
Abstract—For the robust optimal design of electromagnetic 

problems under uncertainties, the robustness evaluation is the 

critical problem. This paper presents a surrogate model based 

worst-case-scenario optimization algorithm, where the dynamic 

Kriging is incorporated to construct a higher accurate surrogate 

model. Finally, an improved differential evolution algorithm, 

DE/λ-best/1/bin, is adopted to search for the global robust optimal 

solution.  
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I. INTRODUCTION 

Uncertainties in design variables such as manufacturing 

tolerance and material property cannot be avoidable in 

engineering problems; so that robust optimizations have 

attracted increasing attention in electrical engineering [1].  

The obvious feature of electromagnetic problems is that the 

expensive computing cost is required for performance analysis 

by finite element method (FEM), which hinders application of 

robust analysis. There have been many efforts to deal with this 

problem such as the worst vertex prediction based worst case 

optimization (WV-WCO) [2] and gradient index (GI) method 

[3]. The existing algorithms, however, are not available for a 

general application since the computational complexity of the 

WV-WCO is strongly proportional to the number of uncertain 

variables and constraints; furthermore, not all engineering 

problems are available for accurate GI by sensitivity analysis. 

It is observed that surrogate models constructed by the 

response surface method and Kriging technique have been 

widely used to carry out design optimization [4]. Once the 

accurate meta-model is constructed, the robustness evaluation 

can be directly applied without intensive computational 

burden. In addition, a highly efficient optimization strategy is 

strongly requisite for the true robust optimal design.  

Therefore, the target of this paper is to present a surrogate 

model based robust optimization algorithm. The performance 

robustness is measured through applying the WV-WCO to the 

accurate surrogate model constructed by the dynamic Kriging. 

Finally, the global robust optimum can be found by one simple 

and efficient differential evolution algorithm.  

II. SURROGATE-MODEL BASED ROBUST OPTIMIZATION 

A. Review of Worst Case Scenario Optimization 

With the help of the worst vertex prediction, the worst case 

scenario optimization (WCO) problem subject to a set of 

constraint functions, gi(x), i=1,…,m, is formulated as follows: 
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where fw(x) and gw,i(x) are the worst objective and the ith worst 

constraint values in the uncertainty set [2], respectively. If all 

uncertain design variables independently following Gaussian 

distribution with a standard deviation σ, the worst vertex (xw or 

xw,i) of performance function Ψ(x) (either objective function or 

constraint function) are decided as: 
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where ei is a n-dimension unit vector with 1 of the ith element. 

Based on (2), the robustness evaluation in (1) consumes at 

most (2n+m+1) times of performance analysis by the FEM [2]. 

B. Surrogate Modeling by Dynamic Kriging  

Based on N sampling points [x1,…,xN]
T
 with their 

corresponding responses z=[z(x1),…,z(xN)]
T
, the response 

prediction at the point x0 is predicted by the Kriging technique 

as follows: 
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where the design matrix F=[fk(xi)], (i=1,..,N; k=1,…,K) 

consists of K-term basis functions fk(x) and f0 is the basis 

function value at point x0. β is regression coefficient vector;  R 

is the symmetric correlation matrix with the component 

Rij=R(θ, xi, xj), i,j=1,..,N; and r0=[R(θ, x1, x0) ,.., R(θ, xN, x0)]
T
 

is the correlation vector between x0 and N samples. The 

Gaussian covariance function R(θ, xi, xj) is shown as follows: 
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where the covariance parameter θ=[ θ1,…, θn]
T
 is obtained by 

the maximum likelihood estimation [5].  

The dynamic Kriging dynamically selects the optimal basis 

function set at each design point [5]. For example, the set of a 

2-D problem may be {1, x1, x2, x1x2, x1
2
, x2

2
,…}. The 

prediction error can be limited in a smaller interval as follows: 
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where z1-α/2 is the 1-α level quantile of the standard normal 

distribution, σ
2
p(x0) is the predicted variance, σ

2
 is the process 

variance, and  is Lagrange multiplier. The d(x0)=2z1-α/2σp(x0) 

is called the bandwidth of the prediction interval at point x0. 

The model accuracy generated with N samples is measured as: 
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where T is the number of test points and Var() is the variance 

of N true responses (j=1,…,N). The εa is a predefined value 

such as 0.005 for low dimensional problems and 0.01 for high 

dimensional problems [5]. 

The highest order P of the polynomial basis function is 

decided by using the following condition: 
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Once the dynamic Kriging accurately approximates the 

responses, there is no further approximation in the estimation 

of the robustness, which can guide to search the true robust 

optimal design under uncertainty.  

C. Differential Evolution AlgorithmDE/λ-best/1/bin 

The DE/λ-best/1/bin algorithm is proposed in [6], in this 

paper, we give some improvements about survival condition 

and convergence condition. The numerical implementation for 

constrained optimization problem is summarized as follows: 

Step 1: Randomly generate M individuals in design space 

1{ , , }
g g T

g MP  x x  and set the maximum iteration gmax. 

Step 2: Check all the constraints and count the number of 

feasible individuals as Nf. 

Step 3: Update mutant population by λ-best strategy as: 

 For the ith target vector xi,  

- Remove xi and select difference vectors (x
g

r1, x
g
r2), 

- Sort current population Pg based on fitness value, 

- Select the top λ individuals with better fitness 

values, where the λ value is determined as follows:  

1) λ=round(ε1M) with ε1Ran(0,1) if Nf is bigger 

than round(ε1M). 

2) λ= Nf  if Nf is between 1 and λ. 

3) If Nf is equal to zero, then λ-best individuals will 

be selected among the most feasible vectors or 

those having the lowest constraint violation. 

- Randomly select one base vector among the λ-best 

and generate mutant vector vi: 
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where α is a scaling factor and lk is index of the kth 

element of λ-best. 

Step 4: Crossover by binominal strategy as: 

 Generate the new trial vector g
iu using: 
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where Cr and jrand are crossover factor and random 

integer from 1 to n, respectively. 

Step 5: Evaluate objective function, and check the feasibility 

of each trial vector and update Nf. 

Step 6: Survival criterion. 

 For the ith trial vector u
g
i and target vector x

g
i,  

- If both are feasible, select the survivor as follows: 
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- If one is feasible, select the feasible one; 

- If both are infeasible, select that with lower sum of 

constraint violations. 

- Update the global best solution xb
g+1

; 

Step 7: Termination condition. 

 Stop if condition (11) is satisfied for all individuals 

during 10 consecutive iterations, or if the iteration 

counter g reaches gmax. Otherwise, go to Step 3.  
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where ε2 is set as 0.0001. 

Based on the above analysis, it is obvious the surrogate 

model based WV-WCO does not rely on any gradient 

information and can be coupled to arbitrary simulation tools. 

The whole flowchart of the proposed robust optimization 

algorithm is shown in Fig.1. 

III. OPTIMIZATION RESULT 

The TEAM Workshop problem 22, which is one design 

application about the superconducting magnetic energy storage 

system, is selected to validate the proposed algorithm [7]. The 

optimization results will be shown in the full paper. 
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Fig.1 Flowchart of the proposed robust algorithm. 
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