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Abstract—The Bi-Conjugate Gradient Stabilized method is
able to handle and solve large linear systems, such as those arising
from electromagnetic scattering inverse problems formulated by
EFIE and discretized by the Galerkin Method of Moments by
means of well-known Rao-Wilton-Glisson method. Nevertheless,
preconditioning phase should be taken into account very care-
fully, in order to maintain the advantages of the use of Krylov
subspaces in solving sparse inverse linear problems. In this sense,
flexible version of the Bi-Conjugate Gradient Stabilized algorithm
received small attention, but could be really worthwhile for
a correct and fast preconditioning. In this work, we propose
a numerical study on its performances. Results demonstrate
that Flexible Bi-Conjugate Gradient Stabilized is faster and
more robust than the standard version coupled with diagonal
or ILU preconditioning, at least in specific cases involving
electromagnetic inverse scattering.

Index Terms—Integral equations, Iterative methods, Moment
methods.

I. Introduction

Computational Electromagnetics (CEM) is a well known
discipline related to modelling electromagnetic phenomena
through computational discretization of analytic formulation.
Here, a number of integral formulations can be exploited
in order to model electromagnetic scattering and radiation.
The most extensively exploited method is maybe the standard
form of the Electric Field Integral Equation (EFIE), even in
spite of some well-known limitations (see [1] and references
therein). When a real-world electromagnetic problem is ap-
proached, the discretization arising from the applicationof
EFIE provides a large, dense and non-Hermitian linear system
of equations. If preconditioned by a suitable technique [2],
the problem could be satisfactorily solved by exploiting the
Krylov Subspaces (KS). KS method (KSM), in fact, is a very
fruitful iterative technique for solving large linear systems
involving sparse matrices in an efficient and fast way. It
avoids matrix-matrix operations. During the years, the joint
use of a preconditioner with KSM has been widely inspected.
Nowadays, the Generalized Minimal Residual Method (GM-
RES) combined with Incomplete LU (ILU) factorization is
worldwidely accepted as a good compromise (please, refer
to [2] and references within). Even if GMRES satisfies the
requirement of minimal residual solution over the associated
Krylov subspaces, it needs computing memory that grows
linearly with the number of iterations and could become

rapidly prohibitive [2]. A restarted version of GMRES [3],
the so called GMRES(m), can overcome this limitation. The
restart parameterm is very useful to optimize convergence
rate as well as memory requirements, but the assignment of
a starting a-priori value is a very difficult task. In case of
large and dense non-Hermitian linear systems, huge amount
of memory could be necessary in order to avoid out-of-
memory errors during computer simulations. But, if it would
be possible to fix a predefined amount of memory for each
iteration, then the procedure could success: this is the case
of the Bi-Conjugate Stabilized (BiCGStab) method. It is less
popular than GMRES, but it has been successfully exploited in
CEM to deal with large EM problems. Its performance can be
improved providing that the preconditioner is based on Krylov
suspaces itself [4], so building the so called Flexible BiCGStab
method. A representative scenario is that the preconditioning
requires a linear solve with a second iterative method, in
which case “inner iterations” are used to mean preconditioning
and “outer iterations” are used to mean the flexible Krylov
method itself [5]. Flexible BiCGStab has been extensively
exploited in various engineering fields (see for example [6]
and references therein). But, at the best of our knowledge,
CEM has been small focused on this framework. In this
work, we aim to propose Flexible BiCGStab on CEM for
solving the dense non-Hermitian linear systems arising from
discretization of EFIE, presenting results of a numerical study
on its performances.

II. Basics on Flexible BiCGStab

The mathematical ideas and principles characterizing Flex-
ible BiCGStab (see [3] and references within) are here pro-
posed and discussed. Basically, Flexible BiCGStab searches
for an approximate solution of the matrix system (i.e. the
discretized EFIE)

Zi = v (1)

of the form

in = i0 +Kn(r0,Z) (2)

wherei0 is any initial guess for the solution of Eq.1,r0 is the
residual vector, andKn(r0,Z), defined as

Kn(r0,Z) = span{r0,Zr 0, . . . ,Zn−1r } (3)



Table I
Settings and results of numerical experiments

Method Precond. Conv. n. Iterat. Residual

BiCGStab none no 500 ∼ 2.78 · 10−5

Flexible X yes 10 ∼ 2.96 · 10−8

BiCGStab

BiCGStab ILU out of - -

memory

is the n-th Krylov subspace generated by the couple (r0,Z).
It is possible to demonstrate that any vector inKn(r0,Z) can
be written as

in = i0 + qn−1(Z)r0 (4)

where qn−1 is a suitable polynomial of a degree at most
n − 1. This implies that the residualr n is associated to a so
called residual polynomialpn which degree isn at most. The
approximate solutionin, or equivalently the associate residual
polynomial pn, is found by Flexible BiCGStab if the residual
r n fulfils the following orthogonality condition

r n ⊥ Kn(r̂0,ZH) (5)

where r̂0 is an arbitrary vector satisfying the condition

〈r̂0, r0〉 = 1 (6)

More precisely Flexible BiCGStab tries to construct a se-
quence of vectors{in} such thatin → i for n = 1, 2, 3, . . .
in a given toleranceε. The i-th iteration consist of two levels:
an outer level necessary to computein starting fromin−1, and
an inner sub-optimal preconditioner provided by a secondary
KSM. In this way, the asimptotic complexityO(n2) of the
overall procedure (at the stepn) is unvaried. A pseudocode of
the Flexible BiCGStab method is reported below.

III. Numerical Results

As a test case we considered the plane wave scattering by a
perfect conducting metallic sphere with radiusr = 0.5 m at the
frequency f = 150 MHz. A computer code implementation
of the Rao-Wilton-Glisson Method of Moments and of the
Flexible BiCGStab method has been developed exploiting the
MATLAB environment. Simulations have been carried out
using a PC with an Intel CoreTM 2 Duo processor at 1.66 GHz
and 4 GB of main memory. The conducting sphere has been
discretized withn = 14850 edges. All the results have been
obtained fixing an accuracyε = 10−6 and a maximum number
of iterations maxit = 500 for the outer level, while fixing
ε = 10−1 andmaxit = 100 for the inner level. The initial guess
vector is set equal to the null vector for both levels. Different
KSMs have been considered for the inner level but in what
follows only results considering the BiCGStab as inner method
are shown. Table I compares the performances of the Flexible
BiCGStab, in which the preconditioning step of Equation 6 is
carried out exploiting the antihermitian component of Z, with

Algorithm 1 Right Preconditioned Flexible BiCGStab Algo-
rithm

Computer0 = v − Zi0

Chooser̂0 s.t. 〈r0, r̂0〉 , 0
Setβ = ‖r0‖

for i = 1, 2, . . . do
Setρi−1 = 〈r̂ , r i〉

if ρi−1 = 0 then
Method Fails

end if
if i = 1 then

pi = r i

else
βi−1 =

ρi−1

ρi−2

αi−1
ωi−1

pi = r i−1 + βi−1(pi−1 − ωi−1vi−1)
end if
SolvePp̂ = pi by a secondary KSM
vi = Zp̂
αi =

ρi−1

〈r̂ ,vi〉

s= r i−1 + αivi

if ‖s‖ is small enoughthen
Set ii = ii−1 + αip̂ and Stop
SolvePŝ= s by a secondary KSM
t = Zs
ωi =

〈t,s〉
〈t,t〉

ii = ii−1 + αip̂ + ωiŝ
r i = s− ωit
Check convergence, continue if necessary for continu-
ation it is necessary thatωi , 0

end if
end for

those provided by i) the standard BiCGStab algorithm and ii)
its some preconditioned implementations. Numerical results
evidence how the Flexible BiCGStab reduces significantly
both the overall number of iterations and the convergence
elapsed time.
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[2] A. Bunse-Gerstner, I. Cañas-Gutirrez, “A preconditioned GMRES for
complex dense linear systems from electromagnetic wave scattering
problems,” Linear Algebra and Its Applications, vol.416, pp.135-147,
2006.

[3] Y. Saad, M. H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat.
Comput., vol.7, no.3, pp.856-869, 1986.

[4] J. A. Vogel, “Flexible BiCG and flexible BI-CGSTAB for nonsymmet-
ric linear systems,” Applied Mathematics and Computation,vol.188,
pp.226-233, 2007.

[5] J. Chen, L. Curfman McInnes, H. Zhang, “Analysis and practical use of
flexible BiCGStab,” Preprint ANL/MCS-P3039-0912, Argonne National
Laboratory, 2012.

[6] M. Manguoglu, A. H. Sameh, T. E. Tezduyar, and S. Sathe,“Anested
iterative scheme for computation of incompressible flows inlong do-
mains,” Computational Mechanics, vol.43, no.1, pp.73-80,2008.


