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Abstract—The Bi-Conjugate Gradient Stabilized method is rapidly prohibitive [2]. A restarted version of GMRES [3],
able to handle and solve large linear systems, such as thosesng  the so called GMRES(m), can overcome this limitation. The
from electromagnetic scattering inverse problems formuléed by restart parametem is very useful to optimize convergence

EFIE and discretized by the Galerkin Method of Moments by t I . ts. but th . t of
means of well-known Rao-Wilton-Glisson method. Neverthelss, 'at€ as Well as memory requirements, but the assignment o

preconditioning phase should be taken into account very ca- @ Starting a-priori value is a very ficult task. In case of
fully, in order to maintain the advantages of the use of Kryloy large and dense non-Hermitian linear systems, huge amount
subspaces in solving sparse inverse linear problems. In thsense, of memory could be necessary in order to avoid out-of-
flexible version of the Bi-Conjugate Gradient Stabilized afjorithm memory errors during computer simulations. But, if it would

received small attention, byF cpuld be really worthwhile for b ible to fi defined t of f h
a correct and fast preconditioning. In this work, we propose P€ POSSIDIE 10 Tix a predefined amount of memory for eac
a numerical study on its performances. Results demonstrate iteration, then the procedure could success: this is the cas
that Flexible Bi-Conjugate Gradient Stabilized is faster aad of the Bi-Conjugate Stabilized (BiCGStab) method. It issles
more robust than the standard version coupled with diagonal popular than GMRES, but it has been successfully exploited i
or ILU preconditioning, at least in specific cases involving cEM to deal with large EM problems. Its performance can be
electromagnetlc Inverse scattering. . - ", .

Index Terms—Integral equations, Iterative methods, Moment improved va'dmg that t_he_ preconditioner is baged on &yl
methods. suspaces itself [4], so building the so called Flexible B&iab
method. A representative scenario is that the precondlitipn
requires a linear solve with a second iterative method, in
which case “inner iterations” are used to mean preconditgpn

Computational Electromagnetics (CEM) is a well knowand “outer iterations” are used to mean the flexible Krylov
discipline related to modelling electromagnetic phenomemethod itself [5]. Flexible BiCGStab has been extensively
through computational discretization of analytic forntida. exploited in various engineering fields (see for example [6]
Here, a number of integral formulations can be exploiteahd references therein). But, at the best of our knowledge,
in order to model electromagnetic scattering and radiatioBEM has been small focused on this framework. In this
The most extensively exploited method is maybe the standavdrk, we aim to propose Flexible BiCGStab on CEM for
form of the Electric Field Integral Equation (EFIE), even irsolving the dense non-Hermitian linear systems arisingnfro
spite of some well-known limitations (see [1] and referencaliscretization of EFIE, presenting results of a numeritadyg
therein). When a real-world electromagnetic problem is apn its performances.
proached, the discretization arising from the applicatin
EFIE provides a large, dense and non-Hermitian linear syste [I. Basics on FLExiBLE BICGSiaB

of equations. If precondit@oned b_y a suitable techn_ique [2] The mathematical ideas and principles characterizing-Flex
the problem could be satisfactorily solved by exploiting thible BiCGStab (see [3] and references within) are here pro-

Krylov Subspaces (KS). KS method (KSM), in fact, is a Ver}Gosed and discussed. Basically, Flexible BiCGStab searche

fruitful iterative technique for solving large linear sgsis for an approximate solution of the matrix system (i.e. the
involving sparse matrices in anffieient and fast way. It discretized EFIE)

avoids matrix-matrix operations. During the years, thetjoi

|. INTRODUCTION

use of a preconditioner with KSM has been widely inspected. Zi=v @)

Nowadays, the Generalized Minimal Residual Method (GNjs the form

RES) combined with Incomplete LU (ILU) factorization is i = i0 + Koo, 2) @
n=10 n\! 0,

worldwidely accepted as a good compromise (please, refer
to [2] and references within). Even if GMRES satisfies th@herei, is any initial guess for the solution of Eq.f is the
requirement of minimal residual solution over the assedat esjqual vector, and<,(ro, Z), defined as

Krylov subspaces, it needs computing memory that grows

linearly with the number of iterations and could become Kn(ro,Z) = span{ro, Zro, ..., 2" r} 3)



Table |
SETTINGS AND RESULTS OF NUMERICAL EXPERIMENTS

Algorithm 1 Right Preconditioned Flexible BiCGStab Algo-

rithm

Method Precond.| Conv. n. Iterat. Residual
BiCGStab | none no 500 ~278-10°°
Flexible X yes 10 ~296-10°8
BiCGStab
BiCGStab ILU out of - -
memory

is the n-th Krylov subspace generated by the couplg ).
It is possible to demonstrate that any vectorii(ro, Z) can
be written as

(4)

where gn-1 is a suitable polynomial of a degree at most
n- 1. This implies that the residua}, is associated to a so
called residual polynomigb, which degree i3 at most. The
approximate solutiofy,, or equivalently the associate residual
polynomial py, is found by Flexible BiCGStab if the residual
rn fulfils the following orthogonality condition

in = i0 + Qn—l(z)ro

n L Kn(fo, Z™) )

wherefy is an arbitrary vector satisfying the condition

(fo, Ty =1

(6)

More precisely Flexible BiCGStab tries to construct a se-

guence of vectorgin} such thati, — i for n = 1,2,3,...
in a given tolerance. Thei-th iteration consist of two levels:

Computerg = v — Zig
Choosefg s.t. (ro,ro) # 0
Setg = |Iroll
fori=12... do
Setpi_1 = (F,r})
if pi-1 =0 then
Method Fails
end if
if i =1 then
Pi =Ti
else
Bi=btost
Pi = ri-1 + Bi-1(Pi-1 — wi-1Vi-1)
end if
Solve Pp = pi by a secondary KSM
Vi = Zf)

. Pi-1
&= F
S="Tj_1+ @jVj
if ||9] is small enougtthen

Setij = ij_1 + @;p and Stop
Solve P$ = s by a secondary KSM
t=2s

()
ST .
li = li.1 + aip + wiS
r =s— wit
Check convergence, continue if necessary for continu-
ation it is necessary thas; # 0
end if

end for

an outer level necessary to compigestarting fromi,_;, and

an inner sub-optimal preconditioner provided by a secondar _ _ _ _ )
KSM. In this way, the asimptotic complexit9(n?) of the those provided by i) the standard BiCGStab algorithm and ii)

overall procedure (at the stey) is unvaried. A pseudocode ofits some preconditioned implementations. Numerical tesul
the Flexible BiCGStab method is reported below. evidence how the Flexible BiCGStab reduces significantly

both the overall number of iterations and the convergence
elapsed time.

As a test case we considered the plane wave scattering by a
perfect conducting metallic sphere with radius 0.5 m at the
frequencyf = 150 MHz. A computer code implementation
of the Rao-Wilton-Glisson Method of Moments and of the  |nternational Journal of Applied Electromagnetics and heetics, no.32,
Flexible BiCGStab method has been developed exploiting the pp.63-72, 2010. _ 3
MATLAB environment. Simulations have been carried outl? A- Bunse-Gerstner, |. Cafas-Gutirrez, “A precondigd GMRES for

. . complex dense linear systems from electromagnetic wavidesog
using a PC with an Intel Cot¥ 2 Duo processor at.86 GHz problems,” Linear Algebra and Its Applications, vol.416.185-147,
and 4 GB of main memory. The conducting sphere has been 2006.
discretized withn = 14850 edges. All the results have beerl

I1l. N uMmERrIcAL RESULTS
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