
Abstract—This paper describes high order finite elements in 

the T-Ω method considering multiply-connected regions for the 

eddy current problems. The inexact Hodge decomposition is 

instrumental to the discussion. The advantage of the proposed 

approach is demonstrated by a numerical example.  

Index Terms—Eddy currents, Finite element methods. 

I. INTRODUCTION 

The T-Ω method is one of the effective methods for the 

finite element analysis of eddy current in the low-frequency 

electromagnetic applications [1]. In this method, the magnetic 

field intensity is expressed as the sum of two parts: the 

gradient of a magnetic scalar potential Ω and electric vector 

potential T


.  The electric vector potential can be interpolated 

by Whitney edge elements, which use a low-order vector shape 

function. The T-Ω method has been extended to higher orders 

using hierarchical scalar and vector elements, assuming that 

the problem domain is only simply-connected [1]. In this 

paper, based on the inexact Hodge decomposition, we discuss 

high order vector elements in the T-Ω method to interpolate 

the electric vector potential considering multiply-connected 

regions. Its effectiveness is demonstrated by numerical 

simulations of TEAM Workshop Benchmark 7. 

II. HODGE DECOMPOSITION 

          Applying the Hodge decomposition to the magnetic field 

intensity 1-form H gives  

,  AdH                                 (1) 

where   is a magnetic scalar potential 0-form, and A is a 2-

form, and  represents the harmonic field component,  and 

d is the exterior derivative, and δ is the codifferential operator 

[2].  The codifferential δ operator can be expressed as [3] 

,1   d                                  (2) 

where   is the Hodge star operator. The operators d  and δ 

satisfy 

                                0dd                                         (3) 

The finite element approximation of (2) gives the matrix 

formulation 

                                   ,1



d                                         (4) 

where  d  is the incidence matrix and    is the mass matrix. 

Although  d and    are sparse matrices,   is generally a full 

matrix because the inverse of    is a full matrix. This implies 

that δ is not a local operator although d is a local operator. 

Correspondingly, in the T-Ω method 

                           TH


                                              (5) 

is not necessary for the basis of the electric vector potential T


 

to be divergence-free. Instead, we will use rotational basis 

functions as introduced in [1][4], which may not be exactly 

divergence-free, to interpolate T


. Since the rotational basis 

functions are not necessarily divergence-free in a finite 

element setting, this decomposition of vector basis into the 

gradient of a scalar basis and the rotational vector basis is 

termed the inexact Hodge decomposition [4]. 

III. BASIS FUNCTIONS 

            The lowest vector basis function to interpolate T


is 

Whitney edge element. As a result, the induced eddy current 

density, which is the curl of T


, is only a piecewise constant 

vector in finite element approximation.  In order to obtain the 

more accurate eddy current density distribution, higher order 

vector basis functions may be needed. In literature there are 

two types of vector basis: the interpolatory basis and the 

hierarchical basis [5]. Here, we choose the hierarchical basis 

since it can handle the harmonic field component naturally. 

The hierarchical second order vector basis functions are as 

follows: [1][6] 

                            ,1

ijjiijw                                   (6) 

                            ,2

ijjiijw                                   (7)  

                           ,ijkijkf                                              (8) 

where  
kji  ,, are simplex coordinates within a tetrahedron. 

The basis functions (6) and (7) are defined on the edge 

connecting vertices i  and j , and the basis function (8) is  

defined on the face connecting vertices i , j and k [6]. The 

basis function (7) can be expressed as the gradient of the scalar 

basis function   

                                jiijw 2                                         (9) 

Since (9) is a pure gradient basis function, it can represent the 

first term of (5). Therefore, the vector basis function (7) can be 

recycled, and only the rotational basis functions (6) and (8) are 

needed to interpolate T


.   

           Generally, the degree of freedom count (DOF) of a 

finite element approximated system depends on the mesh and 

orders of the basis functions. However, in multiply-connected 

regions, DOF of the harmonic field component, which is the 

number of loops in the computational domain, is independent 

of the mesh and orders of the basis functions. This suggests 

that the basis function for the harmonic field component 

should be the lowest order vector basis function, that is, the 

Whitney edge element (6). This suggestion was also proposed 

in [5], but from a slightly different viewpoint. There are 

several approaches to model the harmonic field component. 
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Here, the thick-cut as introduced in [7][8] will be applied to 

model the harmonic field component because from our 

experience it is very efficient. The thick-cut, which is one layer 

of tetrahedral elements having their edges passing through 

cutting surfaces, can be generated by the following two steps 

[7]: 

Step 1. Make surface cuts on the surface of conducting 

regions. Scan all triangles on the conductor surfaces and for 

each triangle examine whether each edge forms a loop or not. 

The triangle with all three edges connected will be added to 

the set of singly connected surfaces. This process is repeated 

until there are no more triangles to be added. The rest of the 

triangles that do not belong to the set of singly connected 

surfaces create surface cuts on the conductor surfaces.  

Step 2. Extend the surface cuts to the non-conducting 

region. Scan all the tetrahedrons in the non-conducting region. 

Start from tetrahedrons with a singly connected triangle on the 

conductor surfaces. If all four triangle faces are singly 

connected, we add this tetrahedron to the singly connected 

domain. This process is repeated until no more tetrahedrons 

are to be added. Finally, the remaining tetrahedrons that are 

not included in the singly connected domain create the thick-

cut. 

           Scalar basis functions can also be divided into the 

interpolatory basis and the hierarchical basis [9]. Since the 

gradient term of (5) is not related to the harmonic field 

component, one can choose either the interpolatory basis or the 

hierarchical basis to represent the magnetic scalar potential Ω. 

Here for simplicity, we choose the second order interpolatory 

basis to interpolate Ω. 

          The electric vector potential of impressed source current 

by external circuits can be interpolated by either the Whitney 

edge element (the lowest order vector basis) or hierarchical 

second order vector basis functions. Generally, the accuracy of 

the Whitney edge element is sufficient to model the source 

current in real problems [1], so in this paper, we choose 

Whitney edge elements to interpolate the electric vector 

potential of impressed source current. The generation of 

electric vector potential for the impressed source current in 

multiply-connected regions was detailed in [10]. 

 

Fig. 1 A thick conductor plate with a hole is placed unsymmetrically in a non-

uniform magnetic field. The field is generated by sinusoidal current. 

IV. EXAMPLE 

         The TEAM Workshop Benchmark 7 [11], shown in 

Fig.1, was solved using the T-Ω method. Since there is a hole 

in the thick conductor plate, it is a multiply-connected region 

problem. Fig. 2 presents the induced eddy current densities, 

which were calculated by applying the first order vector basis 

functions and the second order vector basis functions, 

respectively. The results clearly demonstrate that the second 

order vector basis functions produce more accurate current 

density than the first order vector basis functions. More results 

will be presented in the full paper.  

 

(a) 

 

(b) 

Fig.2. (a) The induced eddy current calculated by the first order vector 

basis functions (Whitney elements); (b) The induced eddy current calculated 

by the second order vector basis functions. 

V. CONCLUSION 

        In this paper, a technique for using high order finite 

elements in the T-Ω method considering multiply-connected 

regions for the eddy current problems has been described. In 

this method, the hierarchical second order vector basis 

functions are used to interpolate the electric vector potential of 

induced eddy current; the Whitney edge elements are used to 

interpolate the harmonic field component; the Whitney edge 

elements are used to interpolate the electric vector potential of 

the impressed source currents; the second order interpolatory 

basis functions are used to interpolate the scalar potential Ω. 

The numerical results have verified the effectiveness of this 

high order T-Ω method. 
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