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Abstract—This paper focuses on the airgap reluctances that
connect stator and rotor teeth in a Magnetic Equivalent Circuit
(MEC) model of an induction machine. A dimensionless analyt-
ical expression is adopted for the position dependence of these
reluctances, the three degrees of freedom of which are identified
and validated by Finite Element (FE) modelling, considering
a simplified geometry and the complete machine under study
respectively. By way of validation the method is applied to a
3kW induction motor.

Index Terms—Induction machines, magnetic equivalent cir-
cuits, harmonic distortion, finite element methods.

I. INTRODUCTION

The 2-D FE method is a valuable tool for the electromag-
netic analysis of electrical machines as it allows accounting
for the machine’s real geometry and winding scheme, global
and local saturation, eddy current effects in the windings,
etc. When many evaluations have to be performed (machine
optimisation, analysis of control and fault detection algo-
rithms, real-time simulation, etc.), FE modelling may become
prohibitively expensive though. A MEC model offers then a
good compromise between accuracy and computational cost
[1-6]. In particular, compared to dq-type and winding-function
models, harmonics due to slotting, saturation, eccentricity
and faults (short circuits, broken bars, etc.), in flux linkages,
currents and torque, are accounted for easily and reproduced
with relatively high accuracy.

The equations governing a MEC model are mostly ex-
pressed in terms of nodal magnetic potential values; the
associated system matrix contains permeances and all stator
teeth may in principle be connected to all rotor teeth by
nonzero or zero permeances (which readily allows considering
skew) [1]. Compared to the nodal approach, the dual loop-flux
(or mesh-flux) approach has the advantage of better numerical
convergence, but at the expense of a less straightforward dy-
namic management of the airgap reluctances [6]. In this paper
the loop-based MEC modelling of [4] is further developed,
with particular attention to the identification of the airgap
reluctances. The main added value concerns the coherent
definition and calculation of these reluctances through FE
modelling. This is illustrated and validated by considering a
3kW machine. The authors are not aware of a similar approach
or study presented in literature. The extended paper will further
deal with closed rotor slots and modelling of skew (single-slice
vs. multi-slice MEC model) [4].

II. IDENTIFICATION OF AIRGAP RELUCTANCES

The basic MEC shown in Fig. 1 contains 2(Ns + Nr) flux
loops, where Ns and Nr are the number of stator and rotor

teeth respectively. Fig. 2 illustrates that a stator tooth and a ro-
tor tooth are connected by a tooth-pair reluctance of (nonzero)
permeance Ptp if the corresponding tooth pitches overlap,
i.e. when the misalignment x of the two teeth is smaller (in
absolute value) than the average tooth pitch τav = (τs +τr)/2;
x is the distance between the centerlines of the teeth (shown in
blue). This way there are exactly Ns + Nr airgap reluctances
and airgap flux loops, independently of the rotor position
(Fig. 1). This network topology corresponds to non-crossing
flux lines (and the flux density being divergence-free).
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Fig. 1. Elementary MEC topology of an induction machine
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Fig. 2. Basic geometric parameters for an overlapping stator-rotor tooth pair
(stator tooth pitch τs, rotor tooth pitch τr, misalignment coordinate x), the
corresponding flux (delimited by the green dots, magnetic vector potential a1
and a2) and magnetomotive force (integral along red line between blue dots)

The flux going from the rotor tooth to the stator tooth, Φ,
is by our definition the one delimited by the two center lines
of the stator and rotor slot (green lines and dots in Fig.2). In
case of a FE model, using the magnetic vector potential a, we
have Φ = Lz(a1 − a2), where Lz is the axial length of the
machine. The magnetomotive force F between the two teeth is
obtained by integrating the magnetic field along a line (in red)
connecting the two teeth. The permeance is then P = Φ/F .

Misalignment x and permeance Ptp are made dimensionless
as follows: x∗ = x/τav and P∗

tp = Ptp/(µ0τav/δ), where µ0

is the permeability of vacuum and δ the airgap width. The
analytical function P∗

tp(x∗) shown in Fig. 3 is adopted [4];
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it is piecewise constant (interval 2d1), quadratic (twice d2),
linear (with slope ±1, twice d3) and quadratic (twice d4).
(The condition d1 + d2 + d3 + d4 = 1 is new compared to
[4].) Notice the continuity of the derivative of P∗

tp(x∗); this
matters for the torque computation [1,4].
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Fig. 3. Analytical P∗
tp(x∗) curve and derivative

dP∗tp
dx∗

The more basic approach for fixing the Ptp(x) relation
consists in ignoring fringing flux [2,3], with possibly an
increased equivalent airgap width (Carter factor correction).
Ptp(x) is then piecewise constant or linear, and its derivative
discontinuous.

III. APPLICATION EXAMPLE

We consider a 4-pole, 380/220 V, 50 Hz, 3 kW squirrel-cage
induction motor with 36 stator slots and 32 rotor slots (Fig. 4)
[4]. The commercial version of the rotor has 32 closed and
skewed slots; three other rotors with open and/or unskewed
slots have been constructed for research purposes. The noload
and full-load stator current waveforms obtained with a (single-
slice or multi-slice) FE or MEC model, with either of the four
different rotors, agree well with the measured waveforms [4].

Fig. 4. Cross-section of 3 kW induction motor (full-load flux lines)

In this digest the study is limited to the unskewed rotor with
open rotor slots, adopting either the actual 2 mm slot opening
or a 4 mm one. A constant current is imposed in the three
stator phases (1, −0.5 and 0.5 A resp.), and a zero current
in all rotor bars (such that the torque is due to the slotting
only). A constant and very large relative permeability (105) is
assumed for the iron, in order to focus on the modelling of
the airgap reluctances. A series of static calculations is carried
out, with the FE and the MEC models, producing the results
shown in Figs. 5 to 7.

From Fig. 5 it can be concluded that the proposed analytical
form P∗

tp(x∗) with 3 degrees of freedom is adequate, leading
in Figs. 6 to 7 to a quite satisfactory prediction of the tooth
harmonic in the rotor flux density and the torque. One further

observes the effect of the plain airgap reluctance modelling
(no fringing flux and no airgap width correction), i.e. a
considerable under and overestimation of the fundamental flux
component and the torque ripple respectively.
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Fig. 5. {x∗,P∗
tp} samples and fitted P∗

tp(x∗) curves with 2 mm rotor slot
opening (in red, d1 = 0, d2 = 0.1693, d3 = 0.5636, d4 = 0.2671) and
4 mm rotor slot opening (in blue, d1 = 0, d2 = 0.1415, d3 = 0.3912,
d4 = 0.5636)
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Fig. 6. Rotor tooth flux density versus rotor position (half electrical cycle)
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Fig. 7. Torque versus rotor position (one rotor tooth pitch)
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