
Abstract—In this paper, a 2-D time domain method is proposed 

to simulate the Trichel pulses in the negative corona discharge on 

a line-to-plane geometry. Three ionic species in the ionization 

layer, including electrons, positive ions and negative ions, are 

taken into consider. The finite element method (FEM) is used to 

solve the Poisson’s equation, while the finite volume method 

(FVM) is used to solve the charge transport equations. Trichel 

pulses of a line-to-plane geometry are analyzed and compared 

with the measured results of a designed experiment in the 

laboratory. Well agreement is obtained between the calculated 

results and the measured ones, verifying the validity of the 

proposed scheme. 

Index Terms—Corona, current measurement, finite volume 

method (FVM), time domain analysis. 

I. INTRODUCTION 

orona discharge on the high voltage direct current (HVDC) 

transmission line causes many electromagnetic related 

environmental problems, which are increasing public concern 

nowadays. Numerical study of corona discharge can help to 

understand the principle of these electromagnetic issues. In the 

numerical simulation of corona discharge on the overhead 

transmission line, the electrons are usually ignored and the 

steady state of the positive and negative ions, which is called 

as ion flow field, is solved to obtain the quasi-static 

characteristics, such as electric field and ion current density [1], 

[2]. However, few studies on the transient process of corona, 

especially the nanosecond pulse discharge, which is very 

important to analyze the high-frequency characteristics, such 

as radio interference and audible noise, are carried out. 

In this paper, a time domain finite volume based approach 

is proposed to simulate the Trichel pulses in the negative 

corona discharge. The simulated results are compared with the 

measured results of a reduced-scale experiment, verifying the 

validity of the proposed approach. 

II. TRICHEL PULSE MODELING 

A. Governing equations 

The model is constructed in two-dimensional domain and 

the corona discharge can be mathematically described by the 

following equations [3]. 

The electric field satisfies the Poisson’s equation 
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The charge densities satisfy the charge transport equations 
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where, Φ is the electric potential; Ne, Np and Nn are the 

densities of electrons, positive ions and negative ions, 

respectively; e is the charge of an electron; ε0 is the 

permittivity of free space; ve, vp and vn are the velocity vectors 

of three ionic species, which can be calculated as 
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where, E is the electric field vector; μp and μn are the mobility 

of positive and negative ions [4]. α, η and β are the ionization, 

attachment, and recombination coefficients, respectively; De is 

the diffusion coefficient of electrons. 

B. Process overview 

The calculation geometry is shown in Fig. 1. The simulation 

of the nanosecond corona discharge is too difficult if the total 

region of the line-to-plane geometry is considered. In order to 

simplify the simulation, an artificial boundary is selected 

around the conductor. The calculation region inside the 

artificial boundary, of which the radius is 40 times that of the 

conductor, contains the ionization layer of the conductor. The 

potential on the artificial boundary is calculated by the charge 

simulation method (CSM) and the influence of the ground is 

taken into consider.  

 
Fig. 1 Calculation geometry and meshes. 
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In each time step, the Poisson’s equation is solved by the 

finite element method (FEM) to obtain the electric potential 

and the typical triangular meshes are used, as shown in Fig. 1. 

Then, the charge transport equations are solved by the finite 

volume method (FVM) to obtain the charge densities of three 

ionic species and the auxiliary meshes, which are constructed 

by connecting the centers of each triangle, are introduced. 

C. Solution of the Poisson’s equation 

The electric potential Φ in each time step is solved by FEM. 

In order to solve (1), the following function is introduced. 
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where the subscript i represents the ith element. Then, solving 

(1) can be transferred to minimizing Ri. Analyzing the 

derivative of Ri in all elements, a linear equation can be 

obtained. Combining the equation with the potential boundary 

condition, the electric potential can be solved. 

D. Solution of the charge transport equations 

The charge transport equations describe the ionization, 

attachment and recombination processes in the corona. First, 

the equation of electrons can be solved independently. 

Integrating the equation of electrons in the auxiliary mesh 

around the ith node and discretizing the equation in time 

domain, the following equation can be obtained. 
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where, t is the time of the current step; Δt is the time step; the 

subscript i represents the ith node; ix represents the auxiliary 

edges around the ith node; K is the number of the auxiliary 

edges; Fix is the related vector, which can be calculated as 
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Fig. 2. Calculation of the electron densities by upstream FVM. 

where, Lix is the length of the auxiliary edge; nix is the unit 

outward normal vector of the auxiliary edge; Si is the area of 

the auxiliary mesh around the ith node, as shown in Fig. 2. The 

densities of electrons on the auxiliary edge are calculated by 

the upstream method and the gradients of the electron densities 

are expressed by the one order shape function [5]. 

After obtaining the densities of electrons, the equations of 

positive and negative ions can be discretized and solved 

similarly. In order to accelerate the scheme, the variable time 

step method is used. 

III. VALIDATION 

The simulated results are compared with the measured 

results of a designed experiment in the laboratory. The height 

of the conductor is 60 cm and the radius of the conductor is 1 

mm. The corona current on the conductor is measured by a 

designed high-frequency current acquisition system, as shown 

in Fig. 3. When the voltage is -35 kV, the simulated and 

measured Trichel pulses are shown in Fig. 4. The simulated 

values match the measured ones well, verifying the scheme. 

 
Fig. 3 Measurement platform of the Trichel pulses. 

 
Fig. 4 Comparison of the simulated and measured Trichel pulses. 

REFERENCES 

[1] B. Zhang, J. He, R. Zeng, S. Gu, L. Cao, "Calculation of Ion Flow Field 

Under HVDC Bipolar Transmission Lines by Integral Equation 

Method," IEEE Trans. Magn., vol. 43, no. 4, pp. 1237-1240, Apr. 2007. 

[2] P. S. Maruvada, "Electric field and ion current environment of HVDC 

transmission lines: Comparison of calculations and measurements," 

IEEE Trans. Power Del., vol. 27, no. 1, pp. 401-410, Jan. 2012. 

[3] P. Sattari, G. S. P. Castle, K. Adamiak, "Numerical Simulation of 

Trichel Pulses in a Negative Corona Discharge in Air," IEEE Trans. Ind. 

Appl., vol. 47, no. 4, pp. 1935-1943, July-Aug. 2011. 

[4] P. S. Maruvada, Corona Performance of High-Voltage Transmission 

Lines. London, U. K.: Research Studies, 2000. 

[5] T. Lu, H. Feng, X. Cui, Z. Zhao and L. Li, "Analysis of the Ionized Field 

Under HVDC Transmission Lines in the Presence of Wind Based on 

Upstream Finite Element Method," IEEE Trans. Magn., vol. 46, no. 8, 

pp. 2939-2942, Aug. 2010. 


