and are set as 
300ppm and 1.5T, respectively. 

B. Adaptive Optimization Strategy 
In order to reduce the computational work related with 3-D 
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Fig. 1. The open-type superconducting MRI magnet. 
 

TABLE I  
EFFECTS OF FIELD INHOMOGENEITY FROM 6 DESIGN VARIABLES 

Design 
variables my_l pc_w im_h md pf_t pf_h 

( )410−×Δδ  2 33 7 6 63 48 

 



TABLE II  
COMPARISON OF DIFFERENT ALGORITHMS  

Algorithm 2R  2 2h  2d  objective 
function 

No. of FEM 
computations

Proposed 3.093 0.239 0.391 0.0895 180 
GA  3.05 0.246 0.400 0.122 2400 

TEAM[5] 3.08 0.239 0.394 0.088 - 
 

finite element analysis during the optimal design, an adaptive 
optimization strategy is suggested by successive reduction of 
the design space and adaptive inserting of new sampling 
points. The response surface model (RSM) using multi-
quadric radial basis function [4] is to approximate the 
objective function. Once a response surface has been 
constructed, a minimum point can be easily found by 
applying (1+ λ ) evolution strategy. The minimum point 
obtained at this stage, however, can not be considered as a 
true optimal point unless sufficient number of sampling data 
is involved in the construction of the response surface. This 
minimum point hereinafter will be referred to a pseudo-
optimal point. The proposed optimization algorithm using 
adaptive response surface method can be summarized as 
follows: 
Step 1 Define the initial design space, and generate 

uniformly distributed Ni Pareto-optimal sampling 
points in the whole design space by means of Latin 
hypercube design with Max Distance and Min 
Distance criteria.  

Step 2 Construct a response surface using multi-quadric 
radial basis function, and find a pseudo-optimal point 
by applying (1+λ) evolution strategy. 

Step 3 Check the convergence of the pseudo-optimal points, 
and stop if converged.  

Step 4 Reduce the design space by a suitable factor with the 
center of the current pseudo-optimal point. 

Step 5 Generate additional Na Pareto-optimal sampling 
points only within the reduced design space 
concentrating at the neighborhood of the current 
pseudo-optimal point as in Step 1, and go to Step 2. 

In the algorithm, the iteration repeats until the pseudo-
optimal points converge, and the converged pseudo-optimal 
point is considered as a true optimal point. The proposed 
algorithm is applied to TEAM problem 22 [5], and its 
robustness and computational efficiency are investigated. 
Table II compares the performance of the proposed method 
with those of the other reported solutions. The best solution 
for this problem is reported in [5] as listed in Table II.  

III. OPTIMUM DESIGN 
By utilizing proposed optimization algorithm, the magnet 

in Fig.1 is optimized. During the optimization procedure, the 
initial 25 Pareto-optimal sampling points are distributed in 
the whole design space, and followed by successive 
additional insertion of 16 and 11 sampling points into the 
reduced design space with a factor of 0.618 to the previous 
region. After 3 iterations, a converged optimal point are 

obtained and the constructed response surface of objective 
function is shown in Fig.2 and the comparison results 
between before and after optimization are listed Table III. 
The magnetic flux density distribution in the imaging region 
is shown in Fig.3. Through the optimal design, the suggested 
superconducting magnet configuration is proven to provide 
an enough homogeneous and sufficiently strong magnetic 
fields for MRI application.   
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Fig.2 The sampling points distribution and corresponding response 
surface at the third iteration of adaptive optimization course. 
 

(a) before optimization                     (b) after optimization 
Fig.3 The distribution of magnetic flux density in the imaging region 
before and after optimization. 
 

TABLE III 
COMPARISON OF COMPUTATION RESULTS BEFORE AND AFTER 

OPTIMIZATION 

 pf_t 
(mm)

pf_h 
(mm) B (T) δ (ppm) 

before 
optimization 250 10 1.55 60.9 

after 
optimization 276 36 1.54 2.6 


