
 
Abstract— The accurate modeling of complex multiphysical 

devices and systems is a crucial problem in engineering. Such 
models are usually characterized by highly nonlinear equations 
and depend on a high number of parameters which often cannot 
be directly measured. In this paper two stochastic optimization 
techniques are adapted and compared to the solution of such 
challenging problems in the case of a reversible fuel cell system. 

Index Terms—Optimization methods, Parameter estimation, 
Fuel cells. 

I. INTRODUCTION 
A fundamental problem in engineering is the accurate 

modeling of complex multiphysical devices, which are often 
characterized by highly nonlinear equations including 
parameters which are very hard, or even impossible, to 
measure directly. In particular, Fuel Cells (FCs) are systems of 
such type, and their models include parameters with very wide 
ranges depending on the specific cell type and mode of 
operation. The problem of their identification with stochastic 
optimization methods has been addressed only very recently 
and the literature on the subject is rather scarce [1]. Here we 
briefly introduce a model for a reversible fuel cell, show the 
most critical parameters of the system and solve the inverse 
problem of identifying them with two stochastic optimization 
techniques, showing the feasibility of the proposed approach. 

II. REVERSIBLE FUEL CELL MODEL 
A multiphysical model of a reversible polymer exchange 

membrane (PEM) fuel cell (R-PEMFC) using the same 
equations for both working modes, i.e. the charge (electrolyzer-
mode) and discharge (fuel-cell-mode) operations [2] is 
presented here briefly. Two half-reactions occur at the negative 
and positive electrodes, respectively: 

  (1) 

Electrodes are separated by the PEM, that allows the flow of 
protons while forcing electrons in the external circuit. The 
reversible voltage is expressed by the Nernst equation:  

  (2) 

where =–44.34 JK–1mol–1 is the molar entropy change, c/c0 
the activity of the reagent hydrogen and oxygen, 
f = nF/R = 11607 KV–1 with n = 2 the charge carriers as in (1), 
F the Faraday constant, and R the gas constant. In load 
conditions the voltage changes due to different types of losses:  

 v = E − Δvaa − Δvac − Δvm − Δvca − Δvcc     (3) 

where aa and ac stand for anodic and cathodic activation losses,  
m for the ohmic losses in the membrane, and ca and cc for 
anodic and cathodic concentration losses. The rate of charge 
separation and recombination at anode and cathode are 
modeled by the Butler-Volmer equation: 

  (4) 

where ∂t is the time partial derivative. σ g is in [C/s⋅cm2] like a 
current density and it actually is such in steady state conditions. 
cik/cik0 are the reagent concentrations normalized to the bulk 
undisturbed values ci0. The relation α=αoiT is used for the 
transfer coefficient α. The current density j0  depends on 
temperature according to Arrhenius equation:  
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where Waj is the activation barrier. Proton ∂tσ g (and electron –
∂tσ g) change rate can differ from the current densities 
originating from the anode and cathode catalyst layers due to 
charge accumulation according to:  
  (6) 

where ∇Σ⋅ is the surface divergence, j  the current density, and σ 
the accumulated proton and electron surface charge densities. 
The losses due to reagent concentrations are modeled by the 
limit current density, i.e. the maximum value that causes the 
concentration to vanish: 
  (7) 

with  the average flow channel reagent concentration and K 
the mass transfer coefficient : 

  (8) 

δ is the diffusion layer thicknesses, Deff its effective diffusivity, 
while the first term can be neglected. A concentration-related 
steady state voltage drop expression for each electrode can be 
derived from (2) and (4). In order to account also for secondary 
effects, the following expression is used: 

  (9) 

 κc is a dimensionless empirical parameter. Concentrations at 
both catalyst layers depend on the gas molar flows N, and thus 
on j=nFN, according to Fick’s law N = −Deff Δc , yielding: 

  (10) 
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When properly hydrated a PEM is a protonic conductor 
with ohmic behavior, so that Δvm of Eq. 3 is: 

  (11) 

where dm is the PEM thickness and γm  its conductance :  
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with, T*=303 K and Wam the activation energy. The hydration 
λ=cw /csa is the ratio between water and sulfonic acid 
concentrations, (0.02≤λ≤0.22). λ is assumed to vary linearly 
across the PEM from λ a  at anode to λ c  at cathode, and thus its 
average value is used in (12). λ a  and λ c  are defined by the 
water activity aw of the gases at the catalyst layers according to: 

 λ =
4.3⋅10−5 + 0.18aw − 0.399aw
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A major effect impacting on the efficiency is fuel crossover, 
i.e. hydrogen flowing through the PEM towards the cathode 
without oxidizing at the anode. It is accounted for by increasing 
the left hand side of (4) for the cathode by the crossover term: 

  (14) 

DH is the diffusivity of hydrogen inside the PEM and cH its 
concentration at the anode catalyst layer as in (10) (assuming 
zero value at the cathode side). The temperature dependence of 
DH according to Arrhenius equation is modeled as: 
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with DH* = DH (T*) and WaH the activation energy. Gas molar 
flows at both diffusion layers must sustain the crossover 
hydrogen cathodic reaction, so that the equivalent current 
density in the Δvc of. (9) is also increased by jx=∂tσ gH.  

TABLE I 
CRITICAL PARAMETERS SUBJECT TO OPTIMIZATION 

Parameter Equation Range Nominal value 
cR  anode 10 [1.0�10-10 , 1.0�10-5] 2.0�10-6 

cR cathode 10 [1.0�10-10 , 1.0�10-5] 1.5�10-6 

j0*  
anode 5 [1.0�10-10 , 1.0�101] 0.1 

j0* cathode 5 [1.0�10-10 , 1.0�101] 1.0�10-3 

aw 13 [0.1 , 0.95] 0.9 
The most critical parameters are summarized in Table I 

together with their possible range and with the nominal value 
used in the numerical experiments. 

III. STOCHASTIC OPTIMIZATION METHODS AND RESULTS 
Stochastic optimization methods are widely used in the 

area of electromagnetics and the recent relevant literature is 
vast. They are especially suited for multimodal and noisy 
functions over large search spaces, which makes them 
particularly appealing for the problem at hand. The main 
drawback of such methods is the high number of objective 

function evaluations needed for convergence, however due to 
particular type of modeling adopted for the R-PEMCF, such 
drawback is not significant in this context and computational 
times are in the order of few tens of seconds. We have applied 
two of the most well-known metaheuristics, namely Particle 
Swarm Optimization (PSO) [3] and Differential Evolution 
(DE)[4], developed in previous work and suitably adapted. 

The objective function is the maximum difference between 
simulated measurements and the model output, where the the 
former were obtained by inserting the nominal values of Table 
1 in the model and adding a 5% random noise to the model 
output. Table II shows the success rate of PSO and DE, where 
an optimization run is considered successful if the optimal 
objective function value is below 0.05. The same table also 
shows the best, worst and average optimal solutions obtained 
by the two optimizers, showing the clear superiority of DE. 

TABLE II 
COMPARISON OF PSO AND DE 

Algorithm Success rate Best Mean Worst 
PSO 2% 0.044 0.104 0.122 
DE 62% 0.035 0.069 0.126 

 
Fig. 1: Example of a successful identification run by DE 

IV. CONCLUSIONS 
Two stochastic optimization methods have been applied to 

a parameter estimation problem in fuel cell modeling. Results 
indicate that the applied methodology can successfully solve 
the problem. The extended paper will provide more details 
regarding the implementation of the optimizers as well as the 
application of the proposed methodology to experimental data 
of a real  PEM fuel cell. 
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