
Abstract—A recently proposed subpixel smoothing scheme for 
the accurate modeling of non-conforming dielectric interfaces in 
3D field simulations is investigated. The modified material matrix 
is formulated in terms of the methodology of the Finite 
Integration Technique and used in frequency and time domain. 
In order to ensure the longtime stability of the time domain 
scheme the material matrix has to be symmetrized, and some 
numerical results for a test problem are presented and discussed. 

Index Terms—Finite Difference Methods, Convergence, 
Numerical Stability. 

I. INTRODUCTION 

The accurate treatment of oblique interface planes in a 
rectangular (Cartesian) computational mesh has for long been 
one of the major challenges in Finite Difference (FD) and 
Finite Integration (FIT) schemes. The well-known staircase 
modeling of the original algorithm may lead to a considerable 
and in most cases non-smooth error behavior even for well-
resolved meshes. Some advanced techniques presented so far 
can roughly be divided into two classes. The first one is the 
extension of FD and FIT schemes to more general, body-
conforming meshes such as triangular grids in 2D, non-
orthogonal coordinate grids, or fully unstructured grids (see, 
e.g., references in [1]). These methods do not show the 
geometric modeling error any more, however at the price of 
being less efficient, e.g. due to their implicit nature in time 
domain. The 2nd class of extended methods stick to the Yee 
mesh, but allow the use of non-homogeneous material fillings 
within single cells (‘subcell methods’). This includes the 
simple triangular filling scheme [2] as well as the conformal 
algorithms [3][4] for interfaces to perfect conductors. 

Recently [5] a subcell-technique was proposed which is 
also able to handle dielectric interfaces within one cell. In this 
method, referred to as ‘subpixel smoothing’, an effective, 
anisotropic layer is constructed such that tangential and 
normal field components at the interface are handled by 
different averaging schemes. In [6],[7],[8] it was recognized 
that this method may suffer from late-time instabilities, 
depending on how the anisotropy is implemented in the FDTD 
code.  

We review this method in the FIT notation and analyze the 
stability issues. Following some earlier ideas in [9],[10], the 
anisotropy is implemented in some variants and the effect on 
the method’s accuracy is investigated.  

II. SUBPIXEL SMOOTHING 

A. Standard FIT with Classical Material Operators 

The main idea of the so-called subpixel smoothing is based 
on a well-known result from the classical Finite Integration 

Technique (of correlated Finite Difference approaches). FIT  

[2] uses a pair of staggered grids G  (primary) and G  (dual), 
restricted her to the Cartesian case for simplicity. The degrees 
of freedom are the so-called integral state variables, defined as 

integrals over edges ,i iL L  and facets ,j jA A  of the primary 

grid G and the dual grid G , respectively: 
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The Maxwell’s grid equations can be written as 
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with the curl-operator C . The material relations d M e
 
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 will be discussed in detail below. 

Already in the very standard implementation – with 
homogeneously filled, Cartesian mesh cells – an averaging of 
permittivities has to take place at material interfaces. The 

material relation ,n nn nd e M
 

 for a simple component 

correlates a grid voltage at a primary edge to the electric grid 
flux at the corresponding dual face. The classical formula 

 1
,nn n nA L  M   (4) 

defines a one-to-one relation and thus a matrix operator in 
diagonal form. At ‘standard’ material interfaces, where a 
tangential discrete electric component is allocated,   has to 

be calculated as an area-based averaging of the permittivities. 
It has been shown (see, e.g., [11]) that the area-based 

averaging of  can be replaced by an averaging 1   of the 

inverse permittivity for subcell situations where the normal 
dielectric flux density is the continuous component in the grid. 
None of the two alone, however, is sufficient for the general 
sub-cell case in Fig. 1 (left), where the orientation of the fields 
with respect to the interface plane is not fixed a-priori. 

B. Effective Tensorial Permittivity 

In order to combine the standard and inverse averaging 
formulas, an effective permittivity has been proposed in [5].  
Using a geometric projector  with ij i jP n nP (derived locally 

from the interface normal), the electric field can be split into 
its tangential and normal components. Each of them is treated 
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by a separate averaging formula which leads to an effective, 
tensorial permittivity with a non-diagonal anisotropy: 

 
11 1 ( )      P I P .   (5) 

This formula has been implemented in a number of 
references, e.g. [1],[5],[6],[8], and proven to show a 
considerably improved accuracy for general interfaces. Note 
that the permittivity is defined in its inverse form to fit to 
common frequency and time domain formulations. 

C. FIT / FDTD Implementation and Stability  

The definition of the effective permittivity alone is not yet 
sufficient, since its strong anisotropy goes beyond the classical 
FIT/FDTD implementation. Two issues have to be solved: The 
first, simpler one is the fact that the three electric field (or 
flux) components are not defined at the same location in the 
staggered grid, but require some interpolation technique. This 
leads to non-diagonal material matrices with up to 8 off-
diagonal entries, comparable to [9]. However – the 2nd 
problem – such an interpolation may lead to long-time 
instability if the symmetry of these matrices is spoiled. 
Without special care this will always happen, especially – 
considering the full material formula (4) – in case of non-
uniform grids. 

Similar problems have been solved earlier in the context of 
FIT, e.g. for non-orthogonal grids [9] or gyrotropic materials 
[10]. Note that the symmetry issue has also been recognized in 
[6],[7],[8], and some remedies are discussed there. 

III. SYMMETRIZATION AND NUMERICAL RESULTS 

The extended, non-diagonal permittivity matrix (see Fig. 2, 
left) has been implemented and used for eigenmode 
computations in a resonator with a dielectric cylinder. (Quasi-
2D TE modes, featuring both normal and tangential field 
components at the interface, in a full 3D implementation). The 
transversal size of the cavity (see Fig. 1, right) is 2m x 2m, 
and the radius of  the cylinder (with r=10) is R=0.5m. The 
mode considered here shows a TE100-like field pattern and a 
resonance frequency of fref = 57.14 MHz (reference solution 
from a high-resolution, 2nd order Finite Element simulation.) 

 

 

 
Fig. 1. Basic interpolation scheme, test structure with 35x35 grid (cut plane).  

 
The problem has been solved both in frequency domain 

(where a non-symmetric material operator may be used 
without stability problems) and time domain. The resonance 
frequency converges with 2nd order accuracy w.r.t the grid 
resolution x=y, as shown in Fig. 2, right. As reported 
before, the classical averaging techniques are only 1st order 

convergent and clearly not competitive. After symmetrization 
of the original material matrix (details will be explained in the 
full paper) the convergence is still 2nd order in this case. 
Although a general proof may be difficult, the accuracy will 
probably always outperform the classical schemes. 

 

 

Fig. 2. Matrix pattern of M  and convergence of resonance frequency.  

IV. CONCLUSION 

The effective tensorial permittivity from the so-called 
subpixel smoothing has been implemented for FIT simulations 
with non-conformal dielectric interfaces. A symmetrization of 
the resulting material operator is necessary at least in time 
domain and can have an impact on the accuracy of the 
approach. Several symmetrization strategies have been 
implemented, going beyond what has been published before. 
The final presentation will give some more information here 
as well as a detailed convergence analysis for the tested 
variants. 
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