
Abstract—Topology optimization is typically solved by 
material density-based approaches, in which the material density 
is formulated as a solid isotropic material with penalization. To 
suppress the generation of intermediate-density material, the 
penalization factor is set to a value greater than 1. However, the 
convergence characteristics of objective function deteriorate, and 
it becomes difficult to derive a high-performance topology. Thus, 
we propose that the material density can be represented by a 
sigmoid function. This paper demonstrates the effectiveness of 
the sigmoid function in suppressing the generation of gray scale. 

Index Terms—design optimization, finite element methods, 
linear programming, magnetostatic shielding, topology 

I. INTRODUCTION 

Topology optimization (TO) has the useful ability to 
realize a more flexible shape of magnetic circuit than can be 
derived from size or shape optimization. Furthermore, TO 
permits the discovery of novel geometries, because the 
optimized solution is not dependent on conventional 
information. 

The material density approach [1], in which the binary 
information for material allocation is transformed into the 
continuous space, has been widely applied to electromagnetic 
systems [2] – [4]. Generally, the material density is formulated 
as a solid isotropic material with penalization (SIMP) [5], 
which can suppress the generation of intermediate-density 
material (gray scale) by increasing the penalization factor. 
However, this increment degrades the performance of the 
converged topology [5], [6]. 

This paper proposes a density-based TO in which the 
material density is formulated according to a sigmoid function 
to suppress the generation of gray scale. The effectiveness of 
the proposed method is demonstrated by a comparison with a 
density-based SIMP TO in a 2-D magnetostatic shielding 
problem. 

II. DENSITY-BASED TOPOLOGY OPTIMIZATION 

In material density-based TO, the material density of a 
finite element is adopted as the design variable. When the 
SIMP is applied to a material of density i in an element i, the 
linear permeability i is given as follows: 
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where 0 is the permeability in a vacuum, r is the relative 

permeability of the magnetic material, and n is a penalization 
factor to suppress the generation of gray scale elements. 

Similarly, the permeability using a density-based sigmoid 
function )( i  can be formulated as 
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Then, )( i  is defined as follows: 
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where  is a factor for controlling ii dd  /)(  at i = 0.5. We 

set  to 15 in order to clarify the partition between 0 and 0r 
clear. 

Fig. 1 shows the change in permeability and the derivative 
with respect to . The sigmoid behavior of i has a point 
symmetry arrangement about i = 0.5, and the magnitude of 
di / di attains its maximum value at i = 0.5. Because the 
permeability of gray scale elements at i = 0.5 has the mobility 
to become 0 or 0r, it is expected that the gray scale 
elements can be eliminated. Then, assuming that the material 
density is constantly distributed in a finite element, the TO can 
be performed. 
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Fig. 1.  Changes of permeability and its derivative: (a) permeability, (b) the 
derivative of permeability with respect to i. 

III. OPTIMIZATION MODEL AND DESIGN GOAL 

A. 2-D Box Shield Model 

We adopt a box shield model as the 2-D optimization 
target in the magnetostatic field, as shown in Fig. 2. The 
analyzed region is reduced to a quarter area using the shape 
symmetry. Analysis scale reduction is performed using a 
nonconforming mesh connection with a linear combination. 
The allocated magnetic material is assumed to have linear 
properties, and r is set to 103. Then, the design domain is 
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composed of 6,912 square elements, and the analyzed region 
is discretized by 10,356 quadrilateral elements. 

B. Objective Function 

The TO goal is to minimize the magnetic energy in the 
target domain, under the condition that the area S of the 
magnetostaic shielding is less than the specified area S0. The 
formulation of objective function W can be defined as follows: 
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where St is the area of the target domain, B is the magnetic 
flux density, nd is the number of design variables, and Sd is the 
area of the design domain. Next, (4) is transformed into a 
linear problem using a Taylor expansion with respect to (k) 
which is the correction to (k) in the k-th iteration, as follows: 
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where   is the Hamiltonian operator with respect to (k), and 
(k) is a move limit for (k). The linear problem can be solved 
by sequential linear programming. When (k) is less than 10-2, 
the TO is stopped. 

IV. OPTIMIZATION RESULTS 

The TO of magnetostaic shielding is performed under the 
condition that S0 is set to the value of one-third the design 
domain with (0) set to 0.33. The judgment for gray scale is 
based on the permeability range 0.20r < i < 0.80r. 

The optimized topologies are shown in Fig. 3. It can be 
seen that the magnetic shielding is comprehensively composed 
of a multi-layered construction. Whereas many gray scale 
elements appear in the topology of SIMP (n = 1), there are 
few gray scale element in the results from SIMP (n = 2) or 
SIMP (n = 3). The penalization factor is useful for the 
suppression of gray scale generation. Furthermore, the 
reduction of the gray scale is confirmed for sigmoid function. 
As shown in Fig. 4, the sigmoid function has similar 
performance to that of SIMP at n = 2, 3. The reason why the 
iron constitution (= 0.41) at Sigmoid case is larger than 1/3 is 
that the higher value of i is not comparable to the material 
density as shown in Fig. 1. 

Fig. 5 shows the convergence characteristics of W. When 
the n value of SIMP increases, the convergence history 
deteriorates. However, the characteristics of the sigmoid 
function are better than the results from SIMP with n = 2, 3. 
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Fig. 2.  Optimization model. 

The converged value of W has similar properties, as shown in 
Table I. It is likely that there is no disadvantage in using a 
material density definition based on the sigmoid function. The 
performance of a large scale 3-D problem will be addressed in 
the full paper. 
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Fig. 3.  Optimization topologies: (a) SIMP (n = 1), (b) SIMP (n = 2), (c) SIMP 
(n = 3), (d) Sigmoid. 
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Fig. 4.  Rates of constituent materials in optimized topologies. 
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Fig. 5.  Convergence characteristics of the objective function. 

TABLE I 
OPTIMIZATION RESULTS 

 ite. elapsed time [s] W×10-10 [J] S(ρ) / S0

SIMP(n = 1)

0.33

262 85.1 3.621 (0.17) 1.00

SIMP(n = 2) 262 86.2 20.23 (1.00) 1.00

SIMP(n = 3) 262 86.4 43.20 (2.13) 0.99

Sigmoid 262 87.0 4.971 (0.25) 1.00
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