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Abstract—The Cell Method (CM) for the discretization of
electromagnetic boundary value doesnot specify how to formulate
boundary conditions and how to determine energetic quantities.
These drawbacks are here removed reformulating CM by means
of a pair of augmented dual grids and by proving a general result
for introducing energetic quantities.
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I. I NTRODUCTION

As it is well known, in CM the discretization of elec-
tromagnetic problems is based on a pair ofdual grids, in
general polyhedral [8]. Integral electromagnetic quantities are
associated to oriented geometric elements of the dual grids
in such a way that electromagnetic balance equations are
naturally discretized as exact equations. Constitutive relations
are discretized by means of approximate equations relatingthe
introduced integral quantities.

The formulation of CM suffers of two serious drawbacks.
Firstly, the spacial boundary of a problem is not properly dealt
with. In fact the electromagnetic balance equations relative to
the geometric elements of thedual grid which intersect the
boundary arenot in general exact. Besides no general approach
for discretizing boundary conditions exists. Secondly, itis not
known how to introduce energetic quantities [2].

In this paper all these drawbacks of CM are removed.
Firstly, the dual grid isaugmented by introducing a boundary
dual grid in such a way that all integral electromagnetic
quantities can be introduced on the boundary. Secondly a
general result is proven for approximating energetic quantities
in CM. These two results allow to correct inexact balance
equations, lead to the discretization of boundary conditions
and allow to introduce energetic quantities. They also leadto
exact discrete counterparts of energetic balance equations.

II. A UGMENTED DUAL GRIDS

Let G be a primal grid discretizing a spacial regionΩ,
having nn nodes,ne edges,nf faces andnv volumes, and
let G̃ be an oriented dual havingnñ = nv nodes,nẽ = nf

edges,nf̃ = ne faces andnṽ = nn volumes. As it is well
known [2], the topological description of the primal gridG is
provided by thene × nn edge-node incidence matrixG, the
nf×ne face-edge incidence matrixC and thenv×nf volume-
face incidence matrixD. Similarly the topological description
of the dual grid G̃ is provided by thenẽ × nñ edge-node
incidence matrixG̃ = −D

T , thenf̃ ×nẽ face-edge incidence

matrix C̃ = C
T and thenṽ×nf̃ volume-face incidence matrix

D̃ = −G
T .

Let now Gb be therestriction of the primal gridG to the
boundary∂Ω of Ω, havingnnb

nodes,neb edges andnfb faces.
Let G̃b be the dual of gridGb Such dual gridG̃b hasnñb

= nfb

nodes obtained by the non-empty intersections with∂Ω of the
edges ofG̃, hasnẽb = neb edges obtained by the non-empty
intersection with∂Ω of the faces ofG̃ and hasnf̃b

= nnb

faces obtained by the non-empty intersection with∂Ω of the
volumes ofG̃. Let D̃b be thenṽ×nf̃b

incidence matrix of the
nṽ volumes ofG̃ with thenf̃ faces ofG̃b. Similarly let C̃b be
the nf̃ × nẽb incidence matrix of thenf̃ faces ofG̃ with the
nẽ edges ofG̃b and letG̃b be thenẽ × nñb

incidence matrix
of the nẽ edges ofG̃ with the nñ nodes ofG̃b. The union of
the dual gridsG̃ and G̃b define anaugmented oriented dual
grid G̃a. The volume-face, face-edge and edge-node incidence
matrices ofG̃a, namedG̃a, C̃a andD̃a, can be derived from
previous incidence matrices as follows

Property 1:

G̃a =

[

G̃ G̃b

0 −C̃
T
b C̃G̃b

]

,

C̃a =

[

C̃ C̃b

0 −D̃
T
b D̃C̃b

]

,

D̃a =
[

D̃ D̃b

]

.

III. D ISCRETE ENERGETIC QUANTITIES

Let x be an array of circulations along the edges ofG, or an
array of fluxes through the faces ofG, of a vector fieldX(r),
being r the position vector, and let̃y be an array of fluxes
through the faces of̃G, or an array of circulations along the
edges ofG̃, of a vector fieldY(r). It results in

Property 2: For any pair of oriented dual gridsG, G̃, not
necessarily polyhedral, the discrete energetic quantity

xT ỹ (1)

provides an approximation of the energetic quantity
∫

Ω

X(r) ·Y(r) dΩ.

The convergence of this approximation is at least of first order
with respect to the maximum diameterhM of G.

Such result extends a similar result in the case in whichx

is an array of values at the nodes ofG, or an array of integrals
over the volumes ofG, of a scalar fieldx(r) andỹ is an array



of integrals over the volumes of̃G, or an array of values at
the nodes ofG̃, of a scalar fieldy(r). Thus in all cases (1)
provides an approximation of an energetic quantity.

Analogous results are derived for the discrete energetic
quantity

xT
b ỹb (2)

in which ỹb is an array of quantities associated to the faces,
nodes or edges of the boundary dual gridG̃b and xb is an
array of quantities associated to the nodes, edges or faces of
the boundary primal gridGb, which can be selected from the
arrayx of quantities associated to the nodes, edges or faces
of the primal gridG respectively byxb = G̃

T
b x, xb = C̃

T
b x

or xb = D̃
T
b x.

In particular in casexb is the array of the circulations along
the edges ofGb of a vector fieldX(r) and ỹb is the array of
the circulations along the edges ofG̃b of a vector fieldY(r),
(2) provides an approximation of

∫

∂Ω

X(r) ×Y(r) · n(r) dΩ

in which n(r) is the outward unit vector normal to∂Ω at r.

IV. CM DISCRETIZATION OVER AUGMENTED DUAL GRIDS

For the sake of simplicity hereafter an electromagnetic
boundary value problem in the frequency domain is consid-
ered. As usual the arraye of the circulations of the electric
field E(r) along the edges ofG and the arrayb of the fluxed
of the magnetic inductionB(r) through the faces ofG are
introduced. Besides the arraỹh of the circulations of the
magnetic fieldH(r) along the edges of̃G and the arrays̃d,
j̃ of the fluxes of the electric displacementD(r) and of the
electric currentJ(r) through the faces of̃G are introduced. In
addition, the arraỹhb with the circulations ofH(r) along the
edges ofG̃b and the array arrays̃db, j̃b of the fluxes ofD(r)
andJ(r) through the faces of̃Gb are introduced. In this way
the following arrays of quantities associated to the augmented
dual grid G̃a are introduced

h̃a =

[

h̃

h̃b

]

, d̃a =

[

d̃

d̃b

]

, j̃a =

[

j̃

j̃b

]

.

These quantities allow to write exact balance equations both
on grid G and G̃a. Balance equations over the primal gridG
are written as usual. For instance Faraday’s equation is

Ce = −iωb, (3)

in which ω is the angular frequency. Balance equations over
the augmented dual grid̃Ga are written in a similar way. For
instance Ampère-Maxwell equations is

C̃aha = iωda + ja,

In particular, from such equation, recalling property 1, it
follows

C̃h+ C̃bhb = iωd+ j, (4)

which corrects the inexact balance equations onG̃ in CM [2].

Constitutive equations are discretized as usual by means of
the quantities overG, G̃. For instance electric and magnetic
constitutive relations take the form [8], [3]

d̃ = Mεe, h̃ = Mνb.

Quantityeb = C̃
T
b e overGb and quantitỹhb over G̃b provide

the way for discretizing boundary equations. For instance,
admittance boundary conditions over∂Ω

(H(r)× n(r)) × n(r) = Y (r)E(r) × n(r)

are discretized by approximate equations of the form [4]

h̃b = MY eb.

Energetic quantities can also be determined. For instance
the electric energy, magnetic energy, electric power overΩ and
flux of Poynting’s vector across∂Ω are discretized respectively
by

1

4
d̃∗e,

1

4
h̃∗b,

1

2
j̃∗e,

1

2
h̃∗

beb.

in which ∗ indicates complex conjugate transpose.
By multiplying (3) on the left by h̃∗, multiplying the

complex conjugate transpose of (3) on the right byẽ and
subtracting, the discrete counterpart of Poynting’s theorem
follow

1

2
h̃∗

beb = 2iω

(

1

4
h̃∗b−

1

4
d̃∗e

)

+
1

2
j̃∗e

Thusexact balance equations are disclosed for the introduced
discrete energetic quantities.

By substituting the discrete electric constitutive equation
into the expression of the discrete electric energy, it follows
that matrixMε not only allows to approximatẽd givene but
also allows to approximate the electric energy givene. This
double purpose ofMε can be revealed in the same way for
all matrices in constitutive relations and boundary conditions.

V. NUMERICAL RESULTS

A TM10 is injected into a section of rectangular waveguide
terminated by a matching admittance boundary condition. This
problem is discretized over a tetrahedral grid with 32,141
nodes and an augmented dual grid [4]. The flux of Poynting’s
vector at the port is estimated with 1% accuracy by (2).

VI. CONCLUSIONS

The full paper will include more in-depth description,
complete proofs and details of the numerical analysis.
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