
Abstract— Wireless power transfer via resonant inductive 

coupling has become a very topical research issue. However, there 

is no attempt to attribute such resonance to the eigenmode of the 

transmitter and receiver in regard to electromagnetic field. 

Although Singularity Expansion Method (SEM) was originally 

proposed to represent the transient electromagnetic response of 

electromagnetic configurations, it is extended to complex 

frequency domain in this paper to analyze the natural 

electromagnetic oscillations. To carry out efficient numerical 

implementation, SEM is casted in the form of moment method 

(MM), and the natural frequency of the resonant structure is 

found by means of the Muller’s method. In terms of the resonant 

eigenmode field, the power transfer mechanism of  resonant coils 

can then be clearly explained.  

Index Terms— Field pattern, moment method, singularity 

expansion method, wireless power transfer. 

I. INTRODUCTION 

Recently, an efficient wireless power transfer method, 

accomplished by means of magnetic resonance, was proposed 

[1]. The higher mid-range efficiency was claimed to depend on 

the quality factor of the resonant coils, whereas conventional 

electromagnetic induction is mainly dependent on the coupling 

coefficient between the transmitting and receiving coils.  

The coupled-mode theory establishes a heuristic ex-

planation of the mechanism of such power transfer system. 

Several equivalent circuit models have been accomplished to 

represent a resonant magnetic coupling system, because the 

coupled-mode theory is too complicated to synthesize the 

system. However, these approaches cannot distinguish the 

resonant-based method from induction method, and hence 

imposing unnecessary restriction on design improvement of 

the transmitter and receiver. Moreover, the parameters of 

equivalent circuit are usually abstracted by means of 

computational electromagnetics. The most satisfying method is 

to find the resonance directly using full-wave numerical 

technique, removing the assumption of lumped inductance and 

capacitance, which are in fact based on quasi-static 

approximation. Although finite element method (FEM) is a 

popular method to find resonance, in the regime of inductive 

resonance, i.e., an open-boundary eigenvalue problem, it 

requires heavy computational burden, even after the 

introduction of truncation techniques such as absorbing 

boundary and radiation boundary. Furthermore, while 

discussing the interaction between resonant transmitter and 

receiver, FEM suffers from serious numerical dispersion. As 

an integral equation based method, moment method (MM) is 

prevalent to solve open boundary problems, and is spared from 

the numerical dispersion. Therefore, the resonance or 

eigenvalue problem formulated using MM would be the most 

satisfying method to analyze magnetic resonance-based 

wireless power transfer systems.  

In this paper, taking the advantage of singularity expansion 

method (SEM), the matrix formed by MM is used to find the 

resonant frequency and its corresponding eigenmode. A 

numerical approach of finding the poles (singularity), its 

corresponding mode field and coupling coefficient is 

presented. In the end, some concepts borrowed from the 

antenna community are used to augment the analysis of the 

resonance and electromagnetic interaction of a helical resonant 

structure.  

II. FORMULATION OF SINGULARITY EXPANSION METHOD 

Considering a body with finite dimensions in free space 

and letting this body have a volume V enclosed by a surface S, 

one can express the electric field E in terms of the current 

density as  
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where G is the dyadic Green’s function. Using the MM [2], the 

unknown current J can be expanded by basis functions with 

unknown In, and the approximation of above integral equation 

results in a matrix equation as follows 
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where Znm(ω) is the discrete form (NN matrix) of the kernel 

of the integral equation; and Vn stands for the excitation 

function. Observing the typical transient responses of various 

complicated scatters, they appear to be dominated by a few 

sinusoids. Since these waveforms correspond to the poles in 

the frequency-domain, scatter is expected to produce large 

responses at frequencies near those poles, i.e., the natural 

frequencies. The self-resonant coils presenting in wireless 

power transfer, in the view of resonators, can be regarded as 

open resonators. Note that the Green’s function G(r,r',ω) is an 

analytical function of ω except for ω = 0. After zoning 

procedure, the resulting Znm(ω) must be entire functions except 

for local poles at ω = 0. Based on the above argument, the 

solution of (2) can be expressed as [3] 
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where Znm(ω)' is the minor of the element zij of matrix Znm(ω). 

Since the determinant is a sum of products of the matrix 

elements, there are only pole singularities in the finite 

complex-frequency plane. Consequently, by expanding Znm(ω) 
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in power series, the currents induced on finite-size perfect 

conducting objects in free space is formulated as  
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Except the residual  (r,ω), which can be ignored when one 

discusses the resonance at ωi, the main task of SEM is to find 

the coupling coefficient ηi(ω) and resonant mode ji(r).    

III. IMPLEMENTATION OF SINGULARITY EXPANSION METHOD 

To determine the resonant mode and its associated 

coupling coefficient, the first step is to find the resonant 

frequencies for a given geometry, which is necessary to solve 

0)( nmZ . (5) 

This is the problem of finding the roots of nonlinear equation. 

Newton’s method is a commonly used routine. To avoid 

applying d|Znm(ω)|/dω in the calculation, Muller’s method is 

employed [4]. In this method, the initial estimate of the poles 

is not needed and multiple roots can be found.  

In Muller’s method, three points (ωi-1, |Znm(ωi-1)|), (ωi, 

|Znm(ωi)|), (ωi+1, |Znm(ωi+1)|) are used to approximate the local 

behavior of |Znm(ω)|. Such approximation is to construct the 

parabola that goes through all these points. The parabola is 

unique. By defining |Znm(ωi)| = f (ωi), it can be formulated as: 
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It is obvious that the values of ai in (6) are all constants, by 

which the root of this parabola can be obtained 
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The larger root will take the place of ωi+1 to repeat the above 

process until some criteria are met. To find the next root of the 

determinant, the available pole is removed by 
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After substituting the natural frequency ω0 into Znm(ω), the 

natural mode Jn and coupling coefficients Ηn can be obtained 

by solving the following matrix equations, 
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IV. NUMERICAL EXAMPLES 

Taking the spiral coil in [1], for instance, the self-

resonance of the spiral structure is investigated. Therefore, the 

feed loop in the original paper can be omitted. This is a purely 

metallic thin-wire structure, which can be formulated by 

electric field integral equation and solved by the method 

proposed in above sections. At resonant frequency, i.e. 10.3 

MHz, its current distribution is shown in Fig. 1. Such current 

distribution profile and resonant frequency agree fairly well 

with the reported experimental results. 
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Fig. 1. Current distribution of the spiral coil proposed in [1] at resonance.  

 

By plotting the near-field pattern of the isolated and 

coupled spirals at resonance, as shown in Fig. 2, it can be seen 

that the single spiral shows a nearly omni-directional pattern 

accompanied by intense radiation, while the coupling of the 

receiving spiral produces a directional near-field pattern with 

much weaker radiation. In the view of an antenna, a traveling 

wave is formed by these two coupling spirals, which works 

just like Yagi-Uda antenna arrays, but most energy is collected 

by the impedance-matched receiver.  
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Fig. 2. Near field pattern of the isolated and the coupled resonant spiral 

REFERENCES 

[1] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, et. al., “Wireless 

power transfer via strongly coupled magnetic resonances,” Science, vol. 

317, no. 5834, pp. 83-86, July, 2007. 

[2] R. F. Harrington, Field Computation by Moment Methods, IEEE Press 

series: New York, 1992, pp. 5-9. 

[3] L. B. Felsen, Transient Electromagnetic Fields, Springer-Verlag: New 

York, 1976, pp. 130-182. 

[4] T. T. Crow, B. D. Graves and C. D. Taylor, “Numerical techniques 

useful in the singularity expansion method as applied to electromagnetic 

interaction problems", Mathematics Note 27, Dec. 1972. 

 

 


	I. Introduction
	II. Formulation of Singularity Expansion Method
	III. Implementation of Singularity Expansion Method
	IV. Numerical Examples
	References

